
BEDIENUNGSKURZANLEITUNG Agilent Modell 66111A Gleichstromquelle mit schnellem Einschwingverhalten Agilent Modell 66311B/D, 66309B/D Gleichstromquelle für Mobiltelefone

Teile-Nr. 5964-8150 Microfiche-Teile-Nr. 5964-8151 Printed in USA: August 1999

Sicherheitshinweis

Diese Gleichstromquelle ist ein Gerät der Schutzklasse 1. Sie verfügt über einen Schutzleiter. Dieser Schutzleiter **muß** über eine Stromquelle, die mit einem Massestecker ausgestattet ist, mit der Schutzerde verbunden sein. Allgemeine Sicherheitshinweise finden Sie in den Sicherheitsrichtlinien am Anfang des User's Guide. Vor der Installation und vor dem Betrieb sollten Sie die Gleichstromquelle prüfen und die Sicherheitswarnhinweise und die Anweisungen im User's Guide lesen. Die Sicherheitshinweise für spezifische Prozeduren finden Sie an der entsprechenden Stelle im User's Guide.

Funktionen

• Spannungs- und Stromsteuerung mit 12-Bit-Programmierauflösung am Ausgang 1.

Stromquelle mit 3 A (bis zu 5 A für 7 Millisekunden)

Umfassende Meßfunktionen am Ausgang 1

Gleichspannung und Gleichstrom

Effektive Spannung/effektiver Strom und Spitzenspannung/-strom

Strommessung von bis zu ca. 7,0 A

Meßauflösung von 16 Bit

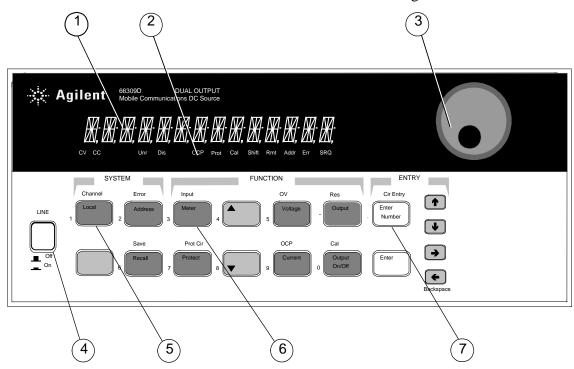
Getriggerte Erfassung von digitalisierten Strom- und Spannungssignalen (alle Modelle außer Agilent 66111A)

- Frontplatte mit 14-stelliger Vakuum-Fluoreszenz-Anzeige, Tastenfeld und Drehknopf für Spannungsund Stromeinstellungen
- Integrierte GPIB-Programmierschnittstelle für die SCPI-Befehlssprache
- Dauerhaftes Speichern und Abrufen von Einstellungen mit der SCPI-Befehlssprache
- Funktionen für Überspannung, Überstrom, Übertemperatur und RI/DFI-Schutz
- ♦ Umfassender Selbsttest, Statusanzeigen und Software-Kalibrierung

Modellunterschiede

Option	Agilent 66111A	Agilent 66311B	Agilent 66311D	Agilent 66309B	Agilent 66309D
Signalmessungen	NEIN	JA	JA	JA^1	JA^1
Messen von niedrigen Stromstärken	NEIN	JA	JA	JA^1	JA^1
ACDC-Meßdetektor	NEIN	JA	JA	JA^1	JA^1
Ausgangskompensation	JA	JA	JA	JA^1	JA^1
Schutz für Meßleitungen	JA	JA	JA	JA^1	JA^1
Zusätzlicher Ausgang (Ausgang 2)	NEIN	NEIN	NEIN	JA	JA
Externer DVM-Eingang	NEIN	NEIN	JA	NEIN	JA
Einstellbarer Meßpuffer	JA	JA	JA	JA	JA
Kompatibilitätsbefehle	JA	JA	JA	NEIN	NEIN
RS-232-Schnittstelle	JA	JA	JA	NEIN	NEIN

¹Betrifft nur den Hauptausgang (Ausgang 1).


