Teledyne e2v- design and development of sensors for Astronomy

Paul Jerram and Paul Jorden
Jérôme Pratlong, Denis Bourke, Doug Jordan

SDW 2017
26 Sept 2017

e2v was acquired by Teledyne in March 2017- now part of a larger family!
If any of the placeholders are accidentally moved around during use, just click the reset button to set them back in place.
Introduction

Company Changes
• e2v was acquired by Teledyne in March 2017
• Teledyne e2v continues to operate in its established technical areas and markets
• The “Space Imaging” division continues to design and manufacture sensors and systems for ground-based and space applications

We are working together with other parts of Teledyne- especially Teledyne Imaging Sensors, Camarillo and Teledyne DALSA

Jim Beletic will present information on the new Teledyne sensor business structure on Wednesday

This presentation
We illustrate recent developments of CMOS sensors for astronomy and the advantages they can offer
• Wavefront sensors for large telescopes require a higher pixel count at around 1,000 frames/sec and are forced to move to CMOS technology
• Area sensors are moving toward CMOS as the noise reduces – the two remaining issues are dynamic range and depletion depth (see later)
• For space radiation hardness is significantly better than CCDs so we will see an increasing trend

We then show current CCD sensor types and CCD system developments
• Popular and large-area CCDs are presented together with performance data
• Major programmes are illustrated for ground-based and space applications
• CCD systems are described together with an overview of Teledyne e2v assembly and test facilities
Wavefront sensor evolution

From small CCDs to large CMOS sensors: 1000 frames/sec

<table>
<thead>
<tr>
<th>Year</th>
<th>Sensor Type</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>CCD90</td>
<td>80X80</td>
</tr>
<tr>
<td>2000</td>
<td>EMCCD</td>
<td>128X128</td>
</tr>
<tr>
<td>2018</td>
<td>CMOS</td>
<td>800X800</td>
</tr>
</tbody>
</table>

CCD39 80X80

EM CCD220 240X240
Key features

- **800 × 800** pixels: 80 × 80 sub-apertures of 10 × 10 pixels each.
- **Back illuminated** for highest QE and best intra-pixel uniformity.
- **24 µm** square pixels
 + Each sub-aperture is 240 µm square.
- **700 fps** specified continuous readout (with 1000 fps goal).
 + Lower frame rates/ longer integration times are also available.
- **< 3 e⁻** rms total readout noise.
- Nominal operating temperature −10 °C to minimise dark current.
- Rolling shutter for lowest noise.
 + Parallel architecture allows low noise bandwidth with high frame rate.
- **On-chip ADC** giving digital outputs in LVDS.
- Low cross-talk and high uniformity between pixel readout paths.
- Hermetic package with internal **Peltier cooling**.
Large Visible Wavefront Sensor-2

Overall architecture

Sensor:
- Pixel:
 - Low noise/low lag 4T pinned photodiode
 - 24 μm square
- Single slope ADC with gain
- On-chip sequencer for the pixel and ADC access
- SPI interface for detector configuration
- LVDS format running at 260Mb/s for the video output data

Large device:
- 23.6 mm by 32 mm detector
- 19.2 mm square of image area (800 x 800 pixels)

High frame rate - 714fps:
- Up and down readout path
- 8 rows readout in parallel (4 up and 4 down)

Low temperature application (-10°C, -20°C):
- Peltier package
- I/O pad on two sides only to ease the package design

Overall architecture diagram with detailed annotations.
Large Visible Wavefront Sensor - 3

ADC and data output

- Each ADC block has a single row, but the channel pitch is one quarter of the pixel pitch to allow two groups of four rows of pixels to be quantised in parallel.
 - Pixel output tracks (columns) are in sets of four.
 - Good non-synchronicity within each sub-aperture (< 2%).
 - Low latency within each sub-aperture (< 2% of exposure time).

- 3360 parallel channels in each half sensor.
 - ADC channels have great immunity to cross-talk.

- LVDS outputs for image data, dark reference pixels and data synchronisation.

- Multiple test and diagnostic features for both factory and field use.

