EXCITATION OF PLASMONS IN 2D CONDUCTING PLANE MATERIAL BY A PARALLEL DIPOLE LINE

We start from the Coulomb field produced by the linear dipole of the tip, whose components on the exploring surface are:

\[E_x(x) = -\frac{4\pi n}{(x^2 + p^2)^{3/2}} \]

where \(n \) is the height of the dipole above the surface. Thiers Fourier transforms are:

\[\psi_{0q} = -2i/|q| e^{-|q|h}, \psi_{0q} = 2i/|q| e^{-|q|h} \]

Solution of Poisson equation can be found as:

\[\psi^{(0)}(x) = \int \frac{\psi_{0q}(x) e^{i(qx)}}{2|q|} dq \]

where \(\psi^{(0)}(x) \) is the potential distribution above the surface (excluding the tip’s dipole compound), and \(\psi^{(0)} \) is below it.

From the boundary conditions at the surface:

\[\rho \equiv 2|q| e^{-|q|h} \psi_{0q}^{(0)} + i|q| \psi_{0q}^{(0)} = 0 \]

where \(\psi_{0q}^{(0)} \) is the Fourier components of the charge density \(\psi(x, t) \) induced on the surface, \(\psi(x, t) = \int \psi_{0q}^{(0)} e^{iqxt} dq \).

Then, using continuity Eq. \[\psi_{0q}^{(0)} = 0 \] where \(\psi(x, t) \) is the linear current in the surface given as \(j_{\text{lin}} = -\gamma E_{\text{lin}} \) where \(\gamma \) is the surface conductivity. \(E_{\text{lin}} \) is the E-field component producing the current in the surface, one can obtain \(\psi_{0q}^{(0)} \) and:

\[\beta = \frac{\omega_0}{\gamma} \left(1 - 4q^2 \left(\frac{\rho_{\text{max}}}{\rho_{\text{lin}}}, \frac{\rho_{\text{min}}}{\rho_{\text{lin}}} \right) \right) \]

After transformations, Eq. (7) is reduced to:

\[\beta = \frac{1}{2|q|^2} \left(\frac{1}{q} + \frac{1}{q} \right) \cdot \frac{1}{2|q|^2} \cdot \frac{1}