Die Frontplatte im Überblick

1 Eine 14-stellige Anzeige gibt Meßwerte am Ausgang sowie die eingestellten Werte an.

2 Anzeiger weisen auf Betriebsarten und Statusbedingungen hin.

3 Drehknopf zur Einstellung von Spannung, Strom und Menüparameter.

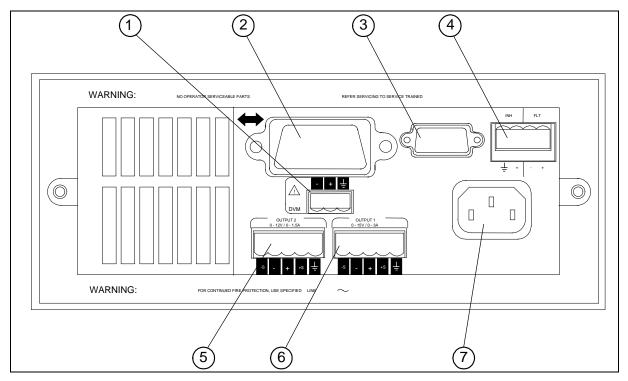
Mit und wird die Auflösung und mit dem Drehknopf der Ausgangs-wert eingestellt.

4 Ein-/Ausschalter des Netzgerätes.

5 Systemtasten:

- Rückkehr in die Lokalbetriebsart
- Auswahl des Ausgangskanals
- ◆ Einstellung der GPIB-Adresse
- Einstellung der RS-232-Schnittstelle
- Anzeige der SCPI-Fehlercodes
- Abspeichern/ Wiederaufrufen von Geräteeinstellungen
- Anzeigen von Firmware-Version und Seriennummer

6 Funktionstasten:


- Ausgang aktivieren/ deaktivieren
- Auswahl der Meterfunktionen
- Einstellung von Spannung und Strom
- Einstellung/ Löschung der Schutzfunktionen
- orollen durch die FrontplattenMenübefehle

7 Eingabetasten:

- Eingabe von Werten
- Erhöhen/Verringern von Werten
- ◆ und ↑ wählen Frontplatten-Menüparameter
- wählen eine Stelle im numerischen Eingabefeld aus

Die Rückseite im Überblick

- **1** DVM-Eingänge. Steckerabdeckung ist abnehmbar.
- **2** GPIB- (IEEE-488) Schnittstellenanschluß.
- **3** Anschluß für externe Frontplattenanzeige. RS-232-Schnittstelle nur für Agilent 66111A, 66311B/D.
- **4** INH/FLT- (externer INHibit / interner FauLT) Anschluß. Steckerabdeckung ist abnehmbar.

5 Anschluß für Ausgang 2 (nur Agilent 66309B/D). Steckerabdeckung ist abnehmbar.

6 Anschluß für Ausgang 1. Steckerabdeckung ist abnehmbar. **WICHTIG:** Bringen Sie an diesem Anschluß die beiliegenden Fühlersteckbrücken an, bevor Sie das Gerät einschalten. **7** Netzanschlußbuchse (IEC 320)

Gerätekonfiguration

Taste "Addresse" auf der Frontplatte für die Konfiguration der Schnittstelle

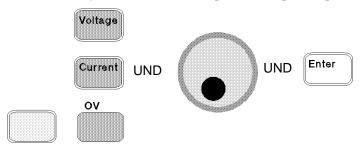
Siehe "Frontplatten-Menüs im Überblick".

- Wählen Sie entweder die GPIB- oder die RS-232-Schnittstelle aus.
- Geben Sie die GPIB-Busadresse ein.
- ♦ Konfigurieren Sie Baudrate, Parität und Flußsteuerung für die RS-232-Kommunikation.
- ♦ Wählen Sie entweder die Programmiersprache SCPI oder COMPatibility.
- Aktivieren Sie die optionale externe Frontplatte Agilent 14575A.