- This means that the same format can also be used with 6µm pixels with minimal design changes to give a 3.2k x 3.2k array that will run at ~60Hz (12bits)
Main pixel challenge:
- Having a good charge transfer while having a low noise with a large pixel
- Compromise between high CVF and large transfer gate

First focus on the charge transfer:
- Photodiode N implant will be done in 2 steps:
 - First step is the implant to form the photodiode with standard voltage pinning
 - Second step is the shaped implant that will modulate the pinning voltage to introduce a natural gradient for the electrons to drift to the transfer gate

Second focus on noise (target <2e):
- To lower the dark current, the STI is kept as small as possible.
- High CVF is reached of about 80μV/e-
- Low noise process is used for the in-pixel Source follower
Back-illumination for high spectral response and good uniformity

- With front illumination the front face features on CMOS image sensors reduce both photoreponse uniformity and overall QE

- Back illumination allows a good AR coating to be used and then typically gives around 90 % QE at visible wavelengths. These sensors have a uniform detection surface and give superior intra-pixel uniformity compared to front illuminated sensors.

- This high resistivity epi is used to give high QE at longer wavelengths

Typical BI QE curve:
A ceramic body with:

- Internal Peltier cooler with its power feedthroughs
- Metal baseplate for mounting the module and for cooling the hot side of the Peltier
- Hermetically sealed window
- Low thermal conductivity inert gas filling
- Pinched-off pump tube after filling with inert gas.
- Pin grid arrays each side of baseplate
- Temperature sensor
Developed for the TAOS-II project.

Development complete; 40-off devices delivered

Number of pixels	**1920 (H) × 4608 (V)**
Pixel size | 16.0 µm square
Image area | 73.73m × 30.72 mm
Output ports (analogue) | 8 (REF and SIG each)
Package size | 82.39 mm × 31.7 mm
Package format | 76 pin ceramic PGA attached to invar base
Focal plane height | 14.0 mm
Flatness | < 30 µm (peak - valley)
Conversion gain | 75 µV/e⁻
Readout noise | 3 e⁻ at 2 MP/s per ch.
Maximum pixel rate | 2 MP/s per channel
Maximum charge | 22,000 e⁻ per pixel
Dark signal | 70 e⁻/pixel/s (at 21 °C)
Frame rate | 2 fps (full frame mode) 20 fps (~1000 ROI’s)
CMOS sensors for astronomy-2

New development – CIS 120 (modular digital platform)

General Purpose Space Imager (GPSI) - CIS120 -

<table>
<thead>
<tr>
<th>Parameters</th>
<th>GPSI (CIS120)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format (pixels)</td>
<td>2048 x 2048</td>
</tr>
<tr>
<td>Pixel size (um^2)</td>
<td>10x 10</td>
</tr>
<tr>
<td>Frames Per Second</td>
<td>20fps with 12 bit output</td>
</tr>
<tr>
<td>Full well charge (ke-)</td>
<td>50ke- with low noise</td>
</tr>
<tr>
<td>Read noise (e- rms)</td>
<td>>80ke- with additional cap.</td>
</tr>
<tr>
<td>Rolling Shutter</td>
<td></td>
</tr>
<tr>
<td>Global Shutter</td>
<td>4e at 20fps with 4 outputs</td>
</tr>
<tr>
<td>GS with DCDS</td>
<td>11e</td>
</tr>
<tr>
<td>Quantum Efficiency FSI x fill factor (%)</td>
<td>~6e at 12fps</td>
</tr>
<tr>
<td>Quantum Efficiency BSI (%)</td>
<td>55 @ 444nm</td>
</tr>
<tr>
<td></td>
<td>62 @ 550nm</td>
</tr>
<tr>
<td></td>
<td>18 @ 914nm</td>
</tr>
<tr>
<td>Output</td>
<td>4 @ 400nm</td>
</tr>
<tr>
<td></td>
<td>90 @ 550 nm</td>
</tr>
<tr>
<td></td>
<td>35 @ 900 nm</td>
</tr>
<tr>
<td>Packaging</td>
<td>Ceramic, sealed with a window6</td>
</tr>
<tr>
<td></td>
<td>4 x 12bit LVDS</td>
</tr>
<tr>
<td>Radiation tolerance</td>
<td>TID >100krad7, SEL >67MeV/cm2/mg</td>
</tr>
<tr>
<td>Focal plane</td>
<td>3 side buttable</td>
</tr>
</tbody>
</table>

