Developments in CCD and CMOS Detectors at MIT Lincoln Laboratory

V. Suntharalingam, D. Schuette, B. E. Burke, Lincoln Laboratory, MIT

R. Johnson, J. Drummond, Starfire Optical Range (AFRL/RDS)

S. M. Adkins, W. M. Keck Observatory

Scientific Detector Workshop 7 October 2013 INCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MIT Lincoln Laboratory

- Federally-Funded Research and Development Center (FFRDC) run by the Massachusetts Institute of Technology under contract with the Air Force. Located on Hanscom Air Force Base in Lexington, MA
 - ~3800 employees
 - ~\$940M/yr (FY12) sponsored research

- Primary focus is on the development of prototype radar, communications, and surveillance systems for the DoD and other government agencies
 - Conduct research in advanced electronics technology to support and enable new prototype system development
 - Growing segment in industrial-sponsored research through CRDA
- Work with US industry to transfer Lincoln Laboratory technology to meet future DoD and government needs

Unique Focal-Plane Technology in Support of National Security

Space Surveillance

DoD Satellites

Directed Energy AFRL SOR

National Ignition Facility (LLNL)

Nuclear Stockpile Stewardship (LANL)

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MITLL SDW 2013-3 VS 10/07/13

- Specially designed 70,000 square foot building
 - First completed silicon (Spring 1993)
 - Converted to 150 mm wafer processing in 1996
 - Converted to 200 mm wafer processing (Spring 2011)
- Clean Room space
 - 8,100 Square feet of class-10
 - 10,000 Square feet of class-100
- Microelectronics Laboratory activities
 - > 30 Active programs in support of 4 divisions
 - > 65 People from 5 groups working full-time in facility (Scientists, Engineers, and Technicians)
 - Two-shift operation, 6 am to 11 pm, 5 days/week

Facility/Equipment Value ~\$175-200M

Spanning Research to Low-Volume Prototyping in One Facility

Graphene Devices

MEMS RF Switches

Demonstration Circuits/Devices

22M-pixel Orthogonal Transfer Array Focal Plane Tiles

MASIVS Focal Plane Array

Curved CCD Focal Plane Arrays for Space Surveillance Telescope

Low volume, specialized, sophisticated prototypes

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

9-nm Gate-Length Fully Depleted SOI Device Research/ Novel

Materials

MITLL SDW 2013- 5 VS 10/07/13

2.0

Growth in Wafer and Device Sizes

Existing Sensors for Adaptive Optics

Device	Format (Ports)	Pixel Size	Frame Rate	Read Noise	Comment
CCID26	128 × 128 (16)	21 µm	2.5 kfps	7 e⁻	Electronic shutter
CCID66	160 × 160 (20)	21 µm	2.5 kfps	4 e⁻	High-responsivity pJFET charge-sense with two-stage on-chip amplification

Die Photo MITLL CCID26

Die Photo MITLL CCID66

Photomicrograph Detail of Wafer

MITLL SDW 2013- 8 VS 10/07/13

Evolutionary Technology Enhance NIR Sensitive AO CCD

Sensors for Adaptive Optics

• MIT-LL CCID75: Adaptive Optics CCD with readout port isolation and region-of-interest for high-frame-rate / low-latency operation

CCID75 Photograph

MITLL SDW 201 VS 10/07/13 DISTRIBUTION C. Distribution authorized to U.S. Government Agencies and their contractors; Specific Authority (AFRL/RD Cri**LANGOLIN LABOR ATORY** 20130920. Other requests shall be referred to AFRL/RDSA, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776.

Targeted Technology Polar Coordinate Imager

Sensors for Adaptive Optics

 Example: Polar coordinate imaging to address the challenge of Adaptive Optics for extremely-large telescopes

4 pres nixels

> Serial register length set by the size of this

> > Two phase serial register clocks

final subaperture

- Sodium beacon image elongates radially as the distance from center of the focal plane increase
- Many small CCD arrays located and oriented to optimally sample each sub-aperature

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY 1

Serial register from previous subaperture Three phase imager clocks

Three phase frame store clocks

and frame store clock enabl

Device	L1-W1-C3	L1-W3-C1	Units			
Read noise	3.47	3.24	e-			
Full well	26844	24967	e-			
Non-linearity	1.2	1.4	%			
Responsivity	15	16	μV/e-			
Dark current	~10*	~2.1	e-/pixel/s			
Serial CTE	0.999991	0.999993	-			
Parallel CTE	0.999990	0.999990	-			
Charge diffusion	0.25	0.37	pixels			

* = device operated at -8 $^{\circ}C$

- L1-W1-C3 was not baked and has an epoxy seal
- Later determined devices were operating at ~ -15 C and ~ -29 C

Device	L1-W1-C3																
Video channel	Average	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Read noise	3.46	3.71	3.73	3.23	2.96	3.61	3.26	3.28	3.71	3.70	3.54	3.69	3.45	3.54	3.28	3.32	3.35
Gain (e-/DN)	0.53	0.56	0.56	0.50	0.48	0.52	0.52	0.55	0.53	0.55	0.54	0.56	0.54	0.53	0.49	0.53	0.56
Full well	26714	26806	25122	25305	27528	25095	24579	28898	26129	29114	27378	26000	27847	26691	26558	26989	27377
Video channel	Average	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Read noise	3.48	3.15	3.60	3.10	3.74	3.63	3.12	3.63	3.79	3.74	3.70	3.74	3.42	3.11	3.19	3.75	3.28
Gain (e-/DN)	0.54	0.50	0.55	0.53	0.52	0.53	0.54	0.55	0.54	0.54	0.50	0.53	0.55	0.55	0.56	0.54	0.56
Full well	26974	26945	27507	28402	24927	27365	28108	27896	28758	27847	26008	25474	26388	27306	24502	28523	25624

