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1. Nanotechnology & nanomaterials

-- Functional nanomaterials enabled by nanotechnologies.

2. Semiconducting nanowires (NWs)

3. Graphene nanoribbons & other related nanostructures




« Nanotechnologies have enabled uniquely functionalized or structured
nano-materials (“meta-materials”) for:

— studies of low-dimensional physics in guantum confinement;
— applications “from A to B” (astronomy, biology, beyond CMOS, etc.)

» Reduced dimensionalities:

One-dimensional
(hanowires, nanotubes)  (quantum dots, nanocrystals)

Zero-dimensional

Two-dimensional
(graphene, 2DEG)
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1. Nanotechnology & nanomaterials

2. Semiconducting nanowires

-- Why semiconducting nanowires? (Physics, applications & fabrication)

-- Fabrication of NWs.
-- Novel properties of strained silicon nano-pillar arrays (2 ~ 5 nm

diameters) & FET’s and quantum dots based on silicon nano-pillars.

3. Graphene nanoribbons & related nanostructures




271’/;, Why semiconducting NWs?

» Semiconducting nanowires (NWs) have been demonstrated to be highly versatile
optoelectronic components for a wide variety of applications, including:

* polarization-sensitive photodetectors & arrays with sub-wavelength resolution;
* polarization-sensitive nano-APD (with gains up to 10°);

* optical modulators & nano-waveguides;

* nano-LEDs and nano-lasers ;

* solar cells, biomedical sensors, etc.
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e Other growth mechanisms such as self-assembly, etc.




2.3. Strained silicon nano-pillars (Axel Scherer’s group)

When small silicon pillars are
oxidized, the silicon lattice expands
by approximately 40%, which
leaves the adjacent un-oxidized
silicon under tremendous tensile
strain. In nanowires, this strain can
increase to the point where the
silicon oxidation process is self- oy
limited, leaving stable 2 ~ 10 nm ST
wide tensile-strained silicon cores A5 minute etch provides

within a silicon dioxide shells. seateiiitliititiitivit
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STM operation is based on:
1) Quantum tunneling of electrons

-- Tunneling current (1) depends strongly
on the surface work function (¢ ), the
separation (s) and the biased voltage
(V) between the tip & sample.

2) Piezoelectric control

-- Enables atomic scale resolution for
surface topography and lateral scanning
capabillities.

Two primary modes of operation:
1) Three-dimensional imaging

-- Under feedback control, the “constant
current map”.

2) Spectroscopy

-- Fixed location differential conductance
(dl/dV)-vs.-V map, under constant ¢ .
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"!Spatially resolved spectroscopy of

HF-etched silicon nano-pillars

Surface topography from STM
after HF chemical etching

5 1.5
Energy(meV)

The energy gap increases from ~ 1.1 eV
for crystalline silicon to ~ 3.0 eV for the
strained silicon nano-pillars.

(Our preliminary STM results)

Further quantum confinement is
expected for a finite magnetic field
parallel to the silicon nano-pillars,
because the diameter of the nano-
pillars is typically smaller than the
cyclotron orbit.




Making a transistor out of a strained silicon nano-pillar:

| Deposit gate
SI0O, metal and oxide
\ &l

Deposit
contacts

(Courtesy of Axel Scherer)

pillars

Quasi-1D short silicon
channels can be gated
from all sidesto forma
self-aligned FET structure
where mechanical cleaving
of pillars defines the
source-drain path
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1. Nanotechnology & nanomaterials

2. Semiconducting nanowires

3. Graphene nanoribbons & related nanostructures

-- The rise of graphene.
Physics of graphene.
Novel phenomena of graphene and related structures.
Potential applications to light emission & photodetection.
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3.1. The Rise of Graphene

Carbon structures in different dimensions:
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 Graphene consists of carbon atoms in honeycomb lattice.  (Courtesy of M.W. Bockrath)

* Unique Dispersion Relations: massless Dirac Fermions.

 First experimental isolation
by Geim’s group in 2004.
[Novoselov et al, Science (2005).]

Two sublattices in the
honeycomb lattice:
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Plectronic bandstructures of graphene:

Tight binding approximation, assuming a perfectly ordered infinite
system, 3 covalently bonded sp? and 1 2p, conduction electrons.

: : Near the “Dirac
The resulting E, (k) band structure is ooints” K & K

k.a k.a -
E,»(K,.K,) =73 1+4005%cos%+40032%(w) ~ 1V hik

Image from:

Images: Ph.D. thesis of Jinseong Heo, Caltech (2008).
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Hole doped

The unique bandstructures
of graphene suppress carrier
backscattering, leading to
extremely high mobility.

