Sandia Project Document Version 3.0

Author:	John Frye, Max Bobrov	Date:	July 13, 2010
Reviewer:	Don Figer	Date:	July 13, 2010

1.0	INTRODUCTION
2.0	PROJECT STATEMENT OF WORK
3.0	CAMERA-FPGA INTERFACE
	3.1INDIGO PHOTON 320 INTERFACE
4.0	FPGA-CAMERA LINK INTERFACE
5.0	FPGA-VGA INTERFACE18
6.0	FPGA-DVI INTERFACE
7.0	FGPA-ETHERNET INTERFACE
8.0	LCD STATUS DISPLAY
9.0	CAMERA SELECTION
	9.1 HARDWARE CONFIGURATION VIA DIP SWITCHES 24 9.2 SOFTWARE CONFIGURATION VIA RS-232 24
10.0	ACQUISITION SOFTWARE25
11.0	SATISFACTION OF REQUIREMENTS
	11.1 FRAME RATE VERIFICATION METHODOLOGY27
12.0	APPENDIX A: CONNECTIONS AND PINOUT
13.0	APPENDIX B: DRS U6000 CAMERA ERRATA/CONFUSION
14.0	APPENDIX C: PREVIOUS DISCARDED WORK
	14.1FPGA-UART INTERFACE: CAMERA CONTROL VIA RS-232 32 14.2Acquisition Software 33

1.0 Introduction

This document describes the objectives of the Sandia image acquisition project as well as the methodologies used in achieving them. The goal of the project is to enable multi-interface image acquisition from a variety of FLIR cameras. The acquired video data is to be captured and displayed over a variety of interfaces. A commercial off-the-shelf (COTS) FPGA evaluation board has been selected as the development tool for this purpose.

2.0 **Project Statement of Work**

The objective of the Sandia image acquisition project is to produce a hardware system for the purpose of capturing and displaying video rate data from specific infrared cameras over multiple interfaces. Custom data acquisition software for the purpose of image display and capture on the PC is also required. A system-level block diagram is presented in Figure 1.

Figure 1: System Block Diagram

For development purposes, the Xilinx ML506 and Xilinx ML402 evaluation boards have been selected to operate with the Indigo Photon 320, Indigo Photon 640, and DRS U6000 cameras in order to prototype the desired system. The Indigo Photon 320 camera is shown in Figure 2 and Figure 3, the Indigo Photon 640 is shown in Figure 4 and Figure 5, the DRS U6000 is shown in Figure 6 and Figure 7, and the evaluation boards are presented in Figure 8 and Figure 9. Each of the above cameras transfers data to the evaluation board over multiple LVDS pairs, which physically connect to differential headers on the board. After configuration, the FPGA present on

the evaluation board buffers the incoming data into an onboard ZBT SRAM chip and outputs it over multiple interfaces including Camera Link, VGA, DVI, and Ethernet. Status information is output to the integrated LCD display. A detailed listing of supported functionality in different configurations is presented in Table 1.

		l	Evaluation Boa	rd	
		ML506		ML	402
Feature	DRS U6000	Photon 640	Photon 320	Photon 640	Photon 320
Camera Link	~	~	~	~	~
Ethernet	~	\checkmark	~		
VGA				~	~
DVI	~	~	~		
LCD Status Display	~	\checkmark	~	~	~
Camera Selectable via DIP-Switch	~	~	~	~	~
Camera Selectable via Software	~	~	~	~	~

Table 1: Features Supported in Different Board/Camera Configurations

Camera selection for input to the Xilinx evaluation boards can occur physically via DIP switches or through software via RS-232 communication. In addition, the status information is displayed on the integrated two-line LCD screen. The board reports whether or not the selected camera is detected.

Figure 2: Indigo Photon 320 Infrared Camera

Figure 3: Indigo Photon 320 Infrared Camera Output Port

Figure 4: Indigo Photon 640 Infrared Camera

Figure 5: Indigo Photon 640 Infrared Camera Output Port

Figure 6: DRS U6000 Infrared Camera

Figure 7: DRS U6000 Infrared Camera DB-25 Output Port and Power/RS-232 Connector

Figure 8: Xilinx ML506 Virtex 5 Evaluation Board

Figure 9: Xilinx ML402 Virtex 4 Evaluation Board

In order to acquire video data on a PC via Camera Link, a Camera Link-compatible frame grabber must be installed. Two frame grabbers were selected for development: an Imperx FrameLink Express frame grabber, and a National Instruments PCIe-1427 image acquisition card. These are presented in Figure 10 and Figure 11, respectively.

Figure 10: Imperx FrameLink Express Camera Link Frame Grabber

Figure 11: National Instruments PCIe-1427 Image Acquisition Card

3.0 Camera-FPGA Interface

The camera devices utilized in this project output digitized pixel values over several LVDS differential pairs. Three cameras, namely the Indigo Photon 320, Indigo Photon 640, and the DRS U6000, have been selected for prototyping of the interface. These devices output digitized pixel data on one or more differential pairs along with clock and synchronization bits. By creating VHDL processes with sensitivities to these lines, it is possible to devise state machines which can parse, parallelize, and store the digitized image data to a data structure onboard the FPGA. In the current implementation, the digital video data is buffered in the onboard ZBT-compatible SRAM.

3.1 Indigo Photon 320 Interface

The Indigo Photon 320 outputs digital video data on a single LVDS pair at a clock rate of 73.636 MHz. Each frame transmitted by the Indigo Photon 320 is 324x256x14 bits per pixel (bpp), and the video rate is 29.97 frames per second. A timing diagram for the digital output of the Indigo Photon 320 camera is presented in Figure 12, while the state machine diagram for deserializing the data is shown in Figure 13. Each valid pixel is read into a frame buffer for later display or transmission.

F = frame sync; logic high on the word starting the frame, logic low otherwise L = line sync; logic high during valid pixel data, logic low otherwise

Figure 12: Indigo Photon 320 Digital Data Timing Diagram

Note: The Indigo Photon 320 camera allows for selection between 8-bit and 14-bit pixel resolutions. While the 8-bit mode is processed by the camera's automatic gain control (AGC) algorithm, the 14-bit mode output is not. Consequently, visual display of the 14-bit data will exhibit good contrast unless it has undergone scaling of some kind.

3.2 Indigo Photon 640 Interface

The Indigo Photon 640 outputs digital video data over two LVDS data pairs at a clock rate of 73.636 MHz. Each frame transmitted by the Indigo Photon 640 is 644x512x14 bpp, and the video rate is 29.97 frames per second. A timing diagram for the digital output of the Indigo Photon 640 camera is presented in Figure 14, while the state machine diagram for de-serializing the data is shown in Figure 15. Each valid pixel is read into a frame buffer for later display or transmission.

