III-V Nanowire Growth for Quantum Photonics and Optoelectronics

University W Ray LaPierre lapierr@mcmaster.ca Department of Engineering Physics McMaster University, Hamilton, Ontario, Canada

photonics

McMaster

Semiconductor Nanowires

2D array of semiconductor rods III-V material: (In,Ga,AI)-(P,As,Sb) Single crystals Diameter ~ 10 – 500 nm Length ~ 1 – 10 μm

McMaster

The Role of III-V Nanowires in Quantum Information Science and Engineering

• Majorana fermions

Science 336 (2012) 1003 Nature Physics 8 (2012) 887

• Single photon sources & detectors

Nat. Commun. 3 (2012) 737 Nat. Nanotech. 12 (2017) 1026 QIP (2020) 19, 44 Materials (2020) 13, 1400

Molecular Beam Epitaxy (MBE)

Au-assisted Nanowire Growth Process

Pr

Self-assisted Selective-area Epitaxy

Example: GaP Nanowires

McMaster University

J. Crystal Growth 462 (2017) 29

Group V Dependence

Primary Flux

J. Crystal Growth 462 (2017) 29

Pitch/Period Dependence

J. Crystal Growth 462 (2017) 29 Nanotechnology 25 (2014) 415304 Nano Futures 1 (2017) 035001

Pitch Dependence

Nanotechnology 25 (2014) 415304

Droplet Dynamics: Diameter Control

V/III flux ratio > 1 V/III flux ratio ~ 1

1 μm

Optical funnel/horn

IEEE J. Photovolt. 9 (2019) 1225

Group III Dependence

McN

Opportunity 1: Unique Heterostructures

Core-Shell Heterostructures

• Radial quantum wells

Axial Heterostructures

- Quantum dots
- Superlattices

Opportunity 2: Heterogeneous Growth on Si

Integration with Si Photonics

ACS Photonics 7 (2020) 1016 J. Appl. Phys. 125 (2019) 243102 Appl. Phys. Lett. 115 (2019) 213101 PSS RRL 13 (2019) 1800489 Nano Lett. 17 (2017) 5244 Nano Lett. 16 (2016) 1833 ACS Photonics 4 (2017) 2537

Challenge 1: Surface Passivation

McMaster University

Surface Passivation

McMaster

Challenge 2: Doping

Nanowire reconstruction by electron holography

Three-fold Symmetric Doping Mechanism

Physica Status Solidi RRL 7 (2013) 815 IEEE J. Photovoltaics 6 (2016) 661

Single Nanowire Device Fabrication

Ensemble Nanowire Device Fabrication

McMaster University

Diode Characteristics

McMaster University

IEEE J. Photovoltaics 6 (2016) 661

Opportunity 3: Diameter-dependent Optical Absorption

Absorbed wavelength depends on nanowire diameter

Nanotechnology 25 (2014) 305303

McMaster

Nanowire Optical Resonant Modes

- HE_{1n} radial waveguide modes
- Increasing nanowire diameter \rightarrow Red-shift of absorptance

GaAs, Period: 400 nm, Length: 450 nm

Nanotechnology 25 (2014) 305303

Nanowire Length Dependence

GaAs nanowires, Period: 400 nm

Photodetectors Power Convertors **Photovoltaics**

McMaster

University

Nanotechnology 25 (2014) 305303 J. Appl. Phys. 112 (2012) 104311

Thin Film Multispectral Photodetectors

Night Vision

Biomedical

Search & Rescue

Manufacturing

Surveillance

IR <u>Astronomy</u>

JAP 105 (2009) 091101

McMaster

Optical Satellite Communications

- High Throughput and Secure Networks Challenge Program (HTSN)
- Quantum Encryption and Science Satellite (QEYSSAT)

InSb Nanowires/Pillars

Semicond. Sci. Technol. 34 (2019) 035023

McMaster

InSb

Semicond. Sci. Technol. 34 (2019) 035023

Long Wavelength Infrared (LWIR) Multispectral Optical Absorption

<u>InSb</u>:

Nano Futures 1 (2017) 035001

Increasing period \rightarrow increasing diameter \rightarrow Red-shift of absorptance

Nano Futures 1 (2017) 035001

Quantum Dot (QD) Growth Mechanisms

McMaster

InAs_xP_{1-x} QDs / InP

Nanotechnology 26 (2015) 315202

GaAs QDs / GaP

SiO,

p-Si

McMaster University

Nanotechnology 29 (2018) 124003

GaAs/GaP QD Photodetectors

Nanotechnology 29 (2018) 124003

Summary

- Column Access
- Small pixel size (single nanowire)
- Excellent light coupling
- High responsivity (better than thin films)
- Multispectral: Visible to LWIR
- Unique heterostructures
- Monolithic integration with Si

Acknowledgements

- Paige Wilson, Ph.D.
- Ara Ghusakan, Ph.D.
- Nebile Isik, Research Engineer

- Amanda Thomas, M.A.Sc.
- Curtis Goosney, M.A.Sc.