
101 Innovation Drive
San Jose, CA 95134
www.altera.com

Section I. DDR and DDR2 SDRAM High-Performance
Controllers and ALTMEMPHY IP User Guide

Document Version: 1.3
Document Date: February 2010

EMI_DDR_UG-1.3

http://www.altera.com

Copyright © 2010 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending ap-
plications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

 © February 2010 Altera Corporation
Contents
About This Section
Revision History . vii

Chapter 1. About This IP
Release Information . 1–2
Device Family Support . 1–2
Features . 1–3
Unsupported Features . 1–5
MegaCore Verification . 1–5
Resource Utilization . 1–5

ALTMEMPHY Megafunction . 1–5
High-Performance Controller (HPC) . 1–7
High-Performance Controller II (HPC II) . 1–9

System Requirements . 1–11
Installation and Licensing . 1–11

Free Evaluation . 1–12
OpenCore Plus Time-Out Behavior . 1–12

Chapter 2. Getting Started
Design Flow . 2–1
SOPC Builder Flow . 2–2

Specify Parameters . 2–2
Complete the SOPC Builder System . 2–3

MegaWizard Plug-In Manager Flow . 2–4
Specify Parameters . 2–4

Generated Files . 2–6

Chapter 3. Parameter Settings
ALTMEMPHY Parameter Settings . 3–1

Memory Settings . 3–2
Use the Preset Editor to Create a Custom Memory Preset . 3–3
Derate Memory Setup and Hold Timing . 3–8

PHY Settings . 3–10
Board Settings . 3–11
Controller Interface Settings . 3–12

DDR or DDR2 SDRAM High-Performance Controller Parameter Settings . 3–13
Controller Settings . 3–14

Chapter 4. Compile and Simulate
Compile the Design . 4–1
Simulate the Design . 4–4

Simulating Using NativeLink . 4–5
IP Functional Simulations . 4–6

Chapter 5. Functional Description—ALTMEMPHY
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

iv
Block Description . 5–1
Calibration . 5–2

Step 1: Memory Device Initialization . 5–4
Step 2: Write Training Patterns . 5–4
Step 3: Read Resynchronization (Capture) Clock Phase . 5–4
Step 4: Read and Write Datapath Timing . 5–5
Step 5: Address and Command Clock Cycle . 5–5
Step 6: Postamble . 5–5
Step 7: Prepare for User Mode . 5–5

Address and Command Datapath . 5–7
Arria GX, Arria II GX, Cyclone III, HardCopy II, Stratix II, and Stratix II GX Devices 5–7
Stratix III and Stratix IV Devices . 5–9

Clock and Reset Management . 5–9
Arria GX, Arria II GX, HardCopy II, Stratix II, and Stratix II GX Devices 5–9
Cyclone III Devices . 5–16
Stratix III and Stratix IV Devices . 5–18

Read Datapath . 5–22
Arria GX, Arria II GX, HardCopy II, Stratix II, and Stratix II GX Devices 5–22
Cyclone III Devices . 5–25
Stratix III and Stratix IV Devices . 5–26

Write Datapath . 5–27
Arria GX, Arria II GX, Cyclone III, HardCopy II, Stratix II, and Stratix II GX Devices 5–27
Stratix III and Stratix IV Devices . 5–28

ALTMEMPHY Signals . 5–29
PHY-to-Controller Interfaces . 5–35
Using a Custom Controller . 5–45

Preliminary Steps . 5–45
Design Considerations . 5–45
Clocks and Resets . 5–45
Calibration Process Requirements . 5–46
Other Local Interface Requirements . 5–46
Address and Command Interfacing . 5–46
Handshake Mechanism Between Read Commands and Read Data . 5–46
Handshake Mechanism Between Write Commands and Write Data . 5–47
Partial Write Operations . 5–48

Chapter 6. Functional Description—High-Performance Controller
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

v

Block Description . 6–1
Command FIFO Buffer . 6–2
Write Data FIFO Buffer . 6–2
Write Data Tracking Logic . 6–3
Main State Machine . 6–3
Bank Management Logic . 6–3
Timer Logic . 6–3
Initialization State Machine . 6–3
Address and Command Decode . 6–3
PHY Interface Logic . 6–3
ODT Generation Logic . 6–4
Low-Power Mode Logic . 6–4
Control Logic . 6–4
Error Correction Coding (ECC) . 6–5

Interrupts . 6–7
Partial Writes . 6–7
Partial Bursts . 6–9
ECC Latency . 6–9
ECC Registers . 6–9
ECC Register Bits . 6–11

Example Top-Level File . 6–13
Example Driver . 6–14

Top-level Signals Description . 6–16

Chapter 7. Functional Description—High-Performance Controller II
Upgrading from HPC to HPC II . 7–1
Block Description . 7–2

Avalon-MM Data Slave Interface . 7–3
Write Data FIFO Buffer . 7–4
Command Queue . 7–4
Bank Management Logic . 7–4
Timer Logic . 7–4
Command-Issuing State Machine . 7–5
Address and Command Decode Logic . 7–5
Write and Read Datapath, and Write Data Timing Logic . 7–5
ODT Generation Logic . 7–6
User-Controlled Side-Band Signals . 7–6

User Auto-Precharge Commands . 7–6
User-Refresh Commands . 7–6
Multi-Cast Write . 7–6
Low-Power Mode Logic . 7–6

Configuration and Status Register (CSR) Interface . 7–7
Error Correction Coding (ECC) . 7–7

Partial Writes . 7–8
Partial Bursts . 7–9

Example Top-Level File . 7–10
Example Driver . 7–12

Top-level Signals Description . 7–13
Register Maps Description . 7–20

Chapter 8. Latency

Chapter 9. Timing Diagrams
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

vi
DDR and DDR2 High-Performance Controllers . 9–1
Auto-Precharge . 9–2
User Refresh . 9–3
Full-Rate Read . 9–4
Half-Rate Read . 9–6
Full-Rate Write . 9–8
Half Rate Write . 9–10
Initialization Timing . 9–12
Calibration Timing . 9–14

DDR and DDR2 High-Performance Controllers II . 9–16
Half-Rate Read . 9–17
Half-Rate Write . 9–19
Full-Rate Read . 9–21
Full-Rate Write . 9–23

Additional Information
How to Contact Altera . Info–1
Typographic Conventions . Info–1
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

© February 2010 Altera Corporation
Preliminary
About This Section
Revision History
The following table shows the revision history for this section.

Date Version Changes Made

February 2010 1.3 Corrected typos.

February 2010 1.2 ■ Full support for Stratix IV devices.

■ Added timing diagrams for initialization and calibration stages for HPC.

November 2009 1.1 Minor corrections.

November 2009 1.0 First published.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

iv About This Section
Revision History
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation
Preliminary

© February 2010 Altera Corporation
1. About This IP
The Altera® DDR and DDR2 SDRAM High-Performance Controller MegaCore®
functions provide simplified interfaces to industry-standard DDR SDRAM and DDR2
SDRAM. The ALTMEMPHY megafunction is an interface between a memory
controller and the memory devices, and performs read and write operations to the
memory. The MegaCore functions work in conjunction with the Altera ALTMEMPHY
megafunction.

The DDR and DDR2 SDRAM High-Performance Controller MegaCore functions and
ALTMEMPHY megafunction offer full-rate or half-rate DDR and DDR2 SDRAM
interfaces. The DDR and DDR2 SDRAM High-Performance Controller MegaCore
functions offer two controller architectures: high-performance controller (HPC) and
high-performance controller II (HPC II). HPC II provides higher efficiency and more
advanced features.

1 The DDR and DDR2 SDRAM high-performance controllers denote both HPC and
HPC II unless indicated otherwise.

Figure 1–1 shows a system-level diagram including the example top-level file that the
DDR or DDR2 SDRAM High-Performance Controller MegaCore functions create for
you.

The MegaWizard™ Plug-In Manager generates an example top-level file, consisting of
an example driver, and your DDR or DDR2 SDRAM high-performance controller
custom variation. The controller instantiates an instance of the ALTMEMPHY
megafunction which in turn instantiates a PLL and DLL. You can optionally
instantiate the DLL outside the ALTMEMPHY megafunction to share the DLL
between multiple instances of the ALTMEMPHY megafunction. You cannot share a
PLL between multiple instances of the ALTMEMPHY megafunction, but you may
share some of the PLL clock outputs between these multiple instances.

The example top-level file is a fully-functional design that you can simulate,
synthesize, and use in hardware. The example driver is a self-test module that issues
read and write commands to the controller and checks the read data to produce the
pass or fail, and test complete signals.

Figure 1–1. System-Level Diagram

Note to Figure 1–1:

(1) When you choose Instantiate DLL Externally, DLL is instantiated outside the ALTMEMPHY megafunction.

Pass or Fail
External
Memory
Device

ALTMEMPHY
High-

Performance
Controller

Example
Driver

PLL

(1)

Example Top-Level File

DLL
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

1–2 Chapter 1: About This IP
Release Information
The ALTMEMPHY megafunction creates the datapath between the memory device
and the memory controller. The megafunction is available as a stand-alone product or
can be used in conjunction with Altera high-performance memory controllers. As a
stand-alone product, use the ALTMEMPHY megafunction with either custom or
third-party controllers.

Release Information
Table 1–1 provides information about this release of the DDR and DDR2 SDRAM
high-performance controllers and ALTMEMPHY IP.

Altera verifies that the current version of the Quartus® II software compiles the
previous version of each MegaCore function. The MegaCore IP Library Release Notes
and Errata report any exceptions to this verification. Altera does not verify
compilation with MegaCore function versions older than one release. For information
about issues on the DDR and DDR2 SDRAM high-performance controllers and the
ALTMEMPHY megafunction in a particular Quartus II version, refer to the Quartus II
Software Release Notes.

Device Family Support
The MegaCore functions provide either full or preliminary support for target Altera
device families:

■ Full support means the megafunction meets all functional and timing
requirements for the device family and can be used in production designs.

■ Preliminary support means the megafunction meets all functional requirements,
but can still be undergoing timing analysis for the device family.

Table 1–1. Release Information

Item Description

Version 9.1 SP1

Release Date February 2010

Ordering Codes IP-SDRAM/HPDDR (DDR SDRAM HPC)

IP-SDRAM/HPDDR2 (DDR2 SDRAM HPC)

IP-HPMCII (HPC II)

Product IDs 00BE (DDR SDRAM)

00BF (DDR2 SDRAM)

00CO (ALTMEMPHY Megafunction)

Vendor ID 6AF7
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

www.altera.com/literature/rn/rn_ip.pdf
www.altera.com/literature/rn/rn_ip.pdf
http://www.altera.com/literature/rn/rn_qts.pdf
http://www.altera.com/literature/rn/rn_qts.pdf

Chapter 1: About This IP 1–3
Features
Table 1–2 shows the level of support offered by the DDR and DDR2 SDRAM
high-performance controller to each of the Altera device families.