F = frame sync; logic high on the word starting the frame, logic low otherwise L = line sync; logic high during valid pixel data, logic low otherwise

sync; logic nigh during valid pixel data, logic low otherwise

Figure 14: Indigo Photon 640 Digital Data Timing Diagram

Note: The Indigo Photon 640 camera allows for selection between 8-bit and 14-bit pixel resolutions. While the 8-bit mode is processed by the camera's automatic gain control (AGC) algorithm, the 14-bit mode output is not. Consequently, visual display of the 14-bit data will exhibit good contrast unless it has undergone scaling of some kind.

Figure 15: Indigo Photon 640 Image Acquisition State Diagram

3.3 DRS U6000 Interface

The DRS U6000 transmits 640x480x14 bpp interlaced video at a rate of approximately 30 fps. Digital video data is output over eight LVDS pairs. In addition, one pair transmits a 25 MHz clock, another transmits a data valid signal, and third transmits a frame synch signal for a total of eleven LVDS pairs. The camera output is composed of control and data words, with one byte transmitted per clock. Control bytes can be distinguished from data word bytes by checking the value of the data valid signal; the (active low) data valid signal is '1' for control characters, and '0' for data values. The data format is detailed in Figure 16 below.

Ideal Frame: 792x526=416,592 (image is actually 640x480)

Figure 16: DRS U6000 Output Format

Although 14-bit video data is output from the DRS U6000 camera, only eight-bits can be transmitted over the data channels per clock. Consequently, two bytes must be shifted into a register with the lower 14-bits being the pixel value. Consequently, the pixel clock is half of the camera clock, or 12.5 MHz. The VHDL DRS U6000 interface module is responsible for de-interlacing the video for progressive scan output. This is accomplished by buffering the first field and subsequently alternating output of even and odd lines, updating the FIFO read address as necessary. The FIFO buffer clock operates at 25 MHz, although two bytes are read or written every clock; this makes for an effect clock speed of 2x the pixel clock. The FIFO state machine is depicted in Figure 17. It is important to note that the phase relationship between the camera clock and the pixel clock must remain fixed in order to maintain proper functionality.

4.0 FPGA-Camera Link Interface

As per the project requirements, the digital LVDS data output by the cameras is to be reformatted for image acquisition over the Camera Link interface. The official AIA Camera Link standard was obtained in order to facilitate development of the required digital system. The Camera Link module serializes the buffered pixel data in a 7:1 ratio for transfer over 4 LVDS data pairs with reference to a clock seven times faster than the pixel clock, as shown in Figure 18. A Xilinx digital clock manager (DCM) is used to obtain the multiplied clocks. Table 2 provides a list of pixel and Camera Link clocks for each of the specified cameras.

1x CLK	Previous	Cycle	Next	Cycle	L			Г	
$7 \mathrm{x} \mathrm{CLK}$									
X3	A7	A6	Spare	C7	C6	B7	B6	A7	A6
X2	C3	C2	DVAL	FVAL		C5	C4	C3	C2
X1	B2	B1	C1	C0	B5	B4	В3	B2	B1
X0	A1	A0	В0	A5	A4	A3	A2	A1	A0

Figure 18: Camera Link Serialization and Timing Diagram

Data Clock (MHz)	Clocks Per Pixel	Pixel Clock (MHz)	Camera Link Clock (MHz)
73.636	16	4.60225	32.21575
73.636	7	10.51942857	73.636
25	4	6.25	43.75
TBD	TBD	TBD	TBD
	Data Clock (MHz) 73.636 73.636 25 TBD	Data Clock (MHz) Clocks Per Pixel 73.636 16 73.636 7 25 4 TBD TBD	Data Clock (MHz) Clocks Per Pixel Pixel Clock (MHz) 73.636 16 4.60225 73.636 7 10.51942857 25 4 6.25 TBD TBD TBD

Table 2: Camera Timing

The base-configuration Camera Link standard defines three 8-bit "ports" (A, B, C in Figure 18) to be transferred over the four LVDS pairs; the pixels to be transmitted are mapped to these ports depending on the number of bits per pixel and the number of taps. For example, for single output 14-bit mode, the lower 8 bits of the pixel are mapped to A7-A0, while the upper 6 bits are mapped to B5-B0. A complete listing of the supported bit modes as defined in the specification are shown in Table 3.

Base Configuration							
Port/bit	8-bit x 1~3*	10-bit x 1~2	12-bit x 1~2	14-bit x 1	16-bit x 1	24-bit RGB	
Port A0	A0	A0	A0	A0	A0	R0	
Port A1	A1	A1	A1	A1	A1	R1	
Port A2	A2	A2	A2	A2	A2	R2	
Port A3	A3	A3	A3	A3	A3	R3	
Port A4	A4	A4	A4	A4	A4	R4	
Port A5	A5	A5	A5	A5	A5	R5	
Port A6	A6	A6	A6	A6	A6	R6	
Port A7	A7	A7	A7	A7	A7	R7	
Port B0	B0	A8	A8	A8	A8	G0	
Port B1	B1	A9	A9	A9	A9	G1	
Port B2	B2	nc	A10	A10	A10	G2	
Port B3	B3	nc	A11	A11	A11	G3	
Port B4	B4	B8	B8	A12	A12	G4	
Port B5	B5	B9	B9	A13	A13	G5	
Port B6	B6	nc	B10	nc	A14	G6	
Port B7	B7	nc	B11	nc	A15	G7	
Port C0	C 0	B0	B0	nc	nc	B0	
Port C1	C1	B1	B1	nc	nc	B1	
Port C2	C2	B2	B2	nc	nc	B2	
Port C3	C3	B3	B3	nc	nc	В3	
Port C4	C4	B4	B4	nc	nc	B4	
Port C5	C5	В5	В5	nc	nc	В5	
Port C6	C6	B6	B6	nc	nc	B6	
Port C7	C7	B7	B7	nc	nc	B7	
* If only using a	a single channel, u	se Port A. If using	two channels, use	Port A and B.			

Table 3: Camera Link Bit/Port Mapping

The Camera Link portion of the code has a separate buffer in which all pixels (even invalid pixels) and their corresponding synchronization values are stored. The synchronization value for each pixel is retransmitted with the pixel data in order to satisfy Camera Link requirements. The state diagram for the Camera Link re-serialization component is presented in Figure 19.

Figure 19: Camera Link Serialization State Machine. Note that 'X' denotes a "don't care" condition.

The data is acquired on a PC via an installed Camera Link-compatible frame grabber. For the purposes of this project, we have obtained and installed an Imperx FrameLink Express frame grabber and a National Instruments PCIe-1427 image acquisition card.