- Characterisation in progress
- Full Front Illuminated results in October and back-illuminated results by end of year 2017
- Draft Datasheet available

With a first image
CIS120 format options

- It is a matrix sensor which will enable a product family to be created with minimal or no design changes.
- CIS120 is stitched, so other sizes are possible from 1024×2048 up to 3072×8192 pixels, without the cost of new masks.
CMOS sensors for astronomy

Hi Rho CMOS

Developed and patented by Konstantin Stefanov at the Open University
Allows a back bias to be applied to CMOS
Enables CMOS devices to be made up to 300 µm thick with ideal MTF
CMOS sensors for Astronomy - 4

Noise of <1e is becoming standard

Very low noise CMOS being worked on by Anafocus (<1e noise)

- Data shown is as measured on LONIS test chip
- Full size high resolution device is currently in test

![Graph of Sense Noise in Multisampling vs. M (multisampling factor)](chart)

![Graph of Sense Noise vs. Sense ADC Resolution for v0, v1, v2](chart)

Data shown is as measured on LONIS test chip.

Full size high resolution device is currently in test.
The future

A combination of
- low noise CMOS <1e is now becoming standard
- Large area 2D stitching
- HiRho technology to give thickness of 30µm with epi or 300µm with bulk silicon for high red QE
- Backthinning

Could give a 12cm square astronomy CMOS sensor with low noise and excellent QE with performance as below:
- Noise <1e
- Peak signal ~80ke (with dual readout chain)
- Pixel size 10µ
- 12k x 12k
- Backthinned 30 µm thick fully depleted
- 14 bit digital output
- Frame read time ~2s

Digital processing on chip?
- Not clear for general astronomy but could be good for wavefront sensors
If any of the placeholders are accidentally moved around during use, just click the reset button to set them back in place.

Contents

Teledyne e2v sensors for astronomy

Introduction

CMOS - for wavefront sensing

CMOS sensors for astronomy

CMOS red sensitivity and low noise

CCD overviews

Large area CCDs

Systems

Summary
A suite of imaging CCDs for astronomy

Overview of “ground-based” sensors; Space sensors not included here

• CCDs of many formats and types available- see www.teledyne-e2v.com

Standard products and custom variants

Key ones used for astronomy:

• CCD290-99 9K x 9K Imaging/spectroscopy
• CCD231-C6 6K x 6K Imaging/spectroscopy
• CCD231-84 4K x 4K Imaging/spectroscopy
• CCD44-82 2K x 4K Imaging/spectroscopy/WFS
• CCD47-20 1K x 1K FT Guiders
• CCD220 240 X 240 AO

Also, deserves a highlight:

• CCD250 LSST 4K x 4K
CCDs with high red sensitivity

LSST CCD250

4k X 4k 10 µm format
189 science sensors
100 µm thick; 5 um flat
High precision SiC buttable package
16 outputs; 2 s readout
5 e- read-noise

65 sensors delivered; remaining ones in production

Pictures courtesy: LSST
CCD250 performance

Repeatable performance of large set of science-grade devices

- Multilayer AR coating - for high QE to match LSST-specification bands
- Some spread of QE values - due to process variation and test accuracy
- Data set for > 100 devices; 16 measurements (in sectors) per device

- Devices operate at 500 kHz from 16 outputs
- 2 second frame read time
- Results from one test camera are illustrated
- Data set represents > 1200 amplifier outputs
CCD261-84

A standard high-rho sensor

- Test camera recently passed TRR for standard production
- Device performs as expected
- 200 μm thick silicon for high red QE with -60V back bias voltage
- Grade-0 devices delivered: 3.3 e− rms noise measured; spec = 4.0 e− at 50 kHz
- No defective columns; minimal defective pixels