Features
The ALTMEMPHY megafunction offers the following features:

■ Simple setup

■ Support for the Altera PHY Interface (AFI) for DDR and DDR2 SDRAM on all
supported devices

■ Automated initial calibration eliminating complicated read data timing
calculations

■ VT tracking that guarantees maximum stable performance for DDR and DDR2
SDRAM interfaces

■ Self-contained datapath that makes connection to an Altera controller or a
third-party controller independent of the critical timing paths

■ Full-rate and half-rate DDR and DDR2 SDRAM interfaces

■ Easy-to-use MegaWizard interface

Table 1–2. Device Family Support

Device Family Support

Arria® GX Full

Arria II GX Preliminary

Cyclone® III Full

Cyclone III LS Preliminary

Cyclone IV Preliminary

HardCopy® II Full

HardCopy III Preliminary

HardCopy IV E Preliminary

Stratix® II Full

Stratix II GX Full

Stratix III Full

Stratix IV Full

Other device families No support
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

1–4 Chapter 1: About This IP
Features
In addition, Table 1–3 shows the features provided by the DDR and DDR2 SDRAM
HPC and HPC II.

Table 1–3. DDR and DDR2 SDRAM HPC and HPC II Features

Features

Controller Architecture

HPC HPC II

Half-rate controller v v
Support for AFI ALTMEMPHY v v
Support for Avalon®Memory Mapped (MM) local interface v v
Support for Native local interface v —

Configurable command look-ahead bank management with in-order reads and
writes

— v

Additive latency — v(1)

Optional support for multi-cast write for tRC mitigation — v
Support for arbitrary Avalon burst length — v
Memory burst length of 4 v v(2)

Memory burst length of 8 — v(3)

Built-in flexible memory burst adapter — v
Configurable Local-to-Memory address mappings — v
Integrated half-rate bridge for low latency option — v
Optional run-time configuration of size and mode register settings, and memory
timing

— v

Partial array self-refresh (PASR) — v
Support for industry-standard DDR and DDR2 SDRAM devices; and DIMMs v v
Optional support for self-refresh command v v
Optional support for user-controlled power-down command v —

Optional support for automatic power-down command with programmable
time out

— v

Optional support for auto-precharge read and auto-precharge write commands v v
Optional support for user-controller refresh v v
Optional multiple controller clock sharing in SOPC Builder Flow v v
Integrated error correction coding (ECC) function 72-bit v v
Integrated ECC function 40-bit — v
Support for partial-word write with optional automatic error correction — v
SOPC Builder ready v v
Support for OpenCore Plus evaluation v —

Support for the Quartus II IP Advisor v —

IP functional simulation models for use in Altera-supported VHDL and Verilog
HDL simulator

v v

Notes to Table 1–3:

(1) HPC II supports additive latency values greater or equal to tRCD - 1, in clock cycle unit (tCK).
(2) HPC II only supports memory burst length of 4 in full-rate mode.
(3) HPC II only supports memory burst length of 8 in half-rate mode.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 1: About This IP 1–5
Unsupported Features
Unsupported Features
■ Timing simulation

■ Burst length of 2

■ Partial burst and unaligned burst in ECC and non-ECC mode when DM pins are
disabled.

MegaCore Verification
MegaCore verification involves simulation testing. Altera has carried out extensive
random, directed tests with functional test coverage using industry-standard Denali
models to ensure the functionality of the DDR and DDR2 SDRAM high-performance
controllers.

Resource Utilization
The following sections show the resource utilization data for the ALTMEMPHY
megafunction, and the DDR and DDR2 high-performance controllers (HPC and
HPC II).

ALTMEMPHY Megafunction
Table 1–4 through Table 1–7 show the typical size of the ALTMEMPHY megafunction
with the AFI in the Quartus II software version 9.1 for the following devices:

■ Arria II GX (EP2AGX260FF35C4) devices

■ Cyclone III (EP3C16F484C6) devices

■ Stratix II (EP2S60F1020C3) devices

■ Stratix III (EP3SL110F1152C2) devices

■ Stratix IV (EP4SGX230HF35C2) devices

1 The resource utilization for Arria and Stratix GX devices is similar to Stratix II devices.

Table 1–4. Resource Utilization in Arria II GX Devices (Part 1 of 2) (Note 1)

PHY
Rate

Memory
Width
(Bits)

Combinational
ALUTS Logic Registers

M9K
Blocks

Memory
ALUTs

Half 8 1,428 1,179 2 18

16 1,480 1,254 4 2

64 1,787 1,960 12 22

72 1,867 2,027 13 2
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

1–6 Chapter 1: About This IP
Resource Utilization
Full 8 1,232 975 0 35

16 1,240 915 3 1

64 1,287 1,138 7 41

72 1,303 1,072 9 1

Note to Table 1–4:

(1) The listed resource utilization refers to resources used by the ALTMEMPHY megafunction with AFI only. Memory
controller overhead is additional.

Table 1–5. Resource Utilization in Cyclone III Devices (Note 1)

PHY
Rate

Memory
Width
(Bits)

Combinational
LUTS Logic Registers

M9K
Blocks

Half 8 1,995 1,199 2

16 2,210 1,396 3

64 3,523 2,574 9

72 3,770 2,771 9

Full 8 1,627 870 2

16 1,762 981 2

64 2,479 1,631 5

72 2,608 1,740 5

Note to Table 1–5:

(1) The listed resource utilization refers to resources used by the ALTMEMPHY megafunction with AFI only. Memory
controller overhead is additional.

Table 1–6. Resource Utilization in Stratix II Devices (Note 1) and (2)

PHY
Rate

Memory
Width
(Bits)

Combinational
LUTS Logic Registers

M512K
Blocks

M4K
Blocks

Half 8 1,444 1,201 4 1

16 1,494 1,375 4 2

64 1,795 2,421 5 7

72 1,870 2,597 4 8

Notes to Table 1–6:

(1) The listed resource utilization refers to resources used by the ALTMEMPHY megafunction with AFI only. Memory
controller overhead is additional.

(2) The resource utilization for Arria and Stratix GX devices is similar to Stratix II devices.

Table 1–4. Resource Utilization in Arria II GX Devices (Part 2 of 2) (Note 1)

PHY
Rate

Memory
Width
(Bits)

Combinational
ALUTS Logic Registers

M9K
Blocks

Memory
ALUTs
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 1: About This IP 1–7
Resource Utilization
High-Performance Controller (HPC)
Table 1–8 through Table 1–13 show the typical sizes for the DDR or DDR2 SDRAM
HPC with the AFI (including ALTMEMPHY) for Arria GX, Arria II GX, Cyclone III,
Stratix II, Stratix II GX, Stratix III, and Stratix IV devices.

Table 1–7. Resource Utilization in Stratix III and Stratix IV Devices (Note 1)

PHY
Rate

Memory
Width
(Bits)

Combinational
ALUTS Logic Registers

M9K
Blocks

Memory
ALUTs

Half 8 1,356 1,040 1 40

16 1,423 1,189 1 80

64 1,805 2,072 1 320

72 1,902 2,220 1 360

Full 8 1,216 918 1 20

16 1,229 998 1 40

64 1,319 1,462 1 160

72 1,337 1,540 1 180

Note to Table 1–7:

(1) The listed resource utilization refers to resources used by the ALTMEMPHY megafunction with AFI only. Memory
controller overhead is additional.

Table 1–8. Resource Utilization in Arria GX Devices

Controller Rate
Local Data
Width (Bits)

Memory Width
(Bits)

Combinational
ALUTs

Dedicated Logic
Registers

Memory

M512 M4K

Half 32 8 1,851 1,562 4 2

64 16 1,904 1,738 4 4

256 64 2,208 2,783 5 15

288 72 2,289 2,958 4 17

Full 16 8 1,662 1,332 6 0

32 16 1,666 1,421 3 3

128 64 1738 1,939 3 9

144 72 1,758 2,026 4 9

Table 1–9. Resource Utilization in Arria II GX Devices (Part 1 of 2)

Controller Rate
Local Data
Width (Bits)

Memory Width
(Bits)

Combinational
ALUTs

Dedicated Logic
Registers

Memory

(M9K)

Half 32 8 1,837 1,553 3

64 16 1,894 1,628 6

256 64 2,201 2,334 20

288 72 2,279 2,401 22
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

1–8 Chapter 1: About This IP
Resource Utilization
Full 16 8 1,671 1400 1

32 16 1,684 1,340 4

128 64 1725 1,562 11

144 72 1,738 2,497 14

Table 1–10. Resource Utilization in Cyclone III Devices

Controller Rate
Local Data Width

(Bits)
Memory Width

(Bits)
Combinational

ALUTs
Dedicated Logic

Registers
Memory
(M9K)

Half 32 8 2,683 1,563 3

64 16 2,905 1,760 5

256 64 4,224 2,938 17

288 72 4,478 3,135 18

Full 16 8 2,386 1,276 3

32 16 2,526 1,387 3

128 64 3,257 2,037 9

144 72 3,385 2,146 10

Table 1–11. Resource Utilization in Stratix II and Stratix II GX Devices

Controller Rate
Local Data
Width (Bits)

Memory Width
(Bits)

Combinational
ALUTs

Dedicated Logic
Registers

Memory

M512 M4K

Half 32 8 1,853 1,581 4 2

64 16 1,901 1,757 4 4

256 64 2,206 2,802 5 15

288 72 2,281 2,978 4 17

Full 16 8 1,675 1,371 6 0

32 16 1,675 1,456 3 3

128 64 1740 1,976 3 9

144 72 1,743 2,062 4 9

Table 1–12. Resource Utilization in Stratix III Devices (Part 1 of 2)

Controller Rate
Local Data
Width (Bits)

Memory Width
(Bits)

Combinational
ALUTs

Dedicated Logic
Registers

Memory
(M9K)

Half 32 8 1,752 1,432 2

64 16 1,824 1,581 3

256 64 2,210 2,465 9

288 72 2,321 2,613 10

Table 1–9. Resource Utilization in Arria II GX Devices (Part 2 of 2)

Controller Rate
Local Data
Width (Bits)

Memory Width
(Bits)

Combinational
ALUTs

Dedicated Logic
Registers

Memory

(M9K)
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 1: About This IP 1–9
Resource Utilization
High-Performance Controller II (HPC II)
Table 1–14 through Table 1–18 show the typical sizes for the DDR or DDR2 SDRAM
HPC II (including ALTMEMPHY) for Arria II GX, Cyclone III, Stratix II, Stratix II GX,
Stratix III, and Stratix IV devices.