5.0 FPGA-VGA Interface

The FPGA development board is used to output camera data to a standard VGA port as it is being collected. Currently, VGA output has only been implemented on the ML402 prototype board since the ML506 board does not possess a VGA output port. In the system design, valid pixels read from the ZBT SRAM are input to VGA frame buffer, which is sized dependent on the selected camera. As the video data is monochromatic, the lower eight bits of each pixel is replicated on three 8-bit output lines (RGB) which are readout in accordance with standard VGA timing. Currently, the image is output at a resolution of 644x512 with a 60 Hz vertical refresh rate. For cameras which have a resolution smaller than this, the image is drawn in a subsection of this active region; in the case of the Indigo Photon 320, the video image is drawn in the upper-left quadrant of the display. The ML402 board supports only the Photon 320 and Photon 640 cameras, and the DRS camera output cannot be displayed via VGA. A VGA timing diagram is presented in Figure 20.

Figure 20: VGA Timing Diagram

6.0 FPGA-DVI Interface

DVI signaling on the ML506 prototype board is generated using the Chrontel CH7301C DVI transmitter device. The chip is configured via I^2C (two-wire interface) communication and accepts video signals in VGA format as input. Consequently, the VGA and frame-buffer modules are re-used within the DVI VHDL module. The "I2C Controller Core" available on OpenCores.org was used for the purpose of register configuration. Details of the I^2C protocol are presented in the Chrontel CH7301C documentation; read and write cycle diagrams are present in Figure 21 and Figure 22 below.

Note: The acknowledge is from the CH7009A/B family encoder (slave).

Note: The acknowledge is from the CH7009A/B family encoder (slave).

Figure 22: I2C Single Cycle Write Operation

The registers onboard the CH7301C chip must be configured for successful operation. An exhaustive listing of the available register settings is available in the Chrontel documentation. Table 4 lists the registers that the DVI module sets as well as their corresponding values.

Register	Address (hex)	Value (hex)
Clock Mode Register	0x1C	0x04
Input Clock Register	0x1D	0x43
DAC Control Register	0x21	0x09
DVI PLL Supply Control Register (TPVT)	0x35	0x30
DVI PLL Filter Register (TPF)	0x36	0x60
Power Management Register	0x49	0xC0

Table 4: Chrontel 7301C Register Settings

Currently, the image is output at a resolution of 644x512 with a 60 Hz vertical refresh rate. For cameras which have a resolution smaller than this such as the Indigo Photon 320 and the DRS U6000, the image is drawn in a subsection of this active region. Depending on monitor settings, this subsection could either be displayed in native resolution or expanded to display across the whole screen.

7.0 FGPA-Ethernet Interface

As an alternative method for viewing and capturing video, an Ethernet interface was designed. This interface consists of an Ethernet MAC controller communicating with a soft-core processor running a TCP/IP stack. The MicroBlaze soft processor core was selected to simplify the design. It provides a simple software interface to the on-board hardware MAC controller and has a built in support for the Lightweight TCP/IP software (LWIP). The Xilinx Platform Suite (XPS) was used to design the hardware and software.

The MicroBlaze processor was configured with an interface to the DDR2 RAM, xps_lltemac, 64KB of instruction memory, 64KB of data memory and a timer which was required for LWIP to function properly. Additionally, two Fast Simplex Link (FSL) busses were configured to facilitate communication between the MicroBlaze and the rest of the xicam vhdl.

Software, written in C, communicates with the xps_ll_temac MAC controller wrapper and is executed by the MicroBlaze processor. LWIP was enabled and communicates over the UDP protocol; lwip4 must be added to the linker options of each project requiring the use of LWIP. The MicroBlaze receives buffered video data from the FIFO over the inbound FSL bus, which is subsequently encapsulated with the proper TCP/IP protocol headers and transmitted using Ethernet to a PC workstation.

The PC workstation captures this data using a custom adaptor to the MATLAB Image Acquisition toolbox; the IP address or host name of the FPGA must be provided as well as the digital output mode for the photon cameras. Before Matlab can properly access he adaptor, it must be registered using the imagregister command. Once this is complete, the adaptor, called XicamEthernetimaq, can be accessed from the software GU in the "Acquisition Adaptor" drop down menu.

8.0 LCD Status Display

The onboard LCD display is used to relay system status information. Currently, the status information consists of whether or not the selected camera has been connected as well as the FPS of the incoming video signal. The ML506 and ML402 LCD displays utilize a 4-bit data interface; however, all characters and commands consist of 8 bits. As a result, data must be sent in two phases: the upper 4 bits first, followed by the lower 4-bits.

Figure 23: LCD State Diagram

This process consists of five major steps. First, a start up sequence is sent to initialize the LCD and inform it to function in 4-bit mode. Next, the LCD is programmed to function in 4-bit mode with two display lines and 5x11 dot font type. Third, the display is turned on with the cursor deactivated. Next, the display is set to function in left-to-right mode. Finally, the display is cleared, completing the initialization process and making it ready to display characters. The actual writing of characters consists of three major steps. First, the cursor is reset to the start of line 1. Next, the FPGA begins to output the first line of characters. When the first line is complete (*i.e.*, 16 characters are written to the LCD), the LCD must move the cursor to the start of the second row. It then continues to write an additional 16 characters, completing the second line. At this point, the cursor is reset again and process starts over. This sequence is depicted in

				Inst	ructi	on C	ode				Basselation	Execution
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	270 kHz)
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM and set DDRAM address to "00H" from AC	1.53 ms
Return Home	0	0	0	0	0	0	0	0	1	-	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.53 ms
Entry Mode Set	0	0	0	0	0	0	0	1	١⁄D	ѕн	Assign cursor moving direction and enable the shift of entire display.	39 µs
Display ON/ OFF Control	0	0	0	0	0	0	1	D	с	в	Set display(D), cursor(C), and blinking of cursor(B) on/off control bit.	39 µs
Cursor or Display Shift	0	0	0	0	0	1	s <i>i</i> c	R/L	-	-	Set cursor moving and display shift control bit, and the direction, without changing of DDRAM data.	39 µs
Function Set	0	0	0	0	1	DL	N	F	-	-	Set interface data length (DL: 8-bit/4-bit), numbers of display line (N: 2-line/1-line) and, display font type (F:5×11dots/5×8 dots)	39 µs
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	39 µs
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	39 µs
Read Busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0 µs
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	43 µs
Read Data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	43 µs

Table 5: LCD Instruction Codes

* "-": don't care

The FPS calculation is accomplished by counting the number of elapsed clock cycles while waiting for 20 frame sync signals. This value is than converted to a decimal FPS value. If the FPS is determined to be zero, the LCD displays "camera disconnected". Otherwise, the actual FPS value is displayed.

9.0 Camera Selection

The system must be configured for a specific camera in order to function; this can be done by way of software, via RS-232 communication, or by selecting the setting the GPIO DIP switches appropriately on the evaluation board itself. The user GPIO DIP switches are located by the bottom right-hand corner on both the ML506 and ML402 boards. For the purposes of this document, these DIP switches are addressed 1-8 from left to right.

9.1 Hardware Configuration via DIP Switches

In order to enable hardware selection, DIP switch 3 must be set high. Table 6 lists the appropriate DIP switch settings for different board/camera configurations.