4 Bedienungskurzanleitung

Zifferneingabe über die Frontplatte

Für die Eingabe von Zahlenwerten über die Frontplatte wählen Sie eines der folgende Verfahren:


Pfeiltasten und Drehknopf zur Änderung von Spannungs- und Stromwerten

HINWEIS

Der Ausgang muß aktiviert (ON) sein, damit die veränderten Werte in der Meter-Betriebsart angezeigt werden. Bei aktiviertem Ausgang wird bei diesem Verfahren die Spannung bzw. der Strom sofort geändert.

Funktionstasten und Drehknopf zur Änderung der angezeigten Werte

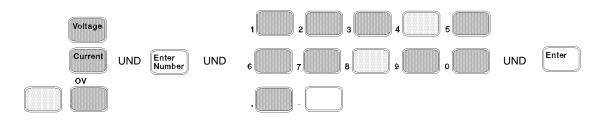
Pfeiltasten zur Änderung einzelner Stellen in der Anzeige

Erhöht blinkende Stelle

Erniedrigt blinkende Stelle

Schiebt blinkende Stelle nach rechts

Schiebt blinkende Stelle nach links


Enter

Eingabe des Wertes nach erfolgter Änderung

Funktions- und Eingabetasten zur Eingabe eines neuen Wertes

HINWEIS

Bei Eingabefehlern ist die Rücktaste zu drücken, um die Zahl zu löschen, bzw. muß die Meter-Taste betätigt werden, um zur Meter-Betriebsart zurückzukehren.

Frontplatten-Anzeiger

CV CC Unr Dis OCP Prot Cal Shift Rmt Addr Err SRQ

CV Ausgang 1 oder Ausgang 2 arbeitet im Konstantspannungsbetrieb. CC Ausgang 1 oder Ausgang 2 arbeitet im Konstantstrombetrieb. Unr Ausgang 1 oder Ausgang 2 ist ungeregelt. Der Ausgang ist deaktiviert (OFF). Drücken Sie die Taste "Output On/Off", um Dis den Ausgang zu aktivieren. **OCP** Der Überstromschutz ist aktiviert. Drücken Sie die Taste OCP, um den Überstromschutz zu deaktivieren. **Prot** Weist darauf hin, daß der Ausgang durch eine der Schutzfunktionen deaktiviert wurde. Drücken Sie die Taste "Prot Clear", um diesen Zustand aufzuheben. Cal Die Kalibrierbetriebsart ist aktiviert. Rollen Sie zum Befehl "Cal Off", und drücken Sie zum Verlassen die Eingabetaste. Shift Die Shift-Taste wurde gedrückt. Rmt Die ausgewählte Schnittstelle (GPIB oder RS-232) ist aktiv. Drücken Sie die Local-Taste, um zur Frontplattenbedienung zurückzukehren.

Addr Die Schnittstelle wurde als Sender oder Empfänger adressiert.

Es trat ein Fehler in der SCPI-Fehlerliste auf. Drücken Sie zur Anzeige des Err

Fehlercodes die Error-Taste.

SRQ Die Schnittstelle hat einen Service Request ausgelöst.

Direktfunktionstasten

Output On/Off Ein- und Ausschalter des Netzgerätes.

Aktiviert die Tastensteuerung, wenn die Remote-Betriebsart aktiv ist (sofern Local

kein "Lockout" vorliegt).

Shift Prot Clr Setzt Schutzschaltung zurück und bewirkt Rückkehr zur letzten

Geräteeinstellung.

Shift OCP Umschalter zur Aktivierung bzw. Deaktivierung des Überstromschutzes.