Full 16 8 1,622 1,351 2

32 16 1,630 1,431 2

128 64 1736 1,897 5

144 72 1,749 1,975 6

Table 1–13. Resource Utilization in Stratix IV Devices

Controller Rate
Local Data
Width (Bits)

Memory Width
(Bits)

Combinational
ALUTs

Dedicated Logic
Registers

Memory
(M9K)

Half 32 8 1,755 1,452 1

64 16 1,820 1,597 2

256 64 2,202 2,457 8

288 72 2,289 2,601 9

Full 16 8 1,631 1,369 1

32 16 1,630 1,448 1

128 64 1731 1,906 4

144 72 1,743 1,983 5

Table 1–12. Resource Utilization in Stratix III Devices (Part 2 of 2)

Controller Rate
Local Data
Width (Bits)

Memory Width
(Bits)

Combinational
ALUTs

Dedicated Logic
Registers

Memory
(M9K)

Table 1–14. Resource Utilization in Arria II GX Devices

Controller Rate
Local Data
Width (Bits)

Memory Width
(Bits)

Combinational
ALUTs

Dedicated Logic
Registers

Memory
(M9K)

Half 32 8 3,038 2,041 3

64 16 3,156 2,197 5

256 64 3,649 3,115 17

288 72 3,716 3,269 18

Full 16 8 2,860 1,856 1

32 16 2,900 1,872 2

128 64 3,138 2,246 7

144 72 3,187 2,251 9
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

1–10 Chapter 1: About This IP
Resource Utilization
Table 1–15. Resource Utilization in Cyclone III Devices

Controller Rate
Local Data
Width (Bits)

Memory Width
(Bits)

Combinational
ALUTs

Dedicated Logic
Registers

Memory
(M9K)

Half 32 8 4,229 1,979 3

64 16 4.409 2,155 5

256 64 5,632 3,207 17

288 72 5,811 3,382 18

Full 16 8 4,003 1,684 3

32 16 4,090 1,763 3

128 64 4,680 2,221 9

144 72 4,776 2,298 10

Table 1–16. Resource Utilization in Stratix II and Stratix II GX Devices

Controller Rate
Local Data
Width (Bits)

Memory Width
(Bits)

Combinational
ALUTs

Dedicated Logic
Registers

Memory

M512 M4K

Half 32 8 3,063 1,991 4 3

64 16 3,122 2,145 4 6

256 64 3,433 3,065 5 23

288 72 3,517 3,219 4 26

Full 16 8 2,818 1,756 4 2

32 16 2,833 1,817 3 4

128 64 2,869 2,137 3 13

144 72 2,906 2,193 3 14

Table 1–17. Resource Utilization in Stratix III Devices

Controller Rate
Local Data
Width (Bits)

Memory Width
(Bits)

Combinational
ALUTs

Dedicated Logic
Registers

Memory
(M9K)

Half 32 8 2,907 1,935 2

64 16 2,997 2,084 3

256 64 3,392 2,968 9

288 72 3,464 3,116 10

Full 16 8 2,859 1,758 2

32 16 2,872 1,838 2

128 64 2,948 2,302 5

144 72 2,914 2,378 6
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 1: About This IP 1–11
System Requirements
System Requirements
The DDR and DDR2 SDRAM High-Performance Controller MegaCore functions are
part of the MegaCore IP Library, which is distributed with the Quartus II software and
downloadable from the Altera website, www.altera.com.

f For system requirements and installation instructions, refer to Altera Software
Installation & Licensing.

Installation and Licensing
Figure 1–2 shows the directory structure after you install the DDR and DDR2 SDRAM
High-Performance Controller MegaCore functions, where <path> is the installation
directory. The default installation directory on Windows is c:\altera\<version>; on
Linux it is /opt/altera<version>.

You need a license for the MegaCore function only when you are completely satisfied
with its functionality and performance, and want to take your design to production.

Table 1–18. Resource Utilization in Stratix IV Devices

Controller Rate
Local Data
Width (Bits)

Memory Width
(Bits)

Combinational
ALUTs

Dedicated Logic
Registers M9K

Half 32 8 2,935 1,966 2

64 16 3,018 2,111 3

256 64 3,405 2,971 9

288 72 3,475 3,115 10

Full 16 8 2,856 1,792 2

32 16 2,872 1,871 2

128 64 2,938 2,329 5

144 72 2,962 2,404 6

Figure 1–2. Directory Structure

<path>

ddr_high_perf
Contains the DDR SDRAM High-Performance Controller MegaCore function files.

doc
Contains the documentation for the DDR SDRAM High-Performance Controller MegaCore function.

lib
Contains encypted lower-level design files and other support files.

common
Contains shared components.

Installation directory.

ip
Contains the Altera MegaCore IP Library and third-party IP cores.r

altera
Contains the Altera MegaCore IP Library.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

www.altera.com
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf

1–12 Chapter 1: About This IP
Installation and Licensing
To use the DDR or DDR2 SDRAM HPC, you can request a license file from the Altera
web site at www.altera.com/licensing and install it on your computer. When you
request a license file, Altera emails you a license.dat file. If you do not have Internet
access, contact your local representative.

To use the DDR or DDR2 HPC II, contact your local sales representative to order a
license.

Free Evaluation
Altera's OpenCore Plus evaluation feature is only applicable to the DDR or DDR2
SDRAM HPC. With the OpenCore Plus evaluation feature, you can perform the
following actions:

■ Simulate the behavior of a megafunction (Altera MegaCore function or AMPPSM
megafunction) within your system

■ Verify the functionality of your design, as well as evaluate its size and speed
quickly and easily

■ Generate time-limited device programming files for designs that include
MegaCore functions

■ Program a device and verify your design in hardware

You need to purchase a license for the megafunction only when you are completely
satisfied with its functionality and performance, and want to take your design to
production.

OpenCore Plus Time-Out Behavior
OpenCore Plus hardware evaluation can support the following two modes of
operation:

■ Untethered—the design runs for a limited time

■ Tethered—requires a connection between your board and the host computer. If
tethered mode is supported by all megafunctions in a design, the device can
operate for a longer time or indefinitely

All megafunctions in a device time-out simultaneously when the most restrictive
evaluation time is reached. If there is more than one megafunction in a design, a
specific megafunction's time-out behavior may be masked by the time-out behavior of
the other megafunctions.

1 For MegaCore functions, the untethered time-out is 1 hour; the tethered time-out
value is indefinite.

Your design stops working after the hardware evaluation time expires and the
local_ready output goes low.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

www.altera.com/support/licensing/lic-index.html

© February 2010 Altera Corporation
2. Getting Started
Design Flow
You can implement a DDR or DDR2 SDRAM High-Performance Controller MegaCore
functions using either one of the following flows:

■ SOPC Builder flow

■ MegaWizard Plug-In Manager flow

You can only instantiate the ALTMEMPHY megafunction using the MegaWizard
Plug-In Manager flow.

Figure 2–1 shows the stages for creating a system in the Quartus II software using
either one of the flows.

Figure 2–1. Design Flow

Select Design Flow

Specify Parameters

SOPC Builder
Flow

MegaWizard
Flow

Complete
SOPC Builder System

Specify Parameters

IP Complete

Add Constraints
and Compile Design

Perform
Functional Simulation

Debug Design

Does
Simulation Give

Expected Results?

Yes

Optional
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

2–2 Chapter 2: Getting Started
SOPC Builder Flow
The SOPC Builder flow offers the following advantages:

■ Generates simulation environment

■ Creates custom components and integrates them via the component wizard

■ Interconnects all components with the Avalon-MM interface

The MegaWizard Plug-In Manager flow offers the following advantages:

■ Allows you to design directly from the DDR or DDR2 SDRAM interface to
peripheral device or devices

■ Achieves higher-frequency operation

SOPC Builder Flow
The SOPC Builder flow allows you to add the DDR and DDR2 SDRAM
high-performance controllers directly to a new or existing SOPC Builder system.

You can also easily add other available components to quickly create an SOPC Builder
system with a DDR or DDR2 SDRAM high-performance controller, such as the Nios II
processor and scatter-gather direct memory access (DMA) controllers. SOPC Builder
automatically creates the system interconnect logic and system simulation
environment.

f For more information about SOPC Builder, refer to volume 4 of the Quartus II
Handbook. For more information about how to use controllers with SOPC Builder,
refer to the DDR, DDR2, and DDR3 SDRAM Design Tutorials section in volume 6 of the
External Memory Interface Handbook. For more information on the Quartus II software,
refer to the Quartus II Help.

Specify Parameters
To specify the parameters for the DDR and DDR2 SDRAM high-performance
controllers using the SOPC Builder flow, perform the following steps:

1. In the Quartus II software, create a new Quartus II project with the New Project
Wizard.

2. On the Tools menu, click SOPC Builder.

3. For a new system, specify the system name and language.

4. Add DDR or DDR2 SDRAM High-Performance Controller to your system from
the System Contents tab.

1 The DDR or DDR2 SDRAM High-Performance Controller is in the
SDRAM folder under the Memories and Memory Controllers folder.

5. Specify the required parameters on all pages in the Parameter Settings tab.

f For detailed explanation of the parameters, refer to the “Parameter
Settings” on page 3–1.

6. Click Finish to complete parameterizing the DDR or DDR2 SDRAM
high-performance controller and add it to the system.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf
http://www.altera.com/literature/hb/external-memory/emi_tut_ddr.pdf

Chapter 2: Getting Started 2–3
SOPC Builder Flow
Complete the SOPC Builder System
To complete the SOPC Builder system, perform the following steps:

1. In the System Contents tab, select Nios II Processor and click Add.

2. On the Nios II Processor page, in the Core Nios II tab, select altmemddr for Reset
Vector and Exception Vector.

3. Change the Reset Vector Offset and the Exception Vector Offset to an Avalon
address that is not written to by the ALTMEMPHY megafunction during its
calibration process.

c The ALTMEMPHY megafunction performs memory interface calibration
every time it is reset, and in doing so, writes to a range of addresses. If you
want your memory contents to remain intact through a system reset, you
should avoid using these memory addresses. This step is not necessary if
you reload your SDRAM memory contents from flash every time you reset
your system.

If you are upgrading your Nios system design from version 8.1 or previous,
ensure that you change the Reset Vector Offset and the Exception Vector
Offset to AFI mode.

To calculate the Avalon-MM address equivalent of the memory address range 0×0
to 0×1f, multiply the memory address by the width of the memory interface data
bus in bytes. Refer to Table 2–1 for more Avalon-MM addresses.

4. Click Finish.

5. On the System Contents tab, expand Interface Protocols and expand Serial.

6. Select JTAG UART and click Add.

7. Click Finish.

1 If there are warnings about overlapping addresses, on the System menu,
click Auto Assign Base Addresses.

If you enable ECC and there are warnings about overlapping IRQs, on the
System menu click Auto Assign IRQs.

8. For this example system, ensure all the other modules are clocked on the
altmemddr_sysclk, to avoid any unnecessary clock-domain crossing logic.