		DIP Swit	ches 1&2
DIP Switch 3	Camera	ML506	ML402
	DRS U6000	00	N/A
1 (Hardware Configuration)	Photon 640	01	01
	Photon 320	10	10
	DRS U6000		N/A
0 (Software Configuration)	Photon 640		Set camera
	Photon 320	VIa KS-232	via RS-232

Table 6: DIP Switch Configurations for Hardware Camera Selection

9.2 Software Configuration via RS-232

When DIP switch 3 is low, camera selection can occur via RS-232 communication. After establishing a connection with the board at 115200 baud, a single ASCII character (with an ASCII new line character as the terminator) must be sent indicating the camera to be selected. The ASCII characters for each camera/board configuration are detailed in Table 7.

	Evaluati	on Board
	ML506	ML402
Camera	ASCII Char	ASCII Char
DRS U6000	D	N/A
Photon 640	6	6
Photon 320	3	3
Tab	ole 7: RS-232	

The RS-232 module implemented in the FPGA repeats the received character over the RS-232 link so that the acquisition software can verify that the camera selection command was successfully received. This has been implemented in the MATLAB acquisition GUI further detailed in section 10.0.

10.0 Acquisition Software

A custom MATLAB GUI was developed in conjunction with Sandia in order to acquire and analyze data from the system via Camera Link and Ethernet. The GUI is capable of camera selection via software; the user is presented with a list of detected COM ports and chooses the one to which the system is connected. After selecting the camera, the user depresses the "Set" button, which sends the camera selection command to the system. If a valid acknowledgment is not received (likely due to an erroneous selection or bad connection), an error message is displayed. A screen capture of the software is present in Figure 24.

Figure 24: Screen Capture of MATLAB Acquisition GUI

The software is also capable of displaying and acquiring live video from the system. Camera files are passed to the MATLAB IMAQ adapter dependent upon the camera selection of the user. Camera files for the Imperx FrameLink Express frame grabber have a .cxf extension, and camera files for the NI PCIe-1427 frame grabber have a .icd extension. NI PCIe-1427 camera files have the additional requirement of having a .iid interface file for each camera file; all .icd and .iid files must be placed in the National Instruments "Data" folder in order to be properly recognized by the "ni" IMAQ adaptor.

11.0 Satisfaction of Requirements

Table 8 details the requirements associated with each deliverable as well as the subtasks contained within each requirement. The validation method for each subtask is also detailed.

