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Norton’s Law and the
Project Uncertainty Principle

“All physical phenomena in the range of 0.1-1 eV
will be proposed as an infrared detector”

Corollary to Norton’s Law —

“No phenomena proposed as an infrared detector will
fail to find a sponsor”
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Norton’s Law data (*predictions)

Thermocouples

Golay cells

Photon drag effect
Quantum wells
Superlattices

Josephson junctions
SQUIDs

Ballistic electron transistors
Quantum dots

Protein microbolometers
Giant magnetoresistance*\/
Quantum entanglement*

Antenna-coupled
MOM detectors

Polyvinylidene flouride

Ferro- and pyro-electrics
Antenna-coupled Shottky diodes
Metal-semiconductor-metal junctions
Resonant tunneling diodes
Thallium-indium-phosphide/arsenide
Bimaterial cantilevers

Nanowires

Organic semiconductors*v
Nanotubes*v

Bose-Einstein condensates™

ZnO nanowires



Requirements for a good detector

e Large at product
—where a 1s the absorbtion coefficient

and T 1s the minority carrier lifetime



Photon detectors
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Hybrid detector structure

detector photon
array

input/output
pads
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Pixels/Bits

Detector size progression
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Status of HgCdTe

e Most versatile and widely
used detector

0.8 to >20 ym coverage

Approaches theoretical limits
for many situations

Maturing dual-band
capabilities
e MWIR/MWIR and
MWIR/LWIR

Growth on Si and GaAs
substrates has made very large
arrays possible

e 4K x 4K
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Two-color images in 1280 x 720 format

20 um pixels




HgCdTe issues

e Costis high on CdZnTe
substrates

e But very competitive on Si
or GaAs substrates 10000 }

e LWIR on Si and GaAs aono)
has significant high noise

tail
e VLWIR yield is low for

the most demanding 200
applications
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Type II strained-layer superlattices

e Potential replacement for

HgCdTe

* Theoretically longer
lifetime —but LWIR lifetimes
are currently <100 nsec which
MCT is >1 usec
Flexible spectral
range — artificial bandgap
made by varying the
thicknesses of InAs/(In)GaSb
layers

AIM (Germany) has begun
production of a dual-band
MWIR/MWIR detector array
for the European A400
transport plane
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Type II SLS 1ssues

e The short lifetime gives large dark
currents

* The origin is has not been determined yet

* Developers have been incorporating majority-
carrier barriers to limit the dark current

e (GaSb substrates only developed to 4-inch
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MWIR detectors

Contenders—InSb, HgCdTe, - e
Type II SLS, and xBy ot
* InSb is very mature but needs to ‘;E\ 10
be cooled to <90 K o _2'§
* MCT on Si can be cost <10
competitive =107 N ., _
e Operating temperature to >150 10%F _ _ ELTE&@?K Nk /,/ y
K (maybe >200 k) N: N ;
10°F - = PbIbN_90K W
e Long lifetime— >10 usec 109 F - - PbIbN 110K ‘&
e Type II SLS going into dual 10 08 06 04 02 O:O 02 04
band production Bias (V)
* xBy (e.g.nBn or pBn) provides
blocking to compensate for short
lifetime and provides quasi- _ +
passivation © =
n B n




Barriers

e Being deployed in both Type II SLS and xBy
structures

e Localize wave function to increase overlap in Type 11
SLS

* Block majority carrier currents

* Provide quasi-passivation

* Blocks majority carriers from free surfaces, but does not block
minority carriers



SWIR detectors —potential replacement
for night vision goggles

Contenders—InGaAs, HgCdTe, and Ge

* InGaAs grown on InP is currently highly
developed out to 1.7 ym

e Performance degrades for A > 1,7 um due to
InP lattice mismatch

e Limited InP substrate size
e HgCdTe
* R,A products lower than InGaAs with 1.7 ym
cutoff
e Performance does not drop going to longer A
e Ge
* Indirect bandgap limits absorbtion near
bandgap

* Can be integrated with Si circuits at some
foundries

e Wafers up to 12 inches grown on Si



SWIR imagery

e Achieving absolute minimum dark current and
low readout noise

InGaAs SWIR image from a
640 x 512 array (with help
from Photoshop
shaddows/highlights
adjustment) under “minimal
street lighting” conditions
with f/1.4 and t,, = 30 ms
—Aerius




The origin of 1/t noise

Recent mathematical
modeling of electron
transport using the Navier-
Stokes equation has shown
that for certain geometrical
flows, the onset of
turbulence occurs at very
low Reynolds numbers
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Recent data from D’Sousa

1/f noise from photocurrent
at zero bias
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Consider flow from diffusion-
or photo-curent

Flow is uniformly-
distributed across
junction

Turbulence from
adjacent regions will
screen (damp) each
other

Reynolds number may
be several thousand

vortices

OO

p*-region Vy
depletion

n-region




Consider flow from g-r or

trap-assisted tunneling (TAT) centers

Originates from a few
points in the depletion
region—probably
close to the plane of
maximum electric field

Flow jets are isolated
from each other

Note—all the current
comes streaming from
a very few locations

Reynolds number may
be quite low

g-r or trap-assisted

tunneling site

vortex
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Proposed test structure

e Measure 1/f noise

vs bias direction in
a test structure with
asymmetrical
design

reservoir

 Flow into reservoir
should be much

n- or p-region

—

jet tube

exponential horn

n* or p* contact

more turbulent than
into an exponential
horn




Alternative test

e Mimics point
source
generation

e Compare with
flood y
1llumination
from the same
source

focused laser
or blackbody

e suggested by
W. Tennant

HgCdTe CdZnTe



NEAT for dummies (like me)

* First consider
the flux change
for a change of
1 Kat300 K

e This case is for
300 K with an
f/2 field of
view
e Note that rows
5 and 6 are

independent of
t/#

Quantity

Value

LWIR photon flux at 301 K

1.20345 x 1076

LWIR photon flux at 300 K

1.18210 x 1076

A flux

2.13532 x 104

Contrast = A flux/300 K flux

1.8 %

S/N = 300 K flux/A flux

95

Relative flux change per K (%)
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Counting statistics for
a Poisson distribution

o S/N =nl2N/NV2 = (mN)1/2

e Consider a detector with high quantum efficiency
coupled to a readout having a well capacity of Q
electrons

e It is common practice to half-fill the well during an
integration to maintain room for signal

* So S/N = (MN)!2=(nQ/2)!"

e We also need to add another factor of 1/2!2 to adjust
for bandwidth



An example

e Consider a readout with 2 x 107 capacity

e If we half fill 1t, we get a S/N of 3162 or a
sensitivity of 3162-1 = .031%

e Referring back to the table, we see that we need a
sensitivity of 1.8% to detect 1 K

e NEAT =(2n)"? x .03/1.8 =24 mK form =1



NEAT (K)

NEAT for dummies
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