9. Click Generate.

Table 2–1. Avalon-MM Addresses for AFI Mode

External Memory Interface
Width Reset Vector Offset Exception Vector Offset

8 0×40 0×60

16 0×80 0×A0

32 0×100 0×120

64 0×200 0×220
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

2–4 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
1 Among the files generated by SOPC Builder is the Quartus II IP File (.qip).
This file contains information about a generated IP core or system. In most
cases, the .qip file contains all of the necessary assignments and
information required to process the MegaCore function or system in the
Quartus II compiler. Generally, a single .qip file is generated for each SOPC
Builder system. However, some more complex SOPC Builder components
generate a separate .qip file. In that case, the system .qip file references the
component .qip file.

10. Compile your design, refer to “Compile and Simulate” on page 4–1.

MegaWizard Plug-In Manager Flow
The MegaWizard Plug-In Manager flow allows you to customize the DDR and DDR2
SDRAM high-performance controllers or ALTMEMPHY megafunction, and manually
integrate the function into your design.

1 You can alternatively use the IP Advisor to help you start your DDR or DDR2 SDRAM
high-performance controller design. On the Quartus II Tools menu, point to Advisors,
and then click IP Advisor. The IP Advisor guides you through a series of
recommendations for selecting, parameterizing, evaluating, and instantiating a DDR2
SDRAM high-performance controller into your design. It then guides you through a
complete Quartus II compilation of your project.

f For more information about the MegaWizard Plug-In Manager and the IP Advisor,
refer to the Quartus II Help.

Specify Parameters
To specify parameters using the MegaWizard Plug-In Manager flow, perform the
following steps:

1. In the Quartus II software, create a new Quartus II project with the New Project
Wizard.

2. On the Tools menu, click MegaWizard Plug-In Manager to start the MegaWizard
Plug-In Manager.

■ The DDR or DDR2 SDRAM high-performance controller is in the Interfaces
folder under the External Memory folder.

■ The ALTMEMPHY megafunction is in the I/O folder.

1 The <variation name> must be a different name from the project name and
the top-level design entity name.

3. Specify the parameters on all pages in the Parameter Settings tab.

f For detailed explanation of the parameters, refer to the “Parameter
Settings” on page 3–1.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 2: Getting Started 2–5
MegaWizard Plug-In Manager Flow
4. On the EDA tab, turn on Generate simulation model to generate an IP functional
simulation model for the MegaCore function in the selected language.

An IP functional simulation model is a cycle-accurate VHDL or Verilog HDL
model produced by the Quartus II software.

c Use the simulation models only for simulation and not for synthesis or any
other purposes. Using these models for synthesis creates a nonfunctional
design.

1 Some third-party synthesis tools can use a netlist that contains only the
structure of the MegaCore function, but not detailed logic, to optimize
performance of the design that contains the MegaCore function. If your
synthesis tool supports this feature, turn on Generate netlist.

When targeting a VHDL simulation model, the MegaWizard Plug-In
Manager still generates the <variation_name>_alt_mem_phy.v file for the
Quartus II synthesis. Do not use this file for simulation. Use the
<variation_name>.vho file for simulation instead.

The ALTMEMPHY megafunction only supports functional simulation. You
cannot perform timing or gate-level simulation when using the
ALTMEMPHY megafunction.

5. On the Summary tab, select the files you want to generate. A gray checkmark
indicates a file that is automatically generated. All other files are optional.

6. Click Finish to generate the MegaCore function and supporting files. A generation
report appears.

7. If you generate the MegaCore function instance in a Quartus II project, you are
prompted to add the .qip files to the current Quartus II project. When prompted to
add the .qip files to your project, click Yes. The addition of the .qip files enables
their visibility to Nativelink. Nativelink requires the .qip files to include libraries
for simulation.

1 The .qip file is generated by the MegaWizard interface, and contains
information about the generated IP core. In most cases, the .qip file contains
all of the necessary assignments and information required to process the
MegaCore function or system in the Quartus II compiler. The MegaWizard
interface generates a single .qip file for each MegaCore function.

8. After you review the generation report, click Exit to close the MegaWizard Plug-In
Manager.

9. For the high-performance controller (HPC or HPC II), set the <variation
name>_example_top.v or .vhd file to be the project top-level design file.

a. On the File menu, click Open.

b. Browse to <variation name>_example_top and click Open.

c. On the Project menu, click Set as Top-Level Entity.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

2–6 Chapter 2: Getting Started
Generated Files
Generated Files
Table 2–2 shows the ALTMEMPHY generated files.

Table 2–2. ALTMEMPHY Generated Files (Part 1 of 2)

File Name Description

alt_mem_phy_defines.v Contains constants used in the interface. This file is
always in Verilog HDL regardless of the language you
chose in the MegaWizard Plug-In Manager.

<variation_name>.ppf Pin planner file for your ALTMEMPHY variation.

<variation_name>.qip Quartus II IP file for your ALTMEMPHY variation,
containing the files associated with this megafunction.

<variation_name>.v/.vhd Top-level file of your ALTMEMPHY variation, generated
based on the language you chose in the MegaWizard
Plug-In Manager.

<variation_name>.vho Contains functional simulation model for VHDL only.

<variation_name>_alt_mem_phy_seq_wrapper.vo/.vho A wrapper file, for simulation only, that calls the
sequencer file, created based on the language you
chose in the MegaWizard Plug-In Manager.

<variation_name>.html Lists the top-level files created and ports used in the
megafunction.

<variation_name>_alt_mem_phy_seq_wrapper.v/.vhd A wrapper file, for compilation only, that calls the
sequencer file, created based on the language you
chose in the MegaWizard Plug-In Manager.

<variation_name>_alt_mem_phy_seq.vhd Contains the sequencer used during calibration. This
file is always in VHDL language regardless of the
language you chose in the MegaWizard Plug-In
Manager.

<variation_name>_alt_mem_phy.v Contains all modules of the ALTMEMPHY variation
except for the sequencer. This file is always in Verilog
HDL language regardless of the language you chose in
the MegaWizard Plug-In Manager. The DDR3 SDRAM
sequencer is included in the
<variation_name>_alt_mem_phy_seq.vhd file.

<variation name>_alt_mem_phy_pll_<device>.ppf This XML file describes the MegaCore pin attributes to
the Quartus II Pin Planner.

<variation_name>_alt_mem_phy_pll.v/.vhd The PLL megafunction file for your ALTMEMPHY
variation, generated based on the language you chose
in the MegaWizard Plug-In Manager.

<variation_name>_alt_mem_phy_delay.vhd Includes a delay module for simulation. This file is only
generated if you choose VHDL as the language of your
MegaWizard Plug-In Manager output files.

<variation_name>_alt_mem_phy_dq_dqs.vhd or .v Generated file that contains DQ/DQS I/O atoms
interconnects and instance. Arria II GX devices only.

<variation_name>_alt_mem_phy_dq_dqs_clearbox.txt Specification file that generates the
<variation_name>_alt_mem_phy_dq_dqs file using
the clearbox flow. Arria II GX devices only.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 2: Getting Started 2–7
Generated Files
Table 2–3 shows the modules that are instantiated in the
<variation_name>_alt_mem_phy.v/.vhd file. A particular ALTMEMPHY variation
may or may not use any of the modules, depending on the memory standard that you
specify.

<variation_name>_alt_mem_phy_pll.qip Quartus II IP file for the PLL that your ALTMEMPHY
variation uses that contains the files associated with
this megafunction.

<variation_name>_alt_mem_phy_pll_bb.v/.cmp Black box file for the PLL used in your ALTMEMPHY
variation. Typically unused.

<variation_name>_alt_mem_phy_reconfig.qip Quartus II IP file for the PLL reconfiguration block.
Only generated when targeting Arria GX, HardCopy II,
Stratix II, and Stratix II GX devices.

<variation_name>_alt_mem_phy_reconfig.v/.vhd PLL reconfiguration block module. Only generated
when targeting Arria GX, HardCopy II, Stratix II, and
Stratix II GX devices.

<variation_name>_alt_mem_phy_reconfig_bb.v/cmp Black box file for the PLL reconfiguration block. Only
generated when targeting Arria GX, HardCopy II,
Stratix II, and Stratix II GX devices.

<variation_name>_bb.v/.cmp Black box file for your ALTMEMPHY variation,
depending whether you are using Verilog HDL or VHDL
language.

<variation_name>_ddr_pins.tcl Contains procedures used in the
<variation_name>_ddr_timing.sdc and
<variation_name>_report_timing.tcl files.

<variation_name>_pin_assignments.tcl Contains I/O standard, drive strength, output enable
grouping, DQ/DQS grouping, and termination
assignments for your ALTMEMPHY variation. If your
top-level design pin names do not match the default
pin names or a prefixed version, edit the assignments
in this file.

<variation_name>_ddr_timing.sdc Contains timing constraints for your ALTMEMPHY
variation.

<variation_name>_report_timing.tcl Script that reports timing for your ALTMEMPHY
variation during compilation.

Table 2–2. ALTMEMPHY Generated Files (Part 2 of 2)

File Name Description

Table 2–3. Modules in <variation_name>_alt_mem_phy.v File (Part 1 of 2)

Module Name Usage Description

<variation_name>_alt_mem_phy_
addr_cmd

All ALTMEMPHY variations Generates the address and command structures.

<variation_name>_alt_mem_phy_
clk_reset

All ALTMEMPHY variations Instantiates PLL, DLL, and reset logic.

<variation_name>_alt_mem_phy_
dp_io

All ALTMEMPHY variations Generates the DQ, DQS, DM, and QVLD I/O pins.

<variation_name>_alt_mem_phy_
mimic

DDR2/DDR SDRAM
ALTMEMPHY variation

Creates the VT tracking mechanism for DDR and
DDR2 SDRAM PHYs.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

2–8 Chapter 2: Getting Started
Generated Files
Table 2–4 through Table 2–6 show the additional files generated by the
high-performance controllers, that may be in your project directory. The names and
types of files specified in the MegaWizard Plug-In Manager report vary based on
whether you created your design with VHDL or Verilog HDL.

1 In addition to the files in Table 2–4 through Table 2–6, the MegaWizard also generates
the ALTMEMPHY files in Table 2–2, but with a _phy prefix. For example,
<variation_name>_alt_mem_phy_delay.vhd becomes
<variation_name>_phy_alt_mem_phy_delay.vhd.

<variation_name>_alt_mem_phy_
oct_delay

DDR2/DDR SDRAM
ALTMEMPHY variation when
dynamic OCT is enabled.

Generates the proper delay and duration for the
OCT signals.

<variation_name>_alt_mem_phy_
postamble

DDR2/DDR SDRAM
ALTMEMPHY variations

Generates the postamble enable and disable
scheme for DDR and DDR2 SDRAM PHYs.