Deliverable	Requirement	Tasks	Validation Method	Validation Date
Camera Link Data	The system shall use Xilinx ML506 snd	write VHDL code that can	validate that the full range of	3/3/2010
Transfer Code	ML402 development boards to transfer	transfer video rate data from	pixel values by examining	
	real time video data from an Indigo Photon	the Indigo Photon 320 infrared	output test pattern	
	compatible frame grabber.	8 and 14 bits per pixel	1	
		resolution	1	
		write VHDL code that can	use MATLAB to acquire	3/3/2010
		transfer video rate data from	frames and timestamps for	
		the Indigo Photon 320 infrared	calculation of video rate.	
		frame rate of 29.97 frames per		
		second		
	The system shall use Xilinx ML506 snd	write VHDL code that can	validate that the full range of	3/3/2010
	ML402 development boards to transfer	transfer video rate data from	pixel values by examining	
	real time video data from an indigo Proton	the Indigo Photon 640 Intrared	output test pattern	
	compatible frame grabber.	both 8 bits per pixel and 14		
		bits per pixel		
		write VHDL code that can	use MATLAB to acquire	3/3/2010
		transfer video rate data from	frames and timestamps for	
		the Indigo Photon 640 infrared	calculation of video rate	
		frame rate of 29.97 frames per		
		second		
	The system shall use a Xilinx ML506	write VHDL code that can	validate that the full range of	3/3/2010
	Virtex 5 FPGA Development Board to	transfer video rate data from	pixel values by examining	
	transfer real time video data from a Los	the DRS U6000 Infrared	output test pattern	
	compatible frame grabber.	bits per pixel resolution		
		write VHDL code that can	use MATLAB to acquire	3/3/2010
		transfer video rate data from	frames and timestamps for	
		the DRS U6000 infrared	calculation of video rate	
		camera to a computer at a		
1	1	frame rate of 20 97 frames per		1
		frame rate of 29.97 frames per second		
Deliverable	Requirement	frame rate of 29.97 frames per second Tasks	Validation Method	Validation Date
Deliverable Camera	Requirement Camera compatibility shall be selectable	frame rate of 29.97 frames per second Tasks write VHDL code to support	Validation Method demonstrate capability	Validation Date 3/4/2010
Deliverable Camera Compatibility	Requirement Camera compatibility shall be selectable via DIP switches on the Xilinx ML506 and	frame rate of 29.97 frames per second Tasks write VHDL code to support camera capability selection via	Validation Method demonstrate capability	Validation Date 3/4/2010
Deliverable Camera Compatibility Selection Code	Requirement Camera compatibility shall be selectable via DIP switches on the Xilinx ML506 and ML402 development boards. Camera compatibility shall be selectable	frame rate of 29.97 frames per second Tasks write VHDL code to support camera capability selection via DIP switches write VHDL code to	Validation Method demonstrate capability	Validation Date 3/4/2010 5/26/2010
Deliverable Camera Compatibility Selection Code	Requirement Camera compatibility shall be selectable via DIP switches on the Xilinx ML506 and ML402 development boards. Camera compatibility shall be selectable via software	frame rate of 29.97 frames per second Tasks write VHDL code to support camera capability selection via DIP switches write VHDL code to communicate with software	Validation Method demonstrate capability demonstrate capability	Validation Date 3/4/2010 5/26/2010
Deliverable Camera Compatibility Selection Code	Requirement Camera compatibility shall be selectable via DIP switches on the Xilinx ML506 and ML402 development boards. Camera compatibility shall be selectable via software	frame rate of 29.97 frames per second Tasks write VHDL code to support camera capability selection via DIP switches write VHDL code to communicate with software and accept camera selection	Validation Method demonstrate capability demonstrate capability	Validation Date 3/4/2010 5/26/2010
Deliverable Camera Compatibility Selection Code	Requirement Camera compatibility shall be selectable via DIP switches on the Xilinx ML506 and ML402 development boards. Camera compatibility shall be selectable via software	frame rate of 29.97 frames per second Tasks write VHDL code to support camera capability selection via DIP switches write VHDL code to communicate with software and accept camera selection commands via RS-232	Validation Method demonstrate capability demonstrate capability	Validation Date 3/4/2010 5/26/2010
Deliverable Camera Compatibility Selection Code System Status	Requirement Camera compatibility shall be selectable via DIP switches on the Xilinx ML506 and ML402 development boards. Camera compatibility shall be selectable via software The system shall use Xilinx ML506 and	frame rate of 29.97 frames per second Tasks write VHDL code to support camera capability selection via DIP switches write VHDL code to communicate with software and accept camera selection commands via RS-232 write VHDL code to display	Validation Method demonstrate capability demonstrate capability demonstrate capability	Validation Date 3/4/2010 5/26/2010 6/11/2010
Deliverable Camera Compatibility Selection Code System Status Display Code	Requirement Camera compatibility shall be selectable via DIP switches on the Xilinx ML506 and ML402 development boards. Camera compatibility shall be selectable via software The system shall use Xilinx ML506 and ML402 development boards to display status information on the integrated LCD	frame rate of 29.97 frames per second Tasks write VHDL code to support camera capability selection via DIP switches write VHDL code to communicate with software and accept camera selection commands via RS-232 write VHDL code to display status information on the LCD screen on the development	Validation Method demonstrate capability demonstrate capability demonstrate capability	Validation Date 3/4/2010 5/26/2010 6/11/2010
Deliverable Camera Compatibility Selection Code System Status Display Code	Requirement Camera compatibility shall be selectable via DIP switches on the Xilinx ML506 and ML402 development boards. Camera compatibility shall be selectable via software The system shall use Xilinx ML506 and ML402 development boards to display status information on the integrated LCD display.	frame rate of 29.97 frames per second Tasks write VHDL code to support camera capability selection via DIP switches write VHDL code to communicate with software and accept camera selection commands via RS-232 write VHDL code to display status information on the LCD screen on the development board.	Validation Method demonstrate capability demonstrate capability demonstrate capability	Validation Date 3/4/2010 5/26/2010 6/11/2010
Deliverable Camera Compatibility Selection Code System Status Display Code DVI Video Output	Requirement Camera compatibility shall be selectable via DIP switches on the Xilinx ML506 and ML402 development boards. Camera compatibility shall be selectable via software The system shall use Xilinx ML506 and ML402 development boards to display status information on the integrated LCD display. The system shall use a Xilinx ML506	frame rate of 29.97 frames per second Tasks write VHDL code to support camera capability selection via DIP switches write VHDL code to communicate with software and accept camera selection commands via RS-232 write VHDL code to display status information on the LCD screen on the development board. write VHDL code that can	Validation Method demonstrate capability demonstrate capability demonstrate capability visual inspection of display	Validation Date 3/4/2010 5/26/2010 6/11/2010 3/30/2010
Deliverable Camera Compatibility Selection Code System Status Display Code DVI Video Output Code	Requirement Camera compatibility shall be selectable via DIP switches on the Xilinx ML506 and ML402 development boards. Camera compatibility shall be selectable via software The system shall use Xilinx ML506 and ML402 development boards to display status information on the integrated LCD display. The system shall use a Xilinx ML506	frame rate of 29.97 frames per second Tasks write VHDL code to support camera capability selection via DIP switches write VHDL code to communicate with software and accept camera selection commands via RS-232 write VHDL code to display status information on the LCD screen on the development board. write VHDL code that can output video rate data from the	Validation Method demonstrate capability demonstrate capability demonstrate capability visual inspection of display	Validation Date 3/4/2010 5/26/2010 6/11/2010 3/30/2010
Deliverable Camera Compatibility Selection Code System Status Display Code DVI Video Output Code	Requirement Camera compatibility shall be selectable via DIP switches on the Xilinx ML506 and ML402 development boards. Camera compatibility shall be selectable via software The system shall use Xilinx ML506 and ML402 development boards to display status information on the integrated LCD display. The system shall use a Xilinx ML506 development board to output real time video data from a camera to a DVI- compatible display	frame rate of 29.97 frames per second Tasks write VHDL code to support camera capability selection via DIP switches write VHDL code to communicate with software and accept camera selection commands via RS-232 write VHDL code to display status information on the LCD screen on the development board. write VHDL code that can output video rate data from the Indigo Photon 320, Indigo Destane 640, and DRS LI6000	Validation Method demonstrate capability demonstrate capability demonstrate capability visual inspection of display	Validation Date 3/4/2010 5/26/2010 6/11/2010 3/30/2010