Frontplatten-Menüs im Überblick

Address	1	4DDDECC 7	Finatally and CDID Advance		
Address	J	ADDRESS 7	Einstellung d. GPIB-Adresse		
		INTF GPIB	Auswahl der Schnittstelle (GPIB RS232) 1		
	—	BAUDRATE 300	Auswahl der Baudrate (300 600 1200 2400 4800 9600) 1		
	—	PARITY NONE	Auswahl der Parität (NONE EVEN ODD MARK SPACE) 1		
	<u> </u>	FLOW NONE	Auswahl der Flußsteuerung (XON-XOFF RTS-CTS DTR-DSR NONE) 1		
	-	LANG SCPI	Auswahl der Programmiersprache (SCPI COMP) 1		
	▼	REMOTE FP OFF	Aktivieren oder Deaktivieren der externen Frontplatte Agilent 14575A (ON OFF)		
	▼	ROM: A.00.00	Anzeige der Firmware-Version des Gerätes		
	▼	SN: US12345678	Anzeige der Seriennummer des Gerätes		
Recall		*RCL 0	Abruf einer Geräteeinstellung		
Shift	Save	*SAV 0	Abspeicherung der aktuellen Geräteeinstellung		
Shift	Error	ERROR 0	Anzeige der Anzahl der Fehler in der SCPI-Fehlerliste		
Shift	Channel	² 5.000V 0.104A	Schaltet zwischen der Anzeige für Ausgang 1 und 2 um (Ausgang 2 gezeigt)		
Meter		1 12.000V 1 0.204A	Messung von Ausgangsspannung/-strom (Ausgang 1 gezeigt)		
	▼	¹ 12.500V MAX	Messung der maximalen Ausgangspannung ²		
	▼	¹ 1.000V MIN	Messung der kleinsten Ausgangsspannung ²		
	₹	¹ 12.330V HIGH	Messung d. Hochpegels eines Spannungsimpulssignals ²		
	-	¹ 0.080V LOW	Messg. d. Niedrigpegels eines Spannungsimpulssignals ²		
	₹	¹ 12.000V RMS	Messung der Effektivspannung ²		
	▼	¹ 0.350A MAX	Messung des maximalen Spitzenausgangsstroms ²		
	▼	¹ 0.050A MIN	Mesung des kleinsten Ausgangsstroms ²		
	-	¹ 0.400A HIGH	Messung des Hochpegels eines Stromimpulssignals ²		
	₹	¹ 0.012A LOW	Messung des Niedrigpegels eines Stromimpulssignals ²		
	₹	¹ 0.210A RMS	Messung des Effektivstroms ²		
	₹	¹ 12.000V DC:DVM	Messung der Gleichspannung am DVM-Eingang ³		
	₹	¹ 12.000V RMS:DVM	Messung der Effektivspannung am DVM-Eingang ³		
Voltage		1 VOLT 12.000	Einstellung der Spannung für Ausgang 1 an allen Modellen		
		² VOLT 2.000	Einstellung der Spannung für Ausgang 2 4		
Current		¹ CURR 2.000	Einstellung des Stromgrenzwertes für Ausgang 1 an allen Modellen		
		² CURR 1.000	Einstellung des Stromgrenzwertes für Ausgang 2 ⁴		
Shift	Res		Nicht gültig		
Protect]	OVERCURRENT	Schutzstatus (Beispiel zeigt ausgelösten Überstrom)		
Output		*RST	Versetzt Gerät in die Werksstandardeinstellung		
Output	·	TYPE:CAP LOW	Einstellung der Ausgangskapazitätskompensation (HIGH oder LOW)		
		PON:STATE RST	Auswahl des Einschaltzustands (RST oder RCL0)		
		PROT:DLY 0.08	Einstellung des Schutzverzögerung in Sekunden		
		RI LATCHING	Einstellung der Remote Inhibit-Betriebsart (LATCHING, LIVE oder OFF)		
	▼	DFI OFF	Einstellung des Discrete Fault Indicator (ON oder OFF)		
	▼	DFI:SOUR OFF	Auswahl der DFI-Quelle (QUES, OPER, ESB, RQS oder OFF)		
	▼	PORT RIDFI	Einstellung Ausgangsport-Funktionen (RIDFI oder DIGIO)		
	-	DIGIO 7	Einstellung und Auslesen des I/O-Portwertes (0 bis 7)		
	▼	SENSE:PROT OFF	Aktivierten oder Deaktivieren der Schutzschaltung für Meßleitungen (ON/OFF)		
Shift			Einstellung des Überspannungsschutzpegels		
Sillit	OV	VOLT:PROT 22 PROT:STAT ON	Aktivieren oder Deaktivieren des Überspannungsschutzes (ON oder OFF)		
Chift			Einstellung Strombereich (HIGH, LOW oder AUTO) ²		
Shift	Input	CURR:RANG HIGH	Einstellung Strombereich (HIGH, LOW oder AUTO) ² Einstellung des Strommeßdetektors (ACDC oder DC) ²		
	<u> </u>	CURR:DET ACDC	, ,		
	<u> </u>	TINT 46.8	Einstellung des Zeitintervalls für eine Frontplattenmessung in Sekunden		
Chift	Cal	POINT 2048	Einstellung der Puffergröße für eine Frontplattenmessung		
Shift Mit	Cal und	CAL ON	Zugriff auf Kalibriermenü (siehe Anhang B) s (Tabelle enthält Werkseinstellungen). Mit Meter verlassen Sie ein Menü.		
Λ/i+ I Ψ	Lundia	Lughlan Cia Daramatar au	o (Taballa anthält Markasinstallungan) - Mit Mater Luarlasson Cia ain Manii		