Device	L1-W3-C1																
Video channel	Average	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Read noise	3.18	3.20	2.83	3.63	3.28	3.54	3.24	3.68	2.84	3.01	2.89	3.15	3.66	2.77	3.04	3.25	2.77
Gain (e-/DN)	0.52	0.46	0.50	0.51	0.50	0.51	0.49	0.49	0.45	0.54	0.52	0.56	0.57	0.54	0.57	0.54	0.55
Full well	25452	24590	26281	26004	23839	24258	26982	24813	24676	23702	26312	24779	26802	25365	27091	24873	26864
Video channel	Average	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Read noise	3.30	3.57	3.65	2.86	3.75	2.95	2.86	3.49	3.04	3.13	3.71	2.87	3.50	2.95	3.66	3.19	3.64
Gain (e-/DN)	0.52	0.53	0.50	0.57	0.47	0.53	0.50	0.54	0.45	0.55	0.53	0.56	0.56	0.52	0.51	0.50	0.50
Full well	24482	23327	25106	22943	23667	23141	24771	23276	26526	25514	26141	25086	25412	24347	25053	23157	24247

2-µm resolution typ.

2× stepper (> 50 × 50 mm field)

I-line Stepper Lithography 200-mm Wafer Capability Demonstrators

FI = Front Illuminated

MITLL SDW 2013- 14 VS 10/07/13

Results from First 200-mm CCD Lot 3k x 3k Image Array and Frame Store (9.5µm pixel)

MITLL SDW 2013- 15 VS 10/07/13

Uniformity of Large Area CCDs

at -30°C using 430 nm LED

CCID75

MITLL SDW 2013- 16 VS 10/07/13

Orthogonal Transfer Arrays for Pan-STARRS GPC2

- Device Improvements (CCID71)
 - Improved video quality by using only 2-phase devices
 - Increased full well
 - Improved fill factor
 - Reduced persistence and amplifier glow
 - Better AR coating
- Partially populated GPC2 with BI OTAs from 150-mm lots
- 200-mm wafer OTA process in development
 - Fe⁵⁵ X-rays detected with first FI devices

FI OTA image

- Stitching is used when imager size exceeds lithography exposure field
 - DUV Stitching methods achieved 35-nm (3 σ) precision
- Mix-and-Match is used to combine fine-line (90 nm) Front End of Line lithography with thick, wide routing metals in Back End of Line steps
 - In use for 3-D integrated imagers

New Process Technology for OTCCDs

Current process

- Four polysilicon layers
- Clock voltages: 8 10 V
- Pixel sizes > 9 µm

Advanced process

- Single or Two polysilicon layers
- Clock voltages: down to 2 V
- Pixel sizes > 5 µm
- ➡ Simplified fabrication but requires sub-µm lithography

10-µm pixels (four poly layers)

8-µm pixels (two poly layers)

Collection of Fe⁵⁵ X-ray Events in IA 3k x 3k, 8-µm pixel OTCCD

Fe55 events captured throughout Imaging array

Completed Back-Illuminated Devices

Chip Photomicrograph Details

MITLL SDW 2013- 21 VS 10/07/13

QE of Back-Illuminated Devices Effect of Detector Thickness

Minimizing Dead Layers Through MBE

- MBE enables the growth of ultra-thin (5-10 nm) Si:B passivation layers for BI-CCDs
 - Very low dark current
 - High spatial uniformity
 - Quantum-limited UV detection efficiency

200-mm wafer MBE process successfully demonstrated

Completed MBE-Treated Devices

430nm LED Resolution Target

Fe55 Single Pixel events at -50C

Charge Transfer Inefficiency< 10⁻⁶

Advantages of 3-D IC for Advanced Focal Planes

Conventional Monolithic CMOS Image Sensor

- Pixel electronics and detectors share area
- Control and support electronics placed outside of imaging area
- Fill factor loss
- Co-optimized fabrication

- 100% fill factor detector
- Fabrication optimized by layer function
- Local image processing
- Scalable to large-area focal planes

3-D Imager Demonstrations at MIT-LL

3-Tier 3DIC Cross-Section

Three FDSOI CMOS Tiers, total active circuit height ~ 21 um

Tier 1 bottom, Tier 2 and Tier 3 inverted and bonded on top, substrates removed 11 metal interconnect layers thick RF top metal Dense unrestricted 3D vias for electrical connections between tiers

- Lincoln Laboratory is now fabricating scientific detectors on 200-mm silicon substrates
 - Stitching to produce very large format devices
 - Uniform response and broad-band sensitivity
 - Advancements in Back Illumination technology
- Ongoing work to design and fabricate new designs for adaptive optics applications
- Increased on-focal plane processing anticipated with next generation 3-D integrated circuit technologies

- The Lincoln Laboratory, Massachusetts Institute of Technology
 - Brian Aull, Barry Burke, Michael Cooper, Brad Felton, Jim Gregory, Renee Lambert, Dan O'Mara, Robert Reich, Dan Schuette, Doug Young, and members of the Advanced Imagers and Silicon Technology Group
- Starfire Optical Range, Air Force Research Laboratory
 - Robert Johnson, John Wynia
- AODP Project Collaborators
 - Sean Adkins, James W. Beletic, Barry Burke, Charlie Bleau, Jerry Nelson, Ray DuVarney, Richard Stover and Francois Rigaut
- Pan-STARRS Project Collaborators
 - John Tonry, Will Burgett, Peter Onaka
- The TMT Project Office
 - Corrine Boyer, Brent Ellerbroek