Summary (typical) performance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of pixels</td>
<td>2048(H) x 4104(V)</td>
</tr>
<tr>
<td>Pixel size</td>
<td>15 μm square</td>
</tr>
<tr>
<td>Image area</td>
<td>30.7 mm x 61.6 mm</td>
</tr>
<tr>
<td>Outputs</td>
<td>2</td>
</tr>
<tr>
<td>Package size</td>
<td>31.8 mm x 66.4 mm</td>
</tr>
<tr>
<td>Package format</td>
<td>Buttable Invar package with PGA connector</td>
</tr>
<tr>
<td>Focal plane height, above base</td>
<td>14.0 mm</td>
</tr>
<tr>
<td>Connectors</td>
<td>40-pin PGA</td>
</tr>
<tr>
<td>Flatness</td>
<td>20 μm p-v</td>
</tr>
<tr>
<td>Amplifier responsivity</td>
<td>7.5 μV/e−</td>
</tr>
<tr>
<td>Readout noise</td>
<td>2.8 e− at 50 kHz</td>
</tr>
<tr>
<td>Maximum data rate</td>
<td>1 MHz</td>
</tr>
<tr>
<td>Image pixel charge storage</td>
<td>200,000 e−</td>
</tr>
<tr>
<td>Dark signal</td>
<td>10 e−/pixel/hr (173K)</td>
</tr>
</tbody>
</table>
Large area CCD performance

Space sensors- Euclid CCD273-84

MISSION: To map geometry of the dark universe.

- 4096 X 4096 12 µm pixels
- Low voltage process
- 4 x low noise high responsivity amplifiers ~7µV/e
- Low noise typically ~2e at 70kHz readout frequency
- Image full well capacity ~220ke
- Deep depletion silicon back-thinned for high QE at 900nm
- 4 side SiC buttable package with flexi connectors
- 36 FM devices in the 600 MPixel focal plane

49 FMs delivered to ESA

Focal plane picture courtesy of M Berthé CEA
EUCLID CCD273-84 performance

An example of test sheet for one FM

All science grade devices are delivered with full test data; an example is shown here
Not all parameters are reproduced here
This sheet is a post-burn in result sheet
This is typical of data provided for ground-based sensors also

<table>
<thead>
<tr>
<th>TEST</th>
<th>AMPLIFIER QUADRANT</th>
<th>LIMITS (Min/Max)</th>
<th>UNITS</th>
<th>PASS/FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS-E</td>
<td>OS-F</td>
<td>OS-G</td>
<td>OS-H</td>
<td>OS-E</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------</td>
<td>------------------</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>Amplifier Responsibility</td>
<td>6.84</td>
<td>7.19</td>
<td>7.12</td>
<td>7.22</td>
</tr>
<tr>
<td>Readout Noise</td>
<td>2.2</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>Mean Dark Signal at -80°C</td>
<td>84.2</td>
<td>42.1</td>
<td>44.5</td>
<td>44.5</td>
</tr>
<tr>
<td>Mean Dark Signal at -120°C</td>
<td>0.008</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>Image Full Well (SatCTE)</td>
<td>265.1</td>
<td>259.3</td>
<td>247.7</td>
<td>254.4</td>
</tr>
<tr>
<td>Image Full Well (SatLin)</td>
<td>374</td>
<td>370</td>
<td>369</td>
<td>360</td>
</tr>
<tr>
<td>Register Full Well (SatCTE)</td>
<td>497.8</td>
<td>450.4</td>
<td>461.1</td>
<td>478.6</td>
</tr>
<tr>
<td>Register Full Well (SatLin)</td>
<td>424</td>
<td>402</td>
<td>418</td>
<td>414</td>
</tr>
<tr>
<td>Absolute Maximum Non-Linearity</td>
<td>-1.5</td>
<td>-1.9</td>
<td>-1.1</td>
<td>-1.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEST</th>
<th>LIMITS (Min/Max)</th>
<th>UNITS</th>
<th>PASS/FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS-E</td>
<td>OS-F</td>
<td>OS-G</td>
<td>OS-H</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------------</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>CTE (Serial)</td>
<td>100.0000</td>
<td>100.0000</td>
<td>100.0001</td>
</tr>
<tr>
<td>Quantum Efficiency</td>
<td>550nm</td>
<td>83.0</td>
<td>83.5</td>
</tr>
<tr>
<td></td>
<td>650nm</td>
<td>92.9</td>
<td>93.0</td>
</tr>
<tr>
<td></td>
<td>750nm</td>
<td>92.0</td>
<td>91.7</td>
</tr>
<tr>
<td></td>
<td>850nm</td>
<td>73.0</td>
<td>72.9</td>
</tr>
<tr>
<td></td>
<td>900nm</td>
<td>51.8</td>
<td>51.4</td>
</tr>
<tr>
<td>PRNU</td>
<td>550nm</td>
<td>1.1</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>750nm</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>900nm</td>
<td>0.9</td>
<td>0.8</td>
</tr>
</tbody>
</table>