Mit und wählen Sie Parameter aus (Tabelle enthält Werkseinstellungen). Mit Meter verlassen Sie ein Menü.

Nicht für Modell 66309B gültig. Nicht für Modell 66311D/66309D gültig. Nur für Modell 66309B/D gültig.

SCPI-Programmierbefehle im Überblick

HINWEIS

Einige [optionale] Befehle wurden der Einfachheit halber mit aufgenommen. Eine vollständige Beschreibung aller Programmierbefehle finden Sie im Kapitel 8 im User's Guide.

```
SENSe
ABORt
CALibrate
                                                                                    :CURRent :RANGe <n>1
            :CURRent [:POSitive]
                                                                                                :DETector ACDC | DC1
                          :NEGative
                                                                                    :FUNCtion "VOLT" | "CURR" | "DVM"
                           :MEASure :LOWRange 1
                                                                                    :PROTection :STATe <bool>
                                                                                    :SWEep :OFFSet :POINts <n>
                                                :AC 1
            :CURRent2 2
                                                                                                  :POINts <n>
            :DATA <n>
                                                                                                  :TINTerval <n>
            :DATE <date>
                                                                                    :WINDow:TYPE "HANN" | "RECT"
                                                                        [SOURce:]
            :DVM 3
           :LEVel P1 | P2
                                                                                    CURRent <n>
           :PASSword <n>
                                                                                                 :TRIGgered <n>
            :SAVE
                                                                                                 :PROTection :STATe <bool>
            :STATe <bool> [, <n>]
                                                                                    CURRent2 <n>2
           :VOLTage [:DC]
                                                                                                 :TRIGgered <n> 2
                           :PROTection
                                                                                    DIGital :DATA <n>
           :VOLTage2 2
                                                                                                 :FUNCtion RIDF | DIG
DISPlay
                                                                                    VOLTage <n>
                                                                                                 :TRIGgered <n>
            <hool>
            :CHANnel <channel> 2
                                                                                                 :PROTection <n>
            :MODE NORMal | TEXT
                                                                                                                  :STATe <bool>
           :TEXT <display_string>
                                                                                    VOLTage2 <n>2
FORMat
                                                                                                 :TRIGgered <n> 2
           [:DATA] ASCII | REAL [,length]
                                                                        STATus
           :BORDer NORM | SWAP
                                                                                    :PRESet
INITiate
                                                                                    :OPERation [:EVENt]?
            :SEQuence[1|2]
                                                                                                            :CONDition?
                                                                                                            :ENABle <n>
            :NAME TRANsient | ACQuire
            :CONTinuous :SEQuence[1], <bool>
                                                                                                            :NTRansition <n>
                                    :NAME TRANsient, <bool>
                                                                                                            :PTRansition <n>
MEASure
                                                                                    :QUEStionable [:EVENt]?
                                                                                                            :CONDition?
            :CURRent2 [:DC]? 2
           :VOLTage2 [:DC]? 2
                                                                                                            :ENABle <n>