Deliverable Camera Compatibility Selection Code System Status Display Code DVI Video Output Code	Requirement Camera compatibility shall be selectable via DIP switches on the Xilinx ML506 and ML402 development boards. Camera compatibility shall be selectable via software The system shall use Xilinx ML506 and ML402 development boards to display status information on the integrated LCD display. The system shall use a Xilinx ML506 development board to output real time video data from a camera to a DVI-compatible display.	frame rate of 29.97 frames per second Tasks write VHDL code to support camera capability selection via DIP switches write VHDL code to communicate with software and accept camera selection commands via RS-232 write VHDL code to display status information on the LCD screen on the development board. write VHDL code that can output video rate data from the Indigo Photon 320, Indigo Photon 640, and DRS U6000 crameras to a DVI port using	Validation Method demonstrate capability demonstrate capability demonstrate capability visual inspection of display	Validation Date 3/4/2010 5/26/2010 6/11/2010 3/30/2010
Deliverable Camera Compatibility Selection Code System Status Display Code DVI Video Output Code	Requirement Camera compatibility shall be selectable via DIP switches on the Xilinx ML506 and ML402 development boards. Camera compatibility shall be selectable via software The system shall use Xilinx ML506 and ML402 development boards to display status information on the integrated LCD display. The system shall use a Xilinx ML506 development board to output real time video data from a camera to a DVI-compatible display.	frame rate of 29.97 frames per second Tasks write VHDL code to support camera capability selection via DIP switches write VHDL code to communicate with software and accept camera selection commands via RS-232 write VHDL code to display status information on the LCD screen on the development board. write VHDL code that can output video rate data from the Indigo Photon 320, Indigo Photon 640, and DRS U6000 cameras to a DVI port using standard 644x512 @60Hz	Validation Method demonstrate capability demonstrate capability demonstrate capability visual inspection of display	Validation Date 3/4/2010 5/26/2010 6/11/2010 3/30/2010
Deliverable Camera Compatibility Selection Code System Status Display Code DVI Video Output Code	Requirement Camera compatibility shall be selectable via DIP switches on the Xilinx ML506 and ML402 development boards. Camera compatibility shall be selectable via software The system shall use Xilinx ML506 and ML402 development boards to display status information on the integrated LCD display. The system shall use a Xilinx ML506 development board to output real time video data from a camera to a DVI-compatible display.	frame rate of 29.97 frames per second Tasks write VHDL code to support camera capability selection via DIP switches write VHDL code to communicate with software and accept camera selection commands via RS-232 write VHDL code to display status information on the LCD screen on the development board. write VHDL code that can output video rate data from the Indigo Photon 320, Indigo Photon 640, and DRS U6000 cameras to a DVI port using standard 644x512 @60Hz timing.	Validation Method demonstrate capability demonstrate capability demonstrate capability visual inspection of display	Validation Date 3/4/2010 5/26/2010 6/11/2010 3/30/2010
Deliverable Camera Compatibility Selection Code System Status Display Code DVI Video Output Code	Requirement Camera compatibility shall be selectable via DIP switches on the Xilinx ML506 and ML402 development boards. Camera compatibility shall be selectable via software The system shall use Xilinx ML506 and ML402 development boards to display status information on the integrated LCD display. The system shall use a Xilinx ML506 development board to output real time video data from a camera to a DVI-compatible display. The system shall use a Xilinx ML402	frame rate of 29.97 frames per second Tasks write VHDL code to support camera capability selection via DIP switches write VHDL code to communicate with software and accept camera selection commands via RS-232 write VHDL code to display status information on the LCD screen on the development board. write VHDL code that can output video rate data from the Indigo Photon 320, Indigo Photon 640, and DRS U6000 cameras to a DVI port using standard 644x512 @60Hz timing.	Validation Method demonstrate capability demonstrate capability demonstrate capability visual inspection of display	Validation Date 3/4/2010 5/26/2010 6/11/2010 3/30/2010 3/30/2010
Deliverable Camera Compatibility Selection Code System Status Display Code DVI Video Output Code	Requirement Camera compatibility shall be selectable via DIP switches on the Xilinx ML506 and ML402 development boards. Camera compatibility shall be selectable via software The system shall use Xilinx ML506 and ML402 development boards to display status information on the integrated LCD display. The system shall use a Xilinx ML506 development board to output real time video data from a camera to a DVI-compatible display. The system shall use a Xilinx ML402 development board to output real time video data from a camera to a DVI-compatible display.	frame rate of 29.97 frames per second Tasks write VHDL code to support camera capability selection via DIP switches write VHDL code to communicate with software and accept camera selection commands via RS-232 write VHDL code to display status information on the LCD screen on the development board. write VHDL code that can output video rate data from the Indigo Photon 320, Indigo Photon 640, and DRS U6000 cameras to a DVI port using standard 644x512 @60Hz timing. write VHDL code that can output video rate data from the Laize Photen 230, Indigo	Validation Method demonstrate capability demonstrate capability demonstrate capability visual inspection of display	Validation Date 3/4/2010 5/26/2010 6/11/2010 3/30/2010
Deliverable Camera Compatibility Selection Code System Status Display Code DVI Video Output Code	Requirement Camera compatibility shall be selectable via DIP switches on the Xilinx ML506 and ML402 development boards. Camera compatibility shall be selectable via software The system shall use Xilinx ML506 and ML402 development boards to display status information on the integrated LCD display. The system shall use a Xilinx ML506 development board to output real time video data from a camera to a DVI-compatible display. The system shall use a Xilinx ML402 development board to output real time video data from a camera to a VGA-compatible display.	frame rate of 29.97 frames per second Tasks write VHDL code to support camera capability selection via DIP switches write VHDL code to communicate with software and accept camera selection commands via RS-232 write VHDL code to display status information on the LCD screen on the development board. write VHDL code that can output video rate data from the Indigo Photon 320, Indigo Photon 640, and DRS U6000 cameras to a DVI port using standard 644x512 @60Hz timing. write VHDL code that can output video rate data from the Indigo Photon 320, Indigo Photon 640, and DRS U6000	Validation Method demonstrate capability demonstrate capability demonstrate capability visual inspection of display	Validation Date 3/4/2010 5/26/2010 6/11/2010 3/30/2010
Deliverable Camera Compatibility Selection Code System Status Display Code DVI Video Output Code	Requirement Camera compatibility shall be selectable via DIP switches on the Xilinx ML506 and ML402 development boards. Camera compatibility shall be selectable via software The system shall use Xilinx ML506 and ML402 development boards to display status information on the integrated LCD display. The system shall use a Xilinx ML506 development board to output real time video data from a camera to a DVI- compatible display. The system shall use a Xilinx ML402 development board to output real time video data from a camera to a DVI- compatible display.	frame rate of 29.97 frames per second Tasks write VHDL code to support camera capability selection via DIP switches write VHDL code to communicate with software and accept camera selection commands via RS-232 write VHDL code to display status information on the LCD screen on the development board. write VHDL code that can output video rate data from the Indigo Photon 320, Indigo Photon 640, and DRS U6000 cameras to a DVI port using standard 644x512 @60Hz timing. write VHDL code that can output video rate data from the Indigo Photon 320, Indigo Photon 640, and DRS U6000 cameras to a VGA port using	Validation Method demonstrate capability demonstrate capability demonstrate capability visual inspection of display	Validation Date 3/4/2010 5/26/2010 6/11/2010 3/30/2010
Deliverable Camera Compatibility Selection Code System Status Display Code DVI Video Output Code	Requirement Camera compatibility shall be selectable via DIP switches on the Xilinx ML506 and ML402 development boards. Camera compatibility shall be selectable via software The system shall use Xilinx ML506 and ML402 development boards to display status information on the integrated LCD display. The system shall use a Xilinx ML506 development board to output real time video data from a camera to a DVI- compatible display. The system shall use a Xilinx ML402 development board to output real time video data from a camera to a DVI- compatible display.	frame rate of 29.97 frames per second Tasks write VHDL code to support camera capability selection via DIP switches write VHDL code to comunicate with software and accept camera selection commands via RS-232 write VHDL code to display status information on the LCD screen on the development board. write VHDL code that can output video rate data from the Indigo Photon 320, Indigo Photon 640, and DRS U6000 cameras to a DVI port using standard 644x512 @60Hz timing.	Validation Method demonstrate capability demonstrate capability demonstrate capability visual inspection of display	Validation Date 3/4/2010 5/26/2010 6/11/2010 3/30/2010 3/30/2010