<variation_name>_alt_mem_phy_
read_dp

All ALTMEMPHY variations
(unused for Stratix III or
Stratix IV devices)

Takes read data from the I/O through a read path
FIFO buffer, to transition from the
resyncronization clock to the PHY clock.

<variation_name>_alt_mem_phy_
read_dp_group

DDR2/DDR SDRAM
ALTMEMPHY variations
(Stratix III and Stratix IV
devices only)

A per DQS group version of
<variation_name>_alt_mem_phy_read_dp.

<variation_name>_alt_mem_phy_
rdata_valid

DDR2/DDR SDRAM
ALTMEMPHY variations

Generates read data valid signal to sequencer and
controller.

<variation_name>_alt_mem_phy_
seq_wrapper

All ALTMEMPHY variations Generates sequencer for DDR and DDR2 SDRAM.

<variation_name>_alt_mem_phy_
write_dp

All ALTMEMPHY variations Generates the demultiplexing of data from
half-rate to full-rate DDR data.

<variation_name>_alt_mem_phy_
write_dp_fr

DDR2/DDR SDRAM
ALTMEMPHY variations

A full-rate version of
<variation_name>_alt_mem_phy_
write_dp.

Table 2–3. Modules in <variation_name>_alt_mem_phy.v File (Part 2 of 2)

Module Name Usage Description

Table 2–4. Controller Generated Files—All High Performance Controllers (Part 1 of 2)

Filename Description

<variation name>.bsf Quartus II symbol file for the MegaCore function variation. You
can use this file in the Quartus II block diagram editor.

<variation name>.html MegaCore function report file.

<variation name>.v or .vhd A MegaCore function variation file, which defines a VHDL or
Verilog HDL top-level description of the custom MegaCore
function. Instantiate the entity defined by this file inside of your
design. Include this file when compiling your design in the
Quartus II software.

<variation name>.qip Contains Quartus II project information for your MegaCore
function variations.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 2: Getting Started 2–9
Generated Files
<variation name>.ppf XML file that describes the MegaCore pin attributes to the
Quartus II Pin Planner. MegaCore pin attributes include pin
direction, location, I/O standard assignments, and drive
strength. If you launch IP Toolbench outside of the Pin Planner
application, you must explicitly load this file to use Pin Planner.

<variation name>_example_driver.v or .vhd Example self-checking test generator that matches your
variation.

<variation name>_example_top.v or .vhd Example top-level design file that you should set as your
Quartus II project top level. Instantiates the example driver and
the controller.

Table 2–5. Controller Generated Files—DDR and DDR2 High-Performance Controllers (HPC)

Filename Description

<variation name>_auk_ddr_hp_controller_wrapper.vo or .vho VHDL or Verilog HDL IP functional simulation model.

<variation_name>_auk_ddr_hp_controller_ecc_wrapper.vo or
.vho

ECC functional simulation model.

Table 2–6. Controller Generated Files—DDR and DDR2 High-Performance Controllers II (HPC II) (Part 1 of 2)

Filename Description

<variation name>_alt_ddrx_controller_wrapper.
v or .vho

A controller wrapper that instantiates the alt_ddrx_controller.v file and
configures the controller accordingly by the wizard.

alt_ddrx_addr_cmd.v Decodes the state machine outputs into the memory address and
command signals.

alt_ddrx_afi_block.v Generates the read and write control signals for the AFI.

alt_ddrx_bank_tracking.v Tracks which row is open in which memory bank.

alt_ddrx_clock_and_reset.v Contains the clock and reset logic.

alt_ddrx_cmd_queue.v Contains the command queue logic.

alt_ddrx_controller.v The controller top-level file that instantiates all the sub-blocks.

alt_ddrx_csr.v Contains the control and status register interface logic.

alt_ddrx_ddr2_odt_gen.v Generates the on-die termination (ODT) control signal for DDR2 memory
interfaces.

alt_ddrx_avalon_if.v Communicates with the Avalon-MM interface.

alt_ddrx_decoder_40.v Contains the 40 bit version of the ECC decoder logic.

alt_ddrx_decoder_72.v Contains the 72 bit version of the ECC decoder logic.

alt_ddrx_decoder.v Instantiates the appropriate width ECC decoder logic.

alt_ddrx_encoder_40.v Contains the 40 bit version of the ECC encoder logic.

alt_ddrx_encoder_72.v Contains the 72 bit version of the ECC encoder logic.

alt_ddrx_encoder.v Instantiates the appropriate width ECC encoder logic.

alt_ddrx_input_if.v The input interface block. It instantiates the alt_ddrx_cmd_queue.v,
alt_ddrx_wdata_fifo.v, and alt_ddrx_avalon_if.v files.

alt_ddrx_odt_gen.v Instantiates the alt_ddrx_ddr2_odt_gen.v file selectively. It also controls
the ODT addressing scheme.

Table 2–4. Controller Generated Files—All High Performance Controllers (Part 2 of 2)

Filename Description
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

2–10 Chapter 2: Getting Started
Generated Files
alt_ddrx_state_machine.v The main state machine of the controller.

alt_ddrx_timers_fsm.v The state machine that tracks the per-bank timing parameters.

alt_ddrx_timers.v Instantiates alt_ddrx_timers_fsm.v and contains the rank specific
timing tracking logic.

alt_ddrx_wdata_fifo.v The write data FIFO logic. This logic buffers the write data and
byte-enables from the Avalon interface.

alt_avalon_half_rate_bridge_constraints.sdc Contains timing constraints if your design has the Enable Half Rate
Bridge option turned on.

alt_avalon_half_rate_bridge.v The integrated half-rate bridge logic block.

Table 2–6. Controller Generated Files—DDR and DDR2 High-Performance Controllers II (HPC II) (Part 2 of 2)

Filename Description
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

© February 2010 Altera Corporation
3. Parameter Settings
ALTMEMPHY Parameter Settings
The ALTMEMPHY Parameter Settings page in the ALTMEMPHY MegaWizard
interface (Figure 3–1) allows you to parameterize the following settings:

■ Memory Settings

■ PHY Settings

■ Board Settings

■ Controller Interface Settings

Figure 3–1. ALTMEMPHY Parameter Settings Page
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

3–2 Chapter 3: Parameter Settings
ALTMEMPHY Parameter Settings
The text window at the bottom of the MegaWizard Plug-In Manager displays
information about the memory interface, warnings, and errors if you are trying to
create something that is not supported. The Finish button is disabled until you correct
all the errors indicated in this window.

The following sections describe the four tabs of the Parameter Settings page in more
detail.

Memory Settings
In the Memory Settings tab, you can select a particular memory device for your
system and choose the frequency of operation for the device. Under General Settings,
you can choose the device family, speed grade, and clock information. In the middle
of the page (left-side), you can filter the available memory device listed on the right
side of the Memory Presets dialog box, refer to Figure 3–1. If you cannot find the
exact device that you are using, choose a device that has the closest specifications,
then manually modify the parameters to match your actual device by clicking Modify
parameters, next to the Selected memory preset field.

Table 3–1 describes the General Settings available on the Memory Settings page of
the ALTMEMPHY MegaWizard interface.

Table 3–1. General Settings

 Parameter Name Description

Device family Targets device family (for example, Stratix III). Table 1–2 on page 1–3 shows supported device
families. The device family selected here must match the device family selected on MegaWizard
page 2a.

Speed grade Selects a particular speed grade of the device (for example, 2, 3, or 4 for the Stratix III device
family).

PLL reference clock
frequency

Determines the clock frequency of the external input clock to the PLL. Ensure that you use three
decimal points if the frequency is not a round number (for example, 166.667 MHz or 100 MHz) to
avoid a functional simulation or a PLL locking problem.

Memory clock
frequency

Determines the memory interface clock frequency. If you are operating a memory device below its
maximum achievable frequency, ensure that you enter the actual frequency of operation rather than
the maximum frequency achievable by the memory device. Also, ensure that you use three decimal
points if the frequency is not a round number (for example, 333.333 MHz or 400 MHz) to avoid a
functional simulation or a PLL locking issue.

Controller data rate Selects the data rate for the memory controller. Sets the frequency of the controller to equal to
either the memory interface frequency (full-rate) or half of the memory interface frequency
(half-rate).

Enable half rate bridge This option is only available for HPC II.

Turn on to keep the controller in the memory full clock domain while allowing the local side to run
at half the memory clock speed, so that latency can be reduced.

Local interface clock
frequency

Value that depends on the memory clock frequency and controller data rate, and whether or not
you turn on the Enable Half Rate Bridge option.

Local interface width Value that depends on the memory clock frequency and controller data rate, and whether or not
you turn on the Enable Half Rate Bridge option.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 3: Parameter Settings 3–3
ALTMEMPHY Parameter Settings
Table 3–2 describes the options available to filter the Memory Presets that are
displayed. This set of options is where you indicate whether you are creating for DDR
or DDR2 SDRAM.

Use the Preset Editor to Create a Custom Memory Preset
Pick a device in the Memory Presets list that is closest or the same as the actual
memory device that you are using. Then, click the Modify Parameters button to
parameterize the following settings in the Preset Editor dialog box:

■ Memory attributes—These are the settings that determine your system's number
of DQ, DQ strobe (DQS), address, and memory clock pins.

■ Memory initialization options—These settings are stored in the memory mode
registers as part of the initialization process.

■ Memory timing parameters—These are the parameters that create and
time-constrain the PHY.

1 Even though the device you are using is listed in Memory Presets, ensure that the
settings in the Preset Editor dialog box are accurate, as some parameters may have
been updated in the memory device datasheets.

You can change the parameters with a white background to reflect your system. You
can also change the parameters with a gray background so the device parameters
match the device you are using. These parameters in gray background are
characteristics of the chosen memory device and changing them creates a new custom
memory preset. If you click Save As (at the bottom left of the page) and save the new
settings in the <quartus_install_dir>\quartus\common\ip\altera\altmemphy\lib\
directory, you can use this new memory preset in other Quartus II projects created in
the same version of the software.

When you click Save, the new memory preset appears at the bottom of the Memory
Presets list in the Memory Settings tab.

1 If you save the new settings in a directory other than the default directory, click Load
Preset in the Memory Settings tab to load the settings into the Memory Presets list.

Table 3–2. Memory Presets List

 Parameter Name Description

Memory type You can filter the type of memory to display, for example, DDR2 SDRAM. The ALTMEMPHY
megafunction supports DDR SDRAM and DDR2 SDRAM.

Memory vendor You can filter the memory types by vendor. JEDEC is also one of the options, allowing you to
choose the JEDEC specifications. If your chosen vendor is not listed, you can choose JEDEC for the
DDR and DDR2 SDRAM interfaces. Then, pick a device that has similar specifications to your
chosen device and check the values of each parameter. Make sure you change the each parameter
value to match your device specifications.