MEASure | FETCh
                                                                                                            :NTRansition <n>
            :ARRay :CURRent?
                                                                                                            :PTRansition <n>
                        :VOLTage?
                                                                        SYSTem
           [:CURRent] [:DC]?
                                                                                    :ERRor?
                                                                                    :LANGuage SCPI | COMPatibility
                         :ACDC?1
                         :HIGH? 1
                                                                                     :VERSion?
                         :LOW? 1
                                                                        TRIGger
                         :MAX? 1
                                                                                    :SEQuence2| :ACQuire [:IMMediate]
                                                                                                            :COUNt :CURRent <n>
                         :MIN? 1
            :DVM [:DC]? 3
                                                                                                                         :DVM <n> 3
                                                                                                                         :VOLTage <n>
                       :ACDC?3
            :VOLTage [:DC]?
                                                                                                            :HYSTeresis:CURRent <n>
                         :ACDC?1
                                                                                                                         :DVM <n> 3
                         :HIGH?1
                                                                                                                         :VOLTage <n>
                         :LOW? 1
                                                                                                            :LEVel :CURRent <n>
                         :MAX? 1
                                                                                                                         :DVM <n > 3
                         :MIN? 1
                                                                                                                         :VOLTage <n>
OUTPut
                                                                                                            :SLOPe :CURRent POS | NEG | EITH
                                                                                                                         :DVM POS | NEG | EITH 3
            <bool>
                                                                                                                         :VOLTage POS | NEG | EITH
                   :SOURce QUES | OPER | ESB | RQS | OFF
                                                                                                            :SOURce BUS | INTernal
            :PON:STATe RST | RCL0
                                                                                    [:SEQuence1|:TRANsient][:IMMediate]
            :PROTection :CLEar
                                                                                                             :SOURce BUS
                          :DELav <n>
                                                                                    :SEQuence1 :DEFine TRANsient
            :RI :MODE LATCHing | LIVE | OFF
                                                                                    :SEQuence2 :DEFine ACQuire
           :TYPE [:CAPacitance] HIGH | LOW
                                                                        <sup>1</sup> Nicht gültig für Modell 66111A
                                                                        <sup>2</sup> Nicht gültig für Modell 66309B/D
                                                                        <sup>3</sup> Nicht gültig für Modell 66311D/66309D
```

Technische Daten

In der nachfolgenden Tabelle sind die technischen Daten der Gleichstromquelle aufgelistet. Sofern nichts anderes angegeben, werden die technischen Daten für eine Umgebungstemperatur zwischen 0 und 55 °C garantiert. Die technischen Daten treffen auf typische kapazitive Lasten bei Zellulartelefonen zwischen 0 μ F und 12.000 μ F zu. Die Messung erfolgt an den rückseitigen Anschlüssen des Netzteils nach einer Aufwärmzeit von 30 Minuten. Über externe Steckbrücken werden die Meßanschlüsse mit ihren entsprechenden Ausgangsanschlüssen verbunden.