Deliverable Camera Compatibility Selection Code System Status Display Code DVI Video Output Code	Requirement Camera compatibility shall be selectable via DIP switches on the Xilinx ML506 and ML402 development boards. Camera compatibility shall be selectable via software The system shall use Xilinx ML506 and ML402 development boards to display status information on the integrated LCD display. The system shall use a Xilinx ML506 development board to output real time video data from a camera to a DVI- compatible display. The system shall use a Xilinx ML402 development board to output real time video data from a camera to a DVI- compatible display.	frame rate of 29.97 frames per second Tasks write VHDL code to support camera capability selection via DIP switches write VHDL code to communicate with software and accept camera selection commands via RS-232 write VHDL code to display status information on the LCD screen on the development board. write VHDL code that can output video rate data from the Indigo Photon 320, Indigo Photon 640, and DRS U6000 cameras to a DVI port using standard 644x512 @60Hz timing. Write VHDL code that can output video rate data from the Indigo Photon 320, Indigo Photon 640, and DRS U6000 cameras to a VGA port using standard 644x512 @60Hz timing.	Validation Method demonstrate capability demonstrate capability demonstrate capability visual inspection of display visual inspection of display	Validation Date 3/4/2010 5/26/2010 6/11/2010 3/30/2010 3/30/2010
Deliverable Camera Compatibility Selection Code System Status Display Code DVI Video Output Code VGA Video Output Code	Requirement Camera compatibility shall be selectable via DIP switches on the Xilinx ML506 and ML402 development boards. Camera compatibility shall be selectable via software The system shall use Xilinx ML506 and ML402 development boards to display status information on the integrated LCD display. The system shall use a Xilinx ML506 development board to output real time video data from a camera to a DVI-compatible display. The system shall use a Xilinx ML402 development board to output real time video data from a camera to a DVI-compatible display. The system shall use a Xilinx ML402 development board to output real time video data from a camera to a VGA-compatible display. The system shall use a Xilinx ML506	frame rate of 29.97 frames per second Tasks write VHDL code to support camera capability selection via DIP switches write VHDL code to communicate with software and accept camera selection commands via RS-232 write VHDL code to display status information on the LCD screen on the development board. write VHDL code that can output video rate data from the Indigo Photon 320, Indigo Photon 640, and DRS U6000 cameras to a DVI port using standard 644x512 @ 60Hz timing. write VHDL code that can output video rate data from the Indigo Photon 320, Indigo Photon 640, and DRS U6000 cameras to a VGA port using standard 644x512 @ 60Hz timing. write VHDL code that can output video rate data from the Indigo Photon 320, Indigo Photon 640, and DRS U6000 cameras to a VGA port using standard 644x512 @ 60Hz timing. write VHDL code that can	Validation Method demonstrate capability demonstrate capability demonstrate capability visual inspection of display visual inspection of display	Validation Date 3/4/2010 5/26/2010 6/11/2010 3/30/2010 3/30/2010 3/30/2010
Deliverable Camera Compatibility Selection Code System Status Display Code DVI Video Output Code VGA Video Output Code	Requirement Camera compatibility shall be selectable via DIP switches on the Xilinx ML506 and ML402 development boards. Camera compatibility shall be selectable via software The system shall use Xilinx ML506 and ML402 development boards to display status information on the integrated LCD display. The system shall use a Xilinx ML506 development board to output real time video data from a camera to a DVI-compatible display. The system shall use a Xilinx ML402 development board to output real time video data from a camera to a VGA-compatible display. The system shall use a Xilinx ML506 Virtex 5 FPGA Development board to transfer real time video from the Indigo	frame rate of 29.97 frames per second Tasks write VHDL code to support camera capability selection via DIP switches write VHDL code to communicate with software and accept camera selection commands via RS-232 write VHDL code to display status information on the LCD screen on the development board. write VHDL code that can output video rate data from the Indigo Photon 320, Indigo Photon 640, and DRS U6000 cameras to a DVI port using standard 644x512 @ 60Hz timing. write VHDL code that can output video rate data from the Indigo Photon 320, Indigo Photon 640, and DRS U6000 cameras to a VGA port using standard 644x512 @ 60Hz timing. write VHDL code that can output video rate data from the Indigo Photon 320, Indigo Photon 640, and DRS U6000 cameras to a VGA port using standard 644x512 @ 60Hz timing. write VHDL code that can transfer video rate data from the infrared cameras over	Validation Method demonstrate capability demonstrate capability demonstrate capability visual inspection of display visual inspection of display open saved video/images on TCP/IP client	Validation Date 3/4/2010 5/26/2010 6/11/2010 3/30/2010 3/30/2010 3/16/2010
Deliverable Camera Compatibility Selection Code System Status Display Code DVI Video Output Code VGA Video Output Code	Requirement Camera compatibility shall be selectable via DIP switches on the Xilinx ML506 and ML402 development boards. Camera compatibility shall be selectable via software The system shall use Xilinx ML506 and ML402 development boards to display status information on the integrated LCD display. The system shall use a Xilinx ML506 development board to output real time video data from a camera to a DVI-compatible display. The system shall use a Xilinx ML402 development board to output real time video data from a camera to a VGA-compatible display. The system shall use a Xilinx ML402 development board to output real time video data from a camera to a VGA-compatible display. The system shall use a Xilinx ML506 Virtex 5 FPGA Development board to transfer real time video from the Indigo Photon 320, Indigo Photon 640, and DRS	frame rate of 29.97 frames per second Tasks write VHDL code to support camera capability selection via DIP switches write VHDL code to communicate with software and accept camera selection commands via RS-232 write VHDL code to display status information on the LCD screen on the development board. write VHDL code that can output video rate data from the Indigo Photon 320, Indigo Photon 640, and DRS U6000 cameras to a DVI port using standard 644x512 @60Hz timing. write VHDL code that can output video rate data from the Indigo Photon 320, Indigo Photon 640, and DRS U6000 cameras to a VGA port using standard 644x512 @60Hz timing. write VHDL code that can output video rate data from the Indigo Photon 320, Indigo Photon 640, and DRS U6000 cameras to a VGA port using standard 644x512 @60Hz timing. write VHDL code that can transfer video rate data from the infrared cameras over TCP/IP using the ethernet port	Validation Method demonstrate capability demonstrate capability demonstrate capability visual inspection of display visual inspection of display open saved video/images on TCP/IP client	Validation Date 3/4/2010 5/26/2010 6/11/2010 3/30/2010 3/30/2010 3/16/2010
Deliverable Camera Compatibility Selection Code System Status Display Code DVI Video Output Code VGA Video Output Code	Requirement Camera compatibility shall be selectable via DIP switches on the Xilinx ML506 and ML402 development boards. Camera compatibility shall be selectable via software The system shall use Xilinx ML506 and ML402 development boards to display status information on the integrated LCD display. The system shall use a Xilinx ML506 development board to output real time video data from a camera to a DVI-compatible display. The system shall use a Xilinx ML402 development board to output real time video data from a camera to a VGA-compatible display. The system shall use a Xilinx ML506 Virtex 5 FPGA Development board to transfer real time video from the Indigo Photon 320, Indigo Photon 640, and DRS U6000 infrared cameras using the UDP	frame rate of 29.97 frames per second Tasks write VHDL code to support camera capability selection via DIP switches write VHDL code to software and accept camera selection commands via RS-232 write VHDL code to display status information on the LCD screen on the development board. write VHDL code that can output video rate data from the Indigo Photon 320, Indigo Photon 640, and DRS U6000 cameras to a DVI port using standard 644x512 @60Hz timing. write VHDL code that can output video rate data from the Indigo Photon 320, Indigo Photon 640, and DRS U6000 cameras to a VGA port using standard 644x512 @60Hz timing. write VHDL code that can output video rate data from the Indigo Photon 320, Indigo Photon 640, and DRS U6000 cameras to a VGA port using standard 644x512 @60Hz timing. write VHDL code that can transfer video rate data from the infrared cameras over TCP/IP using the ethernet port on the Xilinx board	Validation Method demonstrate capability demonstrate capability demonstrate capability visual inspection of display visual inspection of display open saved video/images on TCP/IP client	Validation Date 3/4/2010 5/26/2010 6/11/2010 3/30/2010 3/30/2010 3/16/2010