Memory format You can filter the type of memory by format, for example, discrete devices or DIMM packages.

Maximum frequency You can filter the type of memory by the maximum operating frequency.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

3–4 Chapter 3: Parameter Settings
ALTMEMPHY Parameter Settings
Figure 3–2 shows the Preset Editor dialog box for a DDR2 SDRAM.

The Advanced option is only available for Arria II GX and Stratix IV devices. This
option shows the percentage of memory specification that is calibrated by the FPGA.
The percentage values are estimated by Altera based on the process variation.

Figure 3–2. DDR2 SDRAM Preset Editor
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 3: Parameter Settings 3–5
ALTMEMPHY Parameter Settings
Table 3–3 through Table 3–5 describe the DDR2 SDRAM parameters available for
memory attributes, initialization options, and timing parameters. DDR SDRAM has
the same parameters, but their value ranges are different than DDR2 SDRAM.

Table 3–3. DDR2 SDRAM Attributes Settings (Part 1 of 2)

Parameter Name Range (1) Units Description

Output clock pairs from FPGA 1–6 pairs Defines the number of differential clock pairs driven from
the FPGA to the memory. More clock pairs reduce the
loading of each output when interfacing with multiple
devices. Memory clock pins use the signal splitter feature
in Arria II GX, Stratix IV and Stratix III devices for
differential signaling.

Memory chip selects 1, 2, 4, or 8 bits Sets the number of chip selects in your memory
interface. The depth of your memory in terms of number
of chips. You are limited to the range shown as the local
side binary encodes the chip select address. You can set
this value to the next higher number if the range does not
meet your specifications. However, the highest address
space of the ALTMEMPHY megafunction is not mapped
to any of the actual memory address. The ALTMEMPHY
megafunction works with multiple chip selects and
calibrates against all chip select, mem_cs_n signals.

Memory interface DQ width ? 4–288 bits Defines the total number of DQ pins on the memory
interface. If you are interfacing with multiple devices,
multiply the number of devices with the number of DQ
pins per device. Even though the GUI allows you to
choose 288-bit DQ width, the interface data width is
limited by the number of pins on the device. For best
performance, have the whole interface on one side of the
device.

Memory vendor JEDEC, Micron,
Qimonda,

Samsung, Hynix,
Elpida, Nanya,

other

— Lists the name of the memory vendor for all supported
memory standards.

Memory format Discrete Device,
Unbuffered

DIMM,
Registered

DIMM

— Specifies whether you are interfacing with devices or
modules. SODIMM is supported under unbuffered or
registered DIMMs.

Maximum memory frequency See the memory
device datasheet

MHz Sets the maximum frequency supported by the memory.

Column address width 9–11 bits Defines the number of column address bits for your
interface.

Row address width 13–16 bits Defines the number of row address bits for your
interface.

Bank address width 2 or 3 bits Defines the number of bank address bits for your
interface.

Chip selects per DIMM 1 or 2 bits Defines the number of chip selects on each DIMM in your
interface.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

3–6 Chapter 3: Parameter Settings
ALTMEMPHY Parameter Settings
DQ bits per DQS bit 4 or 8 bits Defines the number of data (DQ) bits for each data strobe
(DQS) pin.

Precharge address bit 8 or 10 bits Selects the bit of the address bus to use as the precharge
address bit.

Drive DM pins from FPGA Yes or No — Specifies whether you are using DM pins for write
operation. Altera devices do not support DM pins in ×4
mode.

Maximum memory frequency
for CAS latency 3.0

80–533 MHz Specifies the frequency limits from the memory data
sheet per given CAS latency. The ALTMEMPHY
MegaWizard interface generates a warning if the
operating frequency with your chosen CAS latency
exceeds this number.

Maximum memory frequency
for CAS latency 4.0

Maximum memory frequency
for CAS latency 5.0

Maximum memory frequency
for CAS latency 6.0

Notes to Table 3–3:

(1) The range values depend on the actual memory device used.

Table 3–4. DDR2 SDRAM Initialization Options

Parameter Name Range Units Description

Memory burst length 4 or 8 beats Sets the number of words read or written per transaction.

Memory burst length of four equates to local burst length
of one in half-rate designs and to local burst length of two
in full-rate designs.

Memory burst ordering Sequential or
Interleaved

— Controls the order in which data is transferred between
memory and the FPGA during a read transaction. For
more information, refer to the memory device datasheet.

Enable the DLL in the
memory devices

Yes or No — Enables the DLL in the memory device when set to Yes.
You must always enable the DLL in the memory device as
Altera does not guarantee any ALTMEMPHY operation
when the DLL is turned off. All timings from the memory
devices are invalid when the DLL is turned off.

Memory drive strength
setting

Normal or
Reduced

— Controls the drive strength of the memory device’s output
buffers. Reduced drive strength is not supported on all
memory devices. The default option is normal.

Memory ODT setting Disabled, 50, 75,
150

Ohms Sets the memory ODT value. Not available in DDR
SDRAM interfaces.

Memory CAS latency setting 3, 4, 5, 6 Cycles Sets the delay in clock cycles from the read command to
the first output data from the memory.

Table 3–3. DDR2 SDRAM Attributes Settings (Part 2 of 2)

Parameter Name Range (1) Units Description
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 3: Parameter Settings 3–7
ALTMEMPHY Parameter Settings
Table 3–5. DDR2 SDRAM Timing Parameter Settings (Note 1) (Part 1 of 2)

Parameter
Name Range Units Description

tINIT 0.001–
1000

µs Minimum memory initialization time. After reset, the controller does not issue
any commands to the memory during this period.

tMRD 2–39 ns Minimum load mode register command period. The controller waits for this
period of time after issuing a load mode register command before issuing any
other commands.

tMRD is specified in ns in the DDR2 SDRAM high-performance controller and in
terms of tCK cycles in Micron's device datasheet. You need to convert tMRD to ns
by multiplying the number of cycles specified in the datasheet times tCK. Where
tCK is the memory operation frequency and not the memory device's tCK.

tRAS 8–200 ns Minimum active to precharge time. The controller waits for this period of time
after issuing an active command before issuing a precharge command to the
same bank.

tRCD 4–65 ns Minimum active to read-write time. The controller does not issue read or write
commands to a bank during this period of time after issuing an active
command.

tRP 4–65 ns Minimum precharge command period. The controller does not access the
bank for this period of time after issuing a precharge command.

tREFI 1–65534 µs Maximum interval between refresh commands. The controller performs
regular refresh at this interval unless user-controlled refresh is turned on.

tRFC 14–1651 ns Minimum autorefresh command period. The length of time the controller waits
before doing anything else after issuing an auto-refresh command.

tWR 4–65 ns Minimum write recovery time. The controller waits for this period of time after
the end of a write transaction before issuing a precharge command.

tWTR 1–3 tCK Minimum write-to-read command delay. The controller waits for this period of
time after the end of a write command before issuing a subsequent read
command to the same bank. This timing parameter is specified in clock cycles
and the value is rounded off to the next integer.

tAC 300–750 ps DQ output access time from CK/CK# signals.

tDQSCK 100–750 ps DQS output access time from CK/CK# signals.

tDQSQ 100–500 ps The maximum DQS to DQ skew; DQS to last DQ valid, per group, per access.

tDQSS 0–0.3 tCK Positive DQS latching edge to associated clock edge.

tDS 10–600 ps DQ and DM input setup time relative to DQS, which has a derated value
depending on the slew rate of the DQS (for both DDR and DDR2 SDRAM
interfaces) and whether DQS is single-ended or differential (for DDR2 SDRAM
interfaces). Ensure that you are using the correct number and that the value
entered is referenced to VREF(dc), not VIH(ac) min or VIL(ac) max. Refer to
“Derate Memory Setup and Hold Timing” on page 3–8 for more information
about how to derate this specification.

tDH 10–600 ps DQ and DM input hold time relative to DQS, which has a derated value
depending on the slew rate of the DQS (for both DDR and DDR2 SDRAM
interfaces) and whether DQS is single-ended or differential (for DDR2 SDRAM
interfaces). Ensure that you are using the correct number and that the value
entered is referenced to VREF(dc), not VIH(dc) min or VIL(dc) max. Refer to
“Derate Memory Setup and Hold Timing” on page 3–8 for more information
about how to derate this specification.

tDSH 0.1–0.5 tCK DQS falling edge hold time from CK.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

3–8 Chapter 3: Parameter Settings
ALTMEMPHY Parameter Settings
Derate Memory Setup and Hold Timing
Because the base setup and hold time specifications from the memory device
datasheet assume input slew rates that may not be true for Altera devices, derate and
update the following memory device specifications in the Preset Editor dialog box:

■ tDS

■ tDH

■ tIH

■ tIS

1 For Arria II GX and Stratix IV devices, you need not derate using the Preset Editor.
You only need to enter the parameters referenced to VREF, and the deration is done
automatically when you enter the slew rate information on the Board Settings tab.

After derating the values, you then need to normalize the derated value because
Altera input and output timing specifications are referenced to VREF. However, JEDEC
base setup time specifications are referenced to VIH/VIL AC levels; JEDEC base hold
time specifications are referenced to VIH/VIL DC levels.

When the memory device setup and hold time numbers are derated and normalized
to VREF, update these values in the Preset Editor dialog box to ensure that your timing
constraints are correct.

tDSS 0.1–0.5 tCK DQS falling edge to CK setup.

tIH 100–1000 ps Address and control input hold time, which has a derated value depending on
the slew rate of the CK and CK# clocks and the address and command signals.
Ensure that you are using the correct number and that the value entered is
referenced to VREF(dc), not VIH(dc) min or VIL(dc) max. Refer to “Derate
Memory Setup and Hold Timing” on page 3–8 for more information about how
to derate this specification.

tIS 100–1000 ps Address and control input setup time, which has a derated value depending on
the slew rate of the CK and CK# clocks and the address and command signals.
Ensure that you are using the correct number and that the value entered is
referenced to VREF(dc), not VIH(ac) min or VIL(ac) max. Refer to “Derate
Memory Setup and Hold Timing” on page 3–8 for more information about how
to derate this specification.

tQHS 100–700 ps The maximum data hold skew factor.

tRRD 2.06–64 ns The activate to activate time, per device, RAS to RAS delay timing parameter.

tFAW 7.69–256 ns The four-activate window time, per device.

tRTP 2.06–64 ns Read to precharge time.

Note to Table 3–5:

(1) See the memory device data sheet for the parameter range. Some of the parameters may be listed in a clock cycle (tCK) unit. If the MegaWizard
Plug-In Manager requires you to enter the value in a time unit (ps or ns), convert the number by multiplying it with the clock period of your
interface (and not the maximum clock period listed in the memory data sheet).