Leistungsdaten

Parameter		Agilent 66111A	Agilent 66311B/D; 66309B/D nur Ausgang 1	Agilent 66309B/D nur Ausgang 2
Ausgangsdaten	Spannung: Strom: Stromspitze:	0 - 15 V 0 - 3 A 5 A^1		0 – 12 V 0 – 1,5 A 2,5 A ²
Programmierungsgenauigkeit (@ 25°C ±5°C)	Spannung: +Strom:	0,05% + 10 mV 0,05% + 1,33 mA	•	0,2% + 40 mV 0,2% + 4,5 mA
Gleichstrommeßgenauigkeit (via GPIB oder Frontplattenmeter unter Berücksichtigung des tatsächlichen Ausgangs @ 25°C ±5°C)	Spannung: Strom: Hoher Strombereich ³ +20 mA bis + nom. I: -20 mA bis - nom. I: Niedriger Strombereich	0,03% + 5 mV siehe unten 0,2% + 9 mA 0,2% + 9 mA	0.03% + 5 mV siehe unten $0.2\% + 0.5 \text{ mA}^4$ 0.2% + 1.1 mA $0.1\% + 2.5 \mu\text{A}^5$	0^,2% + 15 mV 0,2% + 3 mA
Welligkeit und Rauschen (von 20 Hz bis 20 MHz mit ungeerdeten Ausgängen oder mit einem geerdeten Anschluß)	-20 mA bis +20 mA: Spannung (eff/s-s): Strom (eff):	1 mV/6 mV ⁶ 2 mA	0,170 + 2,5 μΑ	1 mV/6 mV ⁶ 2 mA
Lastregelung (Änderung in Spannung oder Strom bei jeder Laständerung)	Spannung: Strom:	2 mV 0,75 mA		1,6 mV 0,375 mA
Netzregelung (Änderung in Spannung oder Strom bei jeder Laständerung)	Spannung: Strom:	0,5 mV 0,75 mA		0,4 mV 0,25 mA
Einschwingzeit (bezieht sich auf die wiederherzustellende Ausgangsspannung auf den vorherigen Pegel innerhalb 20 mV)		< 35 μs ⁷		< 400 μs ⁸

¹ Spitzenstrom für einen Zeitraum von bis zu 7 ms. Durchschnittstrom kann 3 A nicht überschreiten.

² Spitzenstrom für einen Zeitraum von bis zu 1 ms. Durchschnittstrom kann 1,5 A nicht überschreiten.

³ Agilent 66111A Geräte haben keinen niedrigen Strombereich. Die Gleichstrommeßgenauigkeit bezieht sich von 0 A bis zum Nominalstrom

⁴ Trifft zu, wenn der Stromdetektor auf DC eingestellt ist. ACDC-Modusgenauigkeit beträgt 0,2% + 3mA, wenn Strom geliefert wird, und 0,2% + 3,6 mA, wenn Strom gezogen wird.

⁵ Diese Angaben können geringfügig schlechter ausfallen, wenn die Einheit einer HF-Umgebung ≥3 V/Meter ausgesetzt ist.

⁶ Die technischen Daten beziehen sich auf Telefonkapazitäten größer 6 μF.

⁷ Nach einer Laständerung von 0,1 A auf 1,5 A im Hochkapazitäts-Kompensationsbereich.

⁸ Nach einer Laständerung von 0,75 A auf 1,5 A.

