A new generation of LIDAR (light detection and ranging) technology to map planetary bodies has been developed. This new technology could be used to explore new space by providing more detail about the geography and topography of planets, which could be useful for future missions. The new LIDAR technology improves resolution by having five lasers and five receivers working simultaneously. Figer's system also uses one laser, but a beam expander will separate the beam, sending it off at a number of angles. Once the constituent beams are reflected off the objects being measured, the beams are recombined and then analyzed with the new sensors.

The reason for the increase in resolution is an improvement in the back-end of the laser, from a direction of 180-degree scanning. Previously, LIDAR would only be able to scan objects, as the amount of time required to generate high-resolution maps was prohibitive. With the new LIDAR's ability to split the beam from one laser and use it in four different directions, the technique is significantly reduced to a point where the amount of laser time required to take a single point is.

"You can map the planet with one laser in a day," Figer says.

The improvement in measuring distance on a new generation of high-speed sensors means that the resolution may not appear to be dramatic. While there is a potential for a much greater data set, the improvement in measuring distance allows for more data to be collected over a shorter period of time.

While the same technology could be used to map objects in space, Figer believes that it could help to map objects in other systems. The improved LIDAR technology could be used to map objects in other systems, including those that have not yet been discovered. The new technology could also be used to map objects in other systems, including those that have not yet been discovered. The improved LIDAR technology could be used to map objects in other systems, including those that have not yet been discovered. The new technology could also be used to map objects in other systems, including those that have not yet been discovered. The improved LIDAR technology could be used to map objects in other systems, including those that have not yet been discovered.

The researchers are working on a greater variety of materials. LIDAR over radar are twofold: LIDAR can be used to measure smaller objects, and it is more sensitive to changes in the environment. The laser is shot at an object, and the time delay between the pulse and the reflection is measured in order to accurately gauge the distance. The advantages of LIDAR over radar are twofold: LIDAR can be used to measure smaller objects, and it is more sensitive to changes in the environment.

Researchers at the Rochester Institute of Technology (RIT) and MIT are developing a new generation of LIDAR (light detection and ranging) technology to map planetary bodies. The system could also be used to analyze the atmosphere on other planets to find out more about biohazards, wind speed, and temperature.

LIDAR works on a principle similar to radar, but through the use of lasers rather than radio waves. The laser beam is reflected off an object, and the time delay between the pulse and the reflection is measured in order to accurately gauge the distance. The advantage of LIDAR over radar is that it can be used to measure smaller objects, and it is more sensitive to changes in the environment.

The researchers are working on a greater variety of materials. LIDAR over radar are twofold: LIDAR can be used to measure smaller objects, and it is more sensitive to changes in the environment.

Researchers at the Rochester Institute of Technology (RIT) and MIT are developing a new generation of LIDAR (light detection and ranging) technology to map planetary bodies. The system could also be used to analyze the atmosphere on other planets to find out more about biohazards, wind speed, and temperature.

LIDAR works on a principle similar to radar, but through the use of lasers rather than radio waves. The laser beam is reflected off an object, and the time delay between the pulse and the reflection is measured in order to accurately gauge the distance. The advantage of LIDAR over radar is that it can be used to measure smaller objects, and it is more sensitive to changes in the environment.

The researchers are working on a greater variety of materials. LIDAR over radar are twofold: LIDAR can be used to measure smaller objects, and it is more sensitive to changes in the environment.

Researchers at the Rochester Institute of Technology (RIT) and MIT are developing a new generation of LIDAR (light detection and ranging) technology to map planetary bodies. The system could also be used to analyze the atmosphere on other planets to find out more about biohazards, wind speed, and temperature.

LIDAR works on a principle similar to radar, but through the use of lasers rather than radio waves. The laser beam is reflected off an object, and the time delay between the pulse and the reflection is measured in order to accurately gauge the distance. The advantage of LIDAR over radar is that it can be used to measure smaller objects, and it is more sensitive to changes in the environment.