Diagnostic tools and CCD readout optimization in the first rafts of LSST

Claire Juramy

Scientific Detector Workshop 2017

Monitoring and diagnostic challenges

- LSST Focal Plane: 21 Camera Science Rafts: 9 CCDs, 12x12 cm footprint
- Control and readout of CCDs: Raft Electronics Board (REB): 3 CCDs, 48 video channels, 1 FPGA
- All in-cryostat
- On-board monitoring of DC values
- Diagnostic of video channels: ?

Raft Tower Module (BNL)

CCD readout: FPGA sequencer

- Sequencer block in firmware of FPGA (Stefano Russo): controls parallel clocks, serial clocks, readout clocks, including sampling trigger for ADC
 - functions: linear sequence of clock states
 - program memory: subroutines, calls to functions and other subroutines
 - pointers: storing constants and addresses in dedicated registers
- Scan mode / scope mode: the ADC sampling trigger is delayed by increments of 10 ns each time it is sent, up to 2550 ns.

[functions] ReadBixel: # Single pixel read									[subroutine	s] # Lina raadau	+	
Reductively π single pixel lead										willuowLille.		
Clocks:	RG,	S1,	S2,	sз,	CL,R	ST,	RD,	RU,T	RG	CALL	TransferLine	
slices:										CALL	SerialFlush	repeat(@PreCols)
TimeS	= 1,	0,	1,	0,	0,	0,	0,	0,	1	CALL	ReadPixel	repeat(@ReadCols)
BufferS	= 1,	0,	1,	1,	0,	1,	0,	0,	0	CALL	SerialFlush	repeat(@PostCols)
BufferS	= 0,	0,	0,	1,	0,	1,	0,	0,	0	RTS		
220 ns	= 0,	0,	0,	1,	1,	1,	0,	0,	0			
ISO1	= 0,	0,	0,	1,	0,	0,	0,	0,	0	ReadFrame:	<pre># Readout and</pre>	acquisition of a CCD frame
RampTime	= 0,	0,	0,	1,	0,	0,	1,	0,	0	JSR	FlushLine	repeat(@PreRows)
BufferS	= 0,	1,	0,	1,	0,	0,	0,	0,	0	CALL	StartOfImage	
ISO2	= 0,	1,	0,	0,	0,	0,	0,	0,	0	JSR	WindowLine	repeat(@ReadRows)
RampTime	= 0,	1,	0,	0,	0,	0,	0,	1,	0	CALL	EndOfImage	
BufferS	= 0,	1,	1,	0,	0,	0,	0,	0,	0	JSR	FlushLine	repeat(@PostRows)
constants:	P2=1	, P3=	=1							RTS		

CCD readout: REB video chain

- ASPIC: Analog Signal Processing IC: amplification (x1.9), differential signal, and Dual Slope Integration
- "Transparent Mode" bypasses the integrator stage: the ASPIC output becomes a replica of the CCD output
- Acquired through the video pipeline, with 18-bit resolution and low noise

Pixel scan and clocks: Transparent Mode

Raw OS Integrated

Pixel scan and clocks: Dual Slope Integration

Raw OS Integrated

Deployment in prototype test stands

- Early adjustments on readout sequences with prototype LSST electronics
- Evaluation of the "active flex cable" solution for ITL sensors

Diagnostic on Engineering Test Unit #2

- Issues with excess noise and very high bias levels
- Original readout sequence: similar to CCD test stands
- Scan mode showed origin of bias: very strong crosstalk from serial clocks (quantified with "single-clock" scans)

ETU2 with modified sequence

- Moved serial clock to have clock crosstalks neutralize each other
- Lowered biases and spread of values
- Brought noise in line with expectations

Raft Tower Module #1: the road to 2s

- Sequence from ETU2 optimization was 2.39 μs/pixel, for a median noise of 5.9 e- on RTM1
- Target to read the nominal frame size in 2s: 1.81 μs/pixel
- Iterative tests over noise + checks on gain, CTI
- Reached 1.79 μs/pixel for a median noise of 6.0 e-

Raft Tower Module #2

- First raft with E2V sensors
- Readout tested at LPNHE with REB + single CCD
- Reached 4.7 e- median noise at 1.79 μs/pixel

Super-scan

- Limitation of scan mode: time index = pixel
- Super-scan: stack of frames with 1 time index per frame + ASPIC Transparent Mode
- Super-scans combine spatial and temporal information: Charge Transfer Inefficiency, drifts over time

50

-50

-100

-150

510

515

520

525

Image column

530

535

Average over lines (ADU)

Serial transfer: high flux

- Serial CTI at high flux ~5ppm on some channels
- Dependent on readout timing
- Scan mode: timing of actual clock transitions vs sequencer state transitions

Study of the "bias drift"

- Bias in some channels is continuously decreasing over the 100 first lines
- Suppressed by flushing the serial register before readout (50,000 + pixels)
- Not actually a bias drift, but an injection of charges

Injecting the CCD reset level

- Reset of pixel content with CCD Reset Gate clock: (positive) voltage jump on the CCD output
- RG high as baseline, RG low as "pixel content"
- Simulates a pixel with signal ~ 55,000 e- (3% dispersion on E2V sensor), kTC reset noise (~ 40 e-)

Fake pixel readout

Serial transfer: low flux

- Serial CTI >5 ppm in a few channels when measured from a ~ 800 e- flat field
- Trapped electrons <10 e- are sufficient to generate this "CTI"
- Should not affect science data due to sky background

Parallel transfer

- 4-phase transfer: overlaps or crossings?
- Smearing of charges near saturation
- Scanning the video channels during parallel transfers

Statistics on scan mode frames

- Statistics along rows of scans
- Information on noise sources

Variations across channels

- Compared here with rough PTC result
- Low dispersion of injected charges (see channel 15)
- Noise: 60 ADU ~ 42 e-
- CCD kTC reset noise
- Coherent with CCD μV/egain, which is node capacity times internal gain

$$\sqrt{k_B T C_{node}} = \sqrt{1.38 \times 173 \times 19 \times 10^{-38}} C = 42e^{-38}$$

$$C_{node} = \frac{1.6 \times 10^{-19} C}{5.75 \times 10^{-6} V / G_{CCD}} = 19 fF$$

$$G_{CCD} = \frac{19 \times 5.75 \times 10^{-21}}{1.6 \times 10^{-19}} = 0.68$$

	Channel	Average (ADU)	Est. gain (e/ADU)	Calib signal
	0	107028.27	0.711	56377.50
	1	104736.61	0.702	53968.42
	2	106070.27	0.682	53610.19
	3	104523.11	0.690	53123.15
	4	105753.81	0.682	53119.66
	5	101787.07	0.683	50848.83
	6	105095.69	0.697	53887.53
	7	100942.79	0.690	50571.11
	8	107388.24	0.671	53570.22
	9	106052.11	0.686	53764.06
	10	106023.91	0.684	53905.62
	11	105044.83	0.686	53187.97
_	12	107529.08	0.690	55291.72
	13	106124.02	0.689	54408.95
	14	109340.34	0.698	56969.59
	15	92165.07	0.853	55524.92
	Dispersion	3.75%	6.00%	3.13%

RTM1: reshuffling the scans

Each plot shows the same channel (position) on different CCDs

ETU1 scan

ETU1 noise and biases

Raw bias and noise level in ETU1 with new sequencer file