Checkliste für die Installation und für den Betrieb

Überprüfen der Ausgangskompensation
□ Überprüfen Sie, ob die Ausgangskompensation für die Gleichstromquelle für Ihre Anwendung geeignet ist.
Siehe "Output Compensation" im User's Guide.
Der High -Modus bietet das beste Einschwingverhalten und kann für Telefone mit Eingangskapazität von 5 bis
$12000~\mu F$ verwendet werden. Hinweis : Ändern sich die beiden letzten Ziffern in der Frontplattenanzeige permanent,
wenn sich das Telefon im Bereitschaftsmodus befindet, können Sie für die Ausgangskompensation den Low-Modus
wählen. Der Low -Modus wird für das Testen von Telefonen mit Eingangskapazitäten zwischen 0 und 12000 μF
verwendet. Standardmäßige Gleichstromquellen sind werkseitig für den Low-Modus eingestellt.
Überprüfen der Telefonverbindungen
☐ Wenn Sie EINE Fernmessung durchführen, sind dann die + und – Meßleitungen NUR an der ersten
Teststelle und innerhalb der ersten 50 m der Telefonkontakte angelegt? Um eine optimale Leistung zu erzielen,
sollte die Entfernung zwischen dem Ende der Meßleitung und den Telefonkontakten so kurz wie möglich sein. Siehe
"Lead Resistance" im User's Guide. Wenn Ihre Einheit auf der Rückseite über einen Schalter für Fernmessungen
verfügt, vergewissern Sie sich, daß dieser auf die Position "Remote" (außen) eingestellt ist.
☐ Wenn Sie KEINE Fernmessung durchführen, sind dann die Fühlersteckbrücken im Ausgangsanschluß
eingesetzt? Vergewissern Sie sich, daß die Steckerabdeckung an der Einheit mit den beiliegenden
Fühlersteckbrücken eingesetzt ist. Ohne Fühlersteckbrücken wechselt das Gerät in einen Schutzmodus, bei dem der
Ausgang deaktiviert ist. Wenn Ihre Einheit auf der Rückseite über einen Schalter für Fernmessungen verfügt,
benötigen Sie keine Fühlersteckbrücken. Vergewissern Sie sich, daß der Schalter auf die Position "Local" (innen)
eingestellt ist.
Überprüfen Sie die Betriebseinstellungen und -bedingungen
☐ Können Sie via Fernverbindung mit der Gleichstromquelle kommunizieren? Falls nicht, überprüfen Sie, ob
die Adresse korrekt eingestellt ist. Siehe "GPIB Address" im User's Guide. Wenn Ihre Einheit sowohl über
Einstellungen für die SCPI-Sprache als auch für die COMP-Sprache verfügt, überprüfen Sie, ob die
Programmiersprache korrekt eingestellt ist. Siehe "Language setting" im User's Guide.
☐ Sind die Anzeiger Prot oder Err auf der Frontplatte ein? Falls ja, löschen Sie den Fehlerzustand, bevor Sie
fortfahren. Siehe "Clearing Protection" im User's Guide.
☐ Wurde die Einheit durch die Überspannungsschutzschaltung ausgeschaltet? Falls ja, können Sie die
Überspannungsschutzschaltung für die Ausgänge deaktivieren. Siehe "Clearing Protection" im User's Guide.
☐ Sind die angezeigten Werte für den Ausgang 1 an der Frontplatte instabil? Falls ja, überprüfen Sie an der
Frontplatte, ob die Abtastrate korrekt ist. Überprüfen Sie auch die Einstellung für die Ausgangskompensation. Siehe
"Front Panel Measurements" und "Output Compensation" im User's Guide.
Weitere Kontrollaufgaben für die Einstellungen am Agilent 66311/66309
☐ Erfassen Sie Ausgangsstromsignale? Falls ja, überprüfen Sie, ob der Stromdetektor auf ACDC eingestellt ist.
Siehe "Front Panel Measurements" im User's Guide.
☐ Messen Sie Ausgangsströme ∠20 mA? Falls ja, überprüfen Sie, ob der Strombereich auf LOW eingestellt ist.
Siehe "Front Panel Measurements" im User's Guide.

© Copyright 1999 Agilent Technologies

Änderungen vorbehalten. Agilent Technologies übernimmt weder ausdrücklich noch stillschweigend irgendwelche Haftung für die in diesem Handbuch enthaltenen Informationen - weder für deren Funktionsfähigkeit noch deren Eignung für irgendeine spezielle Anwendung. Diese Dokumentation enthält urheberrechtlich geschützte Informationen. Alle Rechte, insbesondere das Recht der Vervielfältigung und Verbreitung sowie der Übersetzung, bleiben vorbehalten. Kein Teil der Dokumentation darf in irgendeiner Form (durch Fotokopie, Mikrofilm oder ein anderes Verfahren) ohne vorherige schriftliche Zustimmung von Agilent Technologies reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.