Table 3–5. DDR2 SDRAM Timing Parameter Settings (Note 1) (Part 2 of 2)

Parameter
Name Range Units Description
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 3: Parameter Settings 3–9
ALTMEMPHY Parameter Settings
For example, according to JEDEC, 400-MHz DDR2 SDRAM has the following
specifications, assuming 1V/ns DQ slew rate rising signal and 2V/ns differential slew
rate:

■ Base tDS = 50

■ Base tDH = 125

■ VIH(ac) = VREF + 0.2 V

■ VIH(dc) = VREF + 0.125V

■ VIL(ac) = VREF – 0.2 V

■ VIL(dc) = VREF – 0.125 V

1 JEDEC lists two different sets of base and derating numbers for tDS and tDH
specifications, whether you are using single-ended or differential DQS signaling, for
any DDR2 SDRAM components with a maximum frequency up to 267 MHz. In
addition, the VIL(ac) and VIH(ac) values may also be different for those devices.

The VREF referenced setup and hold signals for a rising edge are:

tDS (VREF) = Base tDS + delta tDS + (VIH(ac) – VREF)/slew_rate = 50 + 0 + 200 = 250 ps

tDH (VREF) = Base tDH + delta tDH + (VIH(dc) – VREF)/slew_rate = 125 + 0 + 67.5 =
192.5 ps

If the output slew rate of the write data is different from 1V/ns, you have to first
derate the tDS and tDH values, then translate these AC/DC level specs to VREF
specification.

For a 2V/ns DQ slew rate rising signal and 2V/ns DQS-DQSn slew rate:

tDS (VREF) = Base tDS + delta tDS + (VIH(ac) – VREF)/slew_rate = 25 + 100 + 100 = 225
ps

tDH (VREF) = Base tDH + delta tDH + (VIH(dc) – VREF)/slew_rate = 100 + 45 + 33.75 =
178.75 ps

For a 0.5V/ns DQ slew rate rising signal and 1V/ns DQS-DQSn slew rate:

tDS (VREF) = Base tDS + delta tDS + (VIH(ac) – VREF)/slew_rate = 25 + 0 + 400 = 425 ps

tDH (VREF) = Base tDH + delta tDH + (VIH(dc) – VREF)/slew_rate = 100 – 65 + 250 =
285 ps
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

3–10 Chapter 3: Parameter Settings
ALTMEMPHY Parameter Settings
PHY Settings
Click Next or the PHY Settings tab to set the options described in Table 3–6. The
options are available if they apply to the target Altera device.

Table 3–6. ALTMEMPHY PHY Settings (Part 1 of 2)

 Parameter Name Applicable Device Families Description

Use dedicated PLL
outputs to drive
memory clocks

HardCopy II and Stratix II
(prototyping for
HardCopy II)

Turn on to use dedicated PLL outputs to generate the external
memory clocks, which is required for HardCopy II ASICs and their
Stratix II FPGA prototypes. When turned off, the DDIO output
registers generate the clock outputs.

When you use the DDIO output registers for the memory clock,
both the memory clock and the DQS signals are well aligned and
easily meets the tDQSS specification. However, when the dedicated
clock outputs are for the memory clock, the memory clock and the
DQS signals are not aligned properly and requires a positive phase
offset from the PLL to align the signals together.

Dedicated memory
clock phase

HardCopy II and Stratix II
(prototyping for
HardCopy II)

The required phase shift to align the CK/CK# signals with
DQS/DQS# signals when using dedicated PLL outputs to drive
memory clocks.

Use differential DQS Arria II GX, Stratix III, and
Stratix IV

Enable this feature for better signal integrity. Recommended for
operation at 333 MHz or higher. An option for DDR2 SDRAM only,
as DDR SDRAM does not support differential DQSS.

Enable external access
to reconfigure PLL
prior to calibration

HardCopy II and Stratix II
(prototyping for
HardCopy II)

When enabling this option for Stratix II and HardCopy II devices,
the inputs to the ALTPLL_RECONFIG megafunction are brought to
the top level for debugging purposes.

This option allows you to reconfigure the PLL before calibration to
adjust, if necessary, the phase of the memory clock
(mem_clk_2x) before the start of the calibration of the
resynchronization clock on the read side. The calibration of the
resynchronization clock on the read side depends on the phase of
the memory clock on the write side.

Instantiate DLL
externally

All supported device
families, except for
Cyclone III devices

Use this option with Stratix III, Stratix IV, HardCopy III, or
HardCopy IV devices, if you want to apply a non-standard phase
shift to the DQS capture clock. The ALTMEMPHY DLL offsetting I/O
can then be connected to the external DLL and the Offset Control
Block.

As Cyclone III devices do not have DLLs, this feature is not
supported.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 3: Parameter Settings 3–11
ALTMEMPHY Parameter Settings
Board Settings
Click Next or the Board Settings tab to set the options described in Table 3–7. The
board settings parameters are set to model the board level effects in the timing
analysis. The options are available if you choose Arria II GX or Stratix IV device for
your interface. Otherwise, the options are disabled.

Enable dynamic parallel
on-chip termination

Stratix III and Stratix IV This option provides I/O impedance matching and termination
capabilities. The ALTMEMPHY megafunction enables parallel
termination during reads and series termination during writes with
this option checked. Only applicable for DDR and DDR2 SDRAM
interfaces where DQ and DQS are bidirectional. Using the dynamic
termination requires that you use the OCT calibration block, which
may impose a restriction on your DQS/DQ pin placements
depending on your RUP/RDN pin locations.

Although DDR SDRAM does not support ODT, dynamic OCT is still
supported in Altera FPGAs.

For more information, refer to either the External Memory
Interfaces in Stratix III Devices chapter in volume 1 of the Stratix III
Device Handbook or the External Memory Interfaces in Stratix IV
Devices chapter in volume 1 of the Stratix IV Device Handbook.

Clock phase Arria II GX, Arria GX,
Cyclone III, HardCopy II,
Stratix II, and Stratix II GX

Adjusting the address and command phase can improve the
address and command setup and hold margins at the memory
device to compensate for the propagation delays that vary with
different loadings. You have a choice of 0°, 90°, 180°, and 270°,
based on the rising and falling edge of the phy_clk and
write_clk signals. In Stratix IV and Stratix III devices, the clock
phase is set to dedicated.

Dedicated clock phase Stratix III and Stratix IV When you use a dedicated PLL output for address and command,
you can choose any legal PLL phase shift to improve setup and
hold for the address and command signals. You can set this value
to between 180° and 359°, the default is 240°. However, generally
PHY timing requires a value of greater than 240° for half-rate
designs and 270° for full-rate designs.

Board skew All supported device
families except Arria II GX
and Stratix IV devices

Maximum skew across any two memory interface signals for the
whole interface from the FPGA to the memory (either a discrete
memory device or a DIMM). This parameter includes all types of
signals (data, strobe, clock, address, and command signals). You
need to input the worst-case skew, whether it is within a DQS/DQ
group, or across all groups, or across the address and command
and clocks signals. This parameter generates the timing constraints
in the .sdc file.

Autocalibration
simulation options

All supported device
families

Choose between Full Calibration (long simulation time), Quick
Calibration, or Skip Calibration.

For more information, refer to the Simulation section in volume 4 of
the External Memory Interface Handbook.

Table 3–6. ALTMEMPHY PHY Settings (Part 2 of 2)

 Parameter Name Applicable Device Families Description
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

http://altera.com/literature/hb/external-memory/emi_debug_verify.pdf
http://www.altera.com/literature/hb/stx3/stx3_siii51008.pdf
http://www.altera.com/literature/hb/stx3/stx3_siii51008.pdf
http://www.altera.com/literature/hb/stratix-iv/stx4_siv51007.pdf
http://www.altera.com/literature/hb/stratix-iv/stx4_siv51007.pdf

3–12 Chapter 3: Parameter Settings
ALTMEMPHY Parameter Settings
Controller Interface Settings
The Controller Interface Settings tab allows you to specify the native interface or the
default Avalon-MM interface for your local interface as required by the
ALTMEMPHY megafunction for DDR and DDR2 SDRAM. The options are disabled if
you select AFI for the controller-to-PHY interface protocol. The Avalon-MM interface
is the only local interface supported in these variations.

1 Altera recommends that you use the AFI for new designs; only use the non-AFI for
existing designs.

Native interface is a superset of the Avalon-MM interface, containing the following
additional signals in addition to the Avalon-MM interface signals:

■ local_init_done

■ local_refresh_req

Table 3–7. ALTMEMPHY Board Settings

Parameter Name Units Description

Number of slots/discrete devices — Sets the single-rank or multirank configuration.

CK/CK# slew rate (differential) V/ns Sets the differential slew rate for the CK and CK# signals.

Addr/command slew rate V/ns Sets the slew rate for the address and command signals.

DQ/DQS# slew rate (differential) V/ns Sets the differential slew rate for the DQ and DQS# signals.

DQ slew rate V/ns Sets the slew rate for the DQ signals.

Addr/command eye reduction
(setup)

ns Sets the reduction in the eye diagram on the setup side due to the ISI on
the address and command signals.

Addr/command eye reduction
(hold)

ns Sets the reduction in the eye diagram on the hold side due to the ISI on
the address and command signals.

DQ eye reduction ns Sets the total reduction in the eye diagram on the setup side due to the ISI
on the DQ signals.

Delta DQS arrival time ns Sets the increase of variation on the range of arrival times of DQS due to
ISI.

Max skew between
DIMMs/devices

ns Sets the largest skew or propagation delay on the DQ signals between
ranks, especially true for DIMMs in different slots.

This value affects the Resynchronization margin for the DDR2 interfaces
in multi-rank configurations for both DIMMs and devices.

Max skew within DQS groups ns Sets the largest skew between the DQ pins in a DQS group. This value
affects the Read Capture and Write margins for the DDR2 interfaces in all
configurations (single- or multi-rank, DIMM or device).

Max skew between DQS group ns Sets the largest skew between DQS signals in different DQS groups. This
value affects the Resynchronization margin for the DDR2 interfaces in
both single- or multi-rank configurations.

Addr/command to CK skew ns Sets the skew or propagation delay between the CK signal and the address
and command signals. The positive values represent the address and
command signals that are longer than the CK signals, and the negative
values represent the address and command signals that are shorter than
the CK signals. This skew is used by the Quartus II software to optimize
the delay of the address/command signals to have appropriate setup and
hold margins for the DDR2 interfaces.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 3: Parameter Settings 3–13
DDR or DDR2 SDRAM High-Performance Controller Parameter Settings
■ local_refresh_ack

■ local_wdata_req

These signals provide extra information and control that is not possible in the
Avalon-MM bus protocol.

The other difference between the native and the Avalon-MM local interface is in the
write transaction. In an Avalon-MM interface, the write data is presented along with
the write request. In native local interfaces, the write data (and byte enables) are
presented in the clock cycle after the local_wdata_req signal is asserted.
Avalon-MM interfaces do not use the local_wdata_req signal.