-« Conductivity (o) increases linearly with charge density (n): o o Vg oc N

« Extremely high mobility: ~ 15,000 cm?/Vs in as-prepared, non-optimized samples,
compared to ~ 2,000 cm?/Vs for silicon.

- Conductivity o remains finite at Dirac point — 6,

(Novoselov et al, Nature, 2005, Zhang et al, Nature 2005, Miao et al, Science 2007, Kim
group, Fuhrer group....)




Demonstrated applications:

"

Transparent electrodes for solar cells, LCD, etc.
Robust, non-volatile, atomic switches.
Chemical and biological sensors based on graphene.

Electronics, Spintronics, and Valley-tronics.

Post silicon electronic materials:

With advantages of carbon nanotubes.

v" high thermal conductivity (~5000 W/mK)
v high current density (~ mA/um width)

v" high mobility (~20,000 cm?/Vs in as-prepared samples, 300,000 if suspended)
v’ supports ballistic transport over large distances

2D — compatible with lithographic techniques.

Potential for large scale synthesis.




- Large-scale & high-quality production Graphene is a semi-metal

— MBE or CVD growth. or zero-gap semiconductor.
How does one engineer an

energy gap in graphene-
based systems?

- Device and bandgap engineering

— graphane (i.e. hydrogenated graphene)

— nanoribbons

— atomic switches Graphane

— local strain (0~3.5¢eV) (&

« Novel devices
— ballistic transistors

— supercollimators & electronic lensing
Graphene nanoribbon

— Schottky diodes & light emitting diodes (0 ~ 200 meV)

— photodectors
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< Energy gap engineering of graphene nanoribbons (GNR):

* Band gap induced by quantum confinement.

0.2 eV
* GNR field effect transistors (FETS). E,=——F~—
* Lithographically or chemically defined nanoribbons. (W -W ) nm

M. Y. Han
GNR-FET L et al. (2007)
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* On/Off ratio ~ 106.
* Mobility ~ 200 cm?/Vs.



~of graphene:

1. Mechanically exfoliated graphene on SiO..

2. CVD-grown graphene on Cu.




We tested on graphite to
calibrate STM and verify tip
quality.

STM topography scan over
graphite manifests the A-B-
A-B stacking of graphene

hexagon sheets, known as
the Bernal stacking.




® STM topographic image of graphene reveals a distorted honeycomb
lattice, showing surface corrugations (~ 0.7 nm z-axis modulations
over ~ 20 nm distance) correlated with the underlying SiO, substrate.
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® Fourier transform of
the topographic image
of graphene reveals a
strained-induced
distorted reciprocal
lattice.

® Local electronic
properties are also
modified by the strain
fields.
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¢ Constant-Vg conductance maps at small
V; values correlate with overall surface
corrugation and the resulting strain fields.

® Maps of strain tensor components:

S,y(XY) = Syy(X.y)
= [ou,(x,y)/oy +
ouy(x,y)/ox]/2

Displacement field:

u(x,y) = [u(Xx,y) e, +
u,(x.y) e,]
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Strain-induced modifications in the out-of-plane phonon-

assisted tunneling gaps & conductance

0 X(nm)2.2

This work:

M.L. Teague et al, Nano
Letters 9, 2542 (2009)

References:

Y. Zhang et al, Nature
Phys. 4 (2008).

* T.O. Wehling et al,
PRL 101 (2008).
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/-f}rﬁgfout-of-plane phonon fréquencies Increase with increasing
strain, suggesting coupling of n-electrons to the underlying
phonons of the dielectric SiO,.
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« CVD growth of graphene on copper foils at ~ 1000°C under hydrogen gas with
CH, partial pressure.

» Large differences in the thermal contraction coefficients of graphene and copper
lead to ripple structures. [ N.-C. Yeh et al, (2010) ]
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Topography
(distorted
structure)

N.-C. Yeh et
al, (2010).

Conductance
spectra of
representative
regions

0.4

02 0
Energy(meV)

0.2

O di/dv(a.u.)

Fourier-
transformed
structure

Conductance
spectra along
the dashed
line in the
upper left
figure.




gitral AP PI1TC AtrOSaie

Graphene nanoribbons: semiconduc_iiqr;g‘g-;nergy gaps may be engineered
by the controlling the width, from 0 ~ 200 meV.

 Graphane: semiconducting energy gaps may be engineered by controlling
the hydrogen coverage, from 0 ~ 3.5 eV.

Device concept

The light emitting
process may be
reversed for the
detection of
photocurrents.

Graphane
(or graphene
nanoribbons)

» Future work: measurements of the I-V characteristics & photocurrents.




Summary

* Novel nanostructures such as strained silicon nano-pillars, semiconducting

nanowires and graphene-based nano-devices may be interesting
candidates for new types of ultra-high-density ultra-compact sensitive

photodetectors, possibly even single-photon-counting detectors.
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