All science grade devices are delivered with full test data; an example is shown here. Not all parameters are reproduced here. This sheet is a post-burn in result sheet. This is typical of data provided for ground-based sensors also.
Large area CCD performance

Space sensors- Plato CCD270

MISSION: To find and characterise many extra-solar planets-
Especially earth-like planets in the habitable zone

- 4510 X 4510 pixels
- 18 μm square 4 phase pixels
- Thin gate high full well capacity process
- 2 x high signal amplifiers ~2μV/e on one side
- Amplifier noise ~20e at 4MHz readout speed
- Peak signal >1Me
- 4 side buttable SiC package with flexi connectors
- Four CCDs per FPA; 26 FPAs:- 2100 MPixels total
- Largest visible focal plane area in space- 0.7 m² area total

FM production started in 2017
Focal plane assembly- Korea Micro-lensing Telescope Network

KMTNet precision focal planes

350 mm focal planes
340 Megapixel each

Three assembled plates, each with-

Four science sensors [9K x 9K each; buttable]
Four guide sensors [1K x 1K; custom package]

Precision Silicon carbide plate; < 30 μm p-v flatness
Guaranteed at cryogenic temperature

Three focal planes delivered by early-2014 and installed at OSU
WSO-UV space systems

World Space Observatory UV Spectrograph sensors & electronics

- Three custom sensor channels for 115-310 nm range
- Custom sealed vacuum cryostat enclosures for 9 year life
- Flight electronics (associated with RAL Space)
- UV optimised CCD272 operated at -100°C
- Components maintain alignment after shock & vibration of launch
J-PAS Cryocam: A 1.2 Gigapixel cryogenic camera
For use on OAJ 2.5m telescope

- 450 mm focal plane with 14 science CCDs;
- Flat to 27 µm; stable against flexure; -100°C operation
- 14 science CCD290-99 detectors
- 8 CCD44-82 wavefront sensors
- 4 CCD47-20 guide sensors
- Custom packages for focal plane co-mounting
- 224 synchronous readout channels with < 5 e⁻ noise
- Integrated vacuum cryogenic system & thermal control
- Modular electronics
- System noise guaranteed with installed detectors

Complete system accepted and delivered in June 2016
Systems-4: In house assembly and test

Test room (1 example); 4 cameras shown; multiple cryostats

Extensive clean rooms
Used for all phases of device assembly-
Wafers → packaged devices

Multiple test cameras
(a) initial characterisation & (b) production test

In-house camera designs
Customised for specific projects. Replicated for production flow- eg GAIA (concluded), PLATO & LSST (in progress)

Electronics expertise
Camera design & device operation Utilised in system supply contracts
Clean rooms shown- Assembly, Parts Prep, and Test room

Extensive clean rooms
Used for all phases of device assembly-
Wafers → packaged devices

Multiple test cameras
(a) initial characterisation & (b) production test

In-house camera designs
Customised for specific projects. Replicated for production flow- eg GAIA (concluded), PLATO & LSST (in progress)

Electronics expertise
Camera design & device operation Utilised in system supply contracts
Teledyne e2v designs and supplies CCD and CMOS sensors and systems

- An increasing number of sensors are being developed using CMOS architectures
 Most of these are backthinned and offer low read-noise (comparable to CCDs)

- CCDs continue to be used in larger quantities and with greater heritage
 CCDs offer better red response in general (thicker silicon)

- “Full wafer” sized sensors are manufactured in quantity and with excellent performance

- e2v offers custom system solutions including cryogenic cameras and electronic modules to complement its supply of sensors- and with guaranteed system performance
Finally- Thank you for your attention

Any questions?

We also make silent movies!

Movie here