Table 8: Sandia F	Project	Requirements	Table
-------------------	---------	--------------	-------

11.1 Frame Rate Verification Methodology

Frame rate verification was performed via a MATLAB script which uses the Image Acquisition Toolbox to calculate the source video rate. This code uses the MATLAB Image Acquisition Toolbox to acquire a sequence of frames and log the timestamp of each one. After acquisition, the script calculates the video rate of the image source and plots the timestamp of each frame as well as the average time difference between each frame. This allows verification of the consistency of incoming frames. Figure 25 contains a screen capture verifying the frame rate of the system (29.97 fps) when connected to an Indigo Photon 320 camera. Frame consistency plots are available in Figure 26 and Figure 27.

Figure 25: Frame Rate Calculation via MATLAB Image Acquisition Toolbox

Figure 26: Consistency of Frame Acquisition via MATLAB Image Acquisition Toolbox

Figure 27: Average Time Difference Between Frames via MATLAB Image Acquisition Toolbox

12.0 Appendix A: Connections and Pinout

Refer to Table 9 for the connections between the Xilinx ML506 evaluation board headers and the Indigo Photon 320 digital data wires. Table 10 contains the pinout for the Indigo Photon 640 digital data wires.

Connection	Wire #	Header	Header	FPGA
		Group	Pin	Pin
Synchronization -	12		2	Y18
Synchronization +	2		4	AA18
CLK -	11	15	6	W19
CLK +	7	35	8	Y19
Data -	13		10	Y21
Data +	8		12	Y20

Table 9: Indigo Photon 320 Camera-FPGA Interface Pinout

Connection	Wire	Header	Header	FPGA
	Color	Group	Pin	Pin
Synchronization -	Pink		2	Y18
Synchronization +	Brown White		4	AA18
CLK -			6	W19
CLK +	Orange	15	8	Y19
Data1 -	Purple		10	Y21
Data1 +	Blue	Blue		Y20
Data2 -	Green		14	W24
Data2 +	Black		16	W23

Table 10: Indigo Photon 640 Camera-FPGA Interface Pinout

Refer to Table 11 for the connections between the Xilinx ML506 evaluation board headers and the Camera Link cable wires.

Connection	Wire #	Header Group	Header Pin	FPGA Pin
CLK -	5		18	Y23
CLK +	18		20	Y22
X0-	2		22	AA20
X0+	15		24	AA19
X1-	3		26	AA17
X1+	16		28	Y17
X2-	4		30	AC20
X2+	17	J5	32	AB20
X3-	6		34	AD21
X3+	19		36	AE21
Drain 1	N/A		55	N/A
Drain 2	N/A		57	N/A
Drain 3	N/A		59	N/A
Drain 4	N/A		61	N/A
Drain 5	N/A		63	N/A

Table 11: FPGA-Camera Link Interface Pinout

13.0 Appendix B: DRS U6000 Camera Errata/Confusion

The following details erroneous/confusing information that was presented in the "SNL UFPA Hardware Interface Charts" for the DRS U6000 Camera:

- 1. Slide 1 details the following: "HotLink requires "double-pump" to maintain 14-bit data along with frame sync (FPA) & field sync (frame grabber) bits. Each 10-bit chunk has 8 data bits (7 data bits + 1 unused bit) + 1 data clock bit + 1 special character bit. Unused data bit is either MSB or LSB (?)". This isn't how pixel values are output by the camera. The first two bits of the first byte of a pixel are unused; in other words, each pair of bytes should be accumulated into a shift register, and the lower 14-bits make up the pixel value.
- 2. K28.1 control bytes do not signal the beginning but instead the end of even and odd fields, respectively.
- 3. In slide 9, the even and odd fields are shown to be equal in size with respect to the number of data and control bytes. However, the idle field after the K28.0 control byte is not actually 15477 bytes long, as is listed, but instead 13893, a full row of pixels less than indicated. The de-interlacing logic must be designed to accommodate this.
- 4. There is no "special character bit". This was noted to be a line synch channel, but it does not appear to output any meaningful data.
- 5. The DRS camera, in general, seems to output 16-bits, eight of which are the FF and FE bytes detailed in slide 9. The LSB of these additional eight bits can be used as a line synch/data valid channel.

14.0 Appendix C: Obsolete Work

This section details work which was previously done but has been rendered irrelevant or obsolete.

14.1 FPGA-UART Interface: Camera Control via RS-232

RS-232 camera control was implemented only for the Indigo Photon 320 and 640 cameras. The FPGA controlled the camera using the RS-232 protocol over the UART interface. The required RS-232 settings are detailed in Table 12. The Photon 320 and 640 expects a specific packet format, detailed in Table 13. A subset of the commands are able to be sent from the FPGA using the DIP switch inputs; the commands that have been implemented are detailed in Table 14 along with the corresponding packet values and DIP switch configuration.

Parameter	Value
Baud rate:	57600
Data bits:	8
Parity:	None
Stop bits:	1
Flow Control:	None

Table 12: Indigo Photon 320 RS-232 Communication Settings

Byte #	Upper Byte
1	Process Code
2	Status
3	Reserved
4	Function
5	Byte Count (MSB)
6	Byte Count (LSB)
7	CRC1 (MSB)
8	CRC1 (LSB)
	(Data)
	(Data)
Ν	(data)
N+1	CRC2 (MSB)
N+2	CRC2(LSB)

Table 13: Indigo Photon 320 RS-232 Packet Structure

Command	DIP Switch Configuration (Switches 1 and 2)	Parameter	DIP Switch Configuration (Switches 3-8)	Function Byte	Parameter Byte
Divital Video Output Mode	00	14-bit Raw	00XXXX	0x12	0x0003
		14-bit Filtered	01XXXX		0x0000
		8-bit	1XXXXX		0x0001
FFC Mode (Manual/Auto)	01	Manual	00XXXX	0x0B	0x0000
		Auto	01XXXX		0x0001
		External	1XXXXX		0x0002
FFC Interval	10	# Frames	Binary Input (DIP 3 is MSB)	0x0D	0x0000-0xFFFF
DO FFC	11	N/A	XXXXXX	0x0C	N/A

Table 14: Implemented Indigo Photon 320 Commands with Corresponding Packet Values and Input Configuration

14.2 Acquisition Software

In addition to the MATLAB GUI application, a C++ function titled "grab" was written. This function utilizes the NI IMAQ (image acquisition) API to capture a still image from the acquisition card and return it to MATLAB in the form of an array for viewing or processing. The software is compatible with the 8-bit and 14-bit modes of the Indigo Photon 320 camera.