1 There is no difference in latency between the native and Avalon-MM interfaces.

DDR or DDR2 SDRAM High-Performance Controller Parameter Settings
The DDR or DDR2 SDRAM High-Performance Controller Parameter Settings page
in the DDR or DDR2 SDRAM High-Performance Controller MegaWizard interface
(Figure 3–3) allows you to parameterize the following settings:

■ Memory Settings

■ PHY Settings

■ Board Settings

■ Controller Settings

The Memory Settings, PHY Settings, and Board Settings tabs provide the same
options as in the ALTMEMPHY Parameter Settings page.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

3–14 Chapter 3: Parameter Settings
DDR or DDR2 SDRAM High-Performance Controller Parameter Settings
Controller Settings
Table 3–8 shows the options provided in the Controller Settings tab.

Figure 3–3. DDR2 SDRAM High-Performance Controller Settings

Table 3–8. Controller Settings (Part 1 of 3)

Parameter Controller Architecture Description

Controller architecture — Specifies the controller architecture.

Enable self-refresh controls Both Turn on to enable the controller to allow you to have control on
when to place the external memory device in self-refresh mode,
refer to “User-Controlled Self-Refresh Logic” on page 7–7.

Enable power down controls HPC Turn on to enable the controller to allow you to have control on
when to place the external memory device in power-down mode.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 3: Parameter Settings 3–15
DDR or DDR2 SDRAM High-Performance Controller Parameter Settings
Enable auto power down HPC II Turn on to enable the controller to automatically place the
external memory device in power-down mode after a specified
number of idle controller clock cycles is observed in the
controller. You can specify the number of idle cycles after which
the controller powers down the memory in the Auto Power
Down Cycles field, refer to “Automatic Power-Down with
Programmable Time-Out” on page 7–7.

Auto power down cycles HPC II Determines the desired number of idle controller clock cycles
before the controller places the external memory device in a
power-down mode. The legal range is 1 to 65,535.

The auto power-down mode is disabled if you set the value to 0
clock cycles.

Enable user auto-refresh
controls

Both Turn on to enable the controller to allow you to have control on
when to place the external memory device in refresh mode.

Enable auto-precharge
control

Both Turn on to enable the auto-precharge control on the controller
top level. Asserting the auto-precharge control signal while
requesting a read or write burst allows you to specify whether or
not the controller should close (auto-precharge) the current
opened page at the end of the read or write burst.

Local-to-memory address
mapping

HPC II Allows you to control the mapping between the address bits on
the Avalon interface and the chip, row, bank, and column bits on
the memory interface.

If your application issues bursts that are greater than the
column size of the memory device, choose the
Chip-Row-Bank-Column option. This option allows the
controller to use its look-ahead bank management feature to
hide the effect of changing the currently open row when the
burst reaches the end of the column.

On the other hand, if your application has several masters that
each use separate areas of memory, choose the
Chip-Bank-Row-Column option. This option allows you to use
the top address bits to allocate a physical bank in the memory to
each master. The physical bank allocation avoids different
masters accessing the same bank which is likely to cause
inefficiency, as the controller must then open and close rows in
the same bank.

Command queue look-ahead
depth

HPC II This option allows you to select a command queue look-ahead
depth value to control the number of read or write requests the
look-ahead bank management logic examines, refer to
“Command Queue” on page 7–4.

Local maximum burst count HPC II Specifies a burst count to configure the maximum Avalon burst
count that the controller slave port accepts.

Table 3–8. Controller Settings (Part 2 of 3)

Parameter Controller Architecture Description
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

3–16 Chapter 3: Parameter Settings
DDR or DDR2 SDRAM High-Performance Controller Parameter Settings
Enable configuration and
status register interface

HPC II Turn on to enable run-time configuration and status retrieval of
the memory controller. Enabling this option adds an additional
Avalon-MM slave port to the memory controller top level that
allows run-time reconfiguration and status retrieving for
memory timing parameters, memory address size and mode
register settings, and controller features. If the Error Detection
and Correction Logic option is enabled, the same slave port also
allows you to control and retrieve the status of this logic. Refer
to “Configuration and Status Register (CSR) Interface” on
page 7–7.

Enable error detection and
correction logic

Both Turn on to enable error correction coding (ECC) for single-bit
error correction and double-bit error detection. Refer to “Error
Correction Coding (ECC)” on page 6–5 for HPC, and “Error
Correction Coding (ECC)” on page 7–7 for HPC II.

Enable auto error correction HPC II Turn on to allow the controller to perform auto correction when
ECC logic detects a single-bit error. Alternatively, you can turn
off this option and schedule the error correction at a desired
time for better system efficiency. Refer to “Error Correction
Coding (ECC)” on page 7–7.

Enable multi-cast write
control

HPC II Turn on to enable the multi-cast write control on the controller
top level. Asserting the multi-cast write control when requesting
a write burst causes the write data to be written to all the chip
selects in the memory system. Multi-cast write is not supported
for registered DIMM interfaces or if the ECC logic is enabled.

Multiple controller clock
sharing

Both This option is only available in SOPC Builder Flow. Turn on to
allow one controller to use the Avalon clock from another
controller in the system that has a compatible PLL. This option
allows you to create SOPC Builder systems that have two or
more memory controllers that are synchronous to your master
logic. Refer to

Local interface protocol HPC Specifies the local side interface between the user logic and the
memory controller. The Avalon-MM interface allows you to
easily connect to other Avalon-MM peripherals.

The HPC II architecture supports only the Avalon-MM interface.

Table 3–8. Controller Settings (Part 3 of 3)

Parameter Controller Architecture Description
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

© February 2010 Altera Corporation
4. Compile and Simulate
After setting the parameters to the MegaCore function, you can now integrate the
MegaCore function variation into your design, and compile and simulate. The
following sections detail the steps you need to perform to compile and simulate your
design:

■ Compile the Design

■ Simulate the Design

Compile the Design
Figure 4–1 shows the top-level view of the Altera high-performance controller design
as an example on how your final design looks after you integrate the controller and
the user logic.

Before compiling a design with the ALTMEMPHY variation, you must edit some
project settings, include the .sdc file, and make I/O assignments. I/O assignments
include I/O standard, pin location, and other assignments, such as termination and
drive strength settings. Some of these tasks are listed at the ALTMEMPHY
Generation window. For most systems, Altera recommends that you use the
Advanced I/O Timing feature by using the Board Trace Model command in the
Quartus II software to set the termination and output pin loads for the device.

1 You cannot compile the ALTMEMPHY variation as a stand-alone top-level design
because the generated .sdc timing constraints file requires the ALTMEMPHY
variation be part of a larger design (with a controller and/or example driver). If you
want to check whether the ALTMEMPHY variation meets your required target
frequency before your memory controller is ready, create a top-level file that
instantiates this ALTMEMPHY variation.

Figure 4–1. High-Performance Controller System-Level Diagram

Note to Figure 4–1:

(1) When you choose Instantiate DLL Externally, DLL is instantiated outside the controller.

Pass or Fail
External
Memory
Device

ALTMEMPHY
High-

Performance
Controller

Example
Driver

PLL

Example Top-Level File

DLL (1)
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

4–2 Chapter 4: Compile and Simulate
Compile the Design
To use the Quartus II software to compile the example top-level file and perform
post-compilation timing analysis, follow these steps:

1. Set up the TimeQuest timing analyzer:

a. On the Assignments menu, click Timing Analysis Settings, select Use
TimeQuest Timing Analyzer during compilation, and click OK.

b. Add the Synopsys Design Constraints (.sdc) file,
<variation name>_phy_ddr_timing.sdc, to your project. On the Project menu,
click Add/Remove Files in Project and browse to select the file.

c. Add the .sdc file for the example top-level design,
<variation name>_example_top.sdc, to your project. This file is only required if
you are using the example as the top-level design.

2. You can either use the <variation_name>_pin_assignments.tcl or the
<variation_name>.ppf file to apply the I/O assignments generated by the
MegaWizard Plug-In Manager. Using the .ppf file and the Pin Planner gives you
the extra flexibility to add a prefix to your memory interface pin names. You can
edit the assignments either in the Assignment Editor or Pin Planner. Use one of the
following procedures to specify the I/O standard assignments for pins

■ If you have a single SDRAM interface, and your top-level pins have default
naming shown in the example top-level file, run
<variation name>_pin_assignments.tcl.

or

■ If your design contains pin names that do not match the design, edit the
<variation name>_pin_assignments.tcl file before you run the script. Follow these
steps:

a. Open <variation name>_pin_assignments.tcl file.

b. Based on the flow you are using, set the sopc_mode value to Yes or No.

■ SOPC Builder System flow:

if {![info exists sopc_mode]} {set sopc_mode YES}

■ MegaWizard Plug-In Manager flow:

if {![info exists sopc_mode]} {set sopc_mode NO}

c. Type your preferred prefix in the pin_prefix variable. For example, to add
the prefix my_mem, do the following:

if {![info exists set_prefix}{set pin_prefix “my_mem_”}

After setting the prefix, the pin names are expanded as shown in the following:

■ SOPC Builder System flow:

my_mem_cs_n_from_the_<your instance name>

■ MegaWizard Plug-In Manager flow:

my_mem_cs_n[0]
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 4: Compile and Simulate 4–3
Compile the Design
1 If your top-level design does not use single bit bus notation for the
single-bit memory interface signals (for example, mem_dqs rather than
mem_dqs[0]), in the Tcl script you should change set single_bit
{[0]} to set single_bit {}.

or

■ Alternatively, to change the pin names that do not match the design, you can add a
prefix to your pin names by doing the following:

a. On the Assignments menu, click Pin Planner.

b. On the Edit menu, click Create/Import Megafunction.

c. Select Import an existing custom megafunction and navigate to
<variation name>.ppf.

d. Type the prefix you want to use in Instance name. For example, change
mem_addr to core1_mem_addr.

3. Set the top-level entity to the top-level design.

a. On the File menu, click Open.

b. Browse to your SOPC Builder system top-level design or <variation
name>_example_top if you are using MegaWizard Plug-In Manager, and click
Open.

c. On the Project menu, click Set as Top-Level Entity.

4. Assign the DQ and DQS pin locations.

a. You should assign pin locations to the pins in your design, so the Quartus II
software can perform fitting and timing analysis correctly.

b. Use either the Pin Planner or Assignment Editor to assign the clock source pin
manually. Also choose which DQS pin groups should be used by assigning
each DQS pin to the required pin. The Quartus II Fitter then automatically
places the respective DQ signals onto suitable DQ pins within each group.

1 To avoid no-fit errors when you compile your design, ensure that you place
the mem_clk pins to the same edge as the mem_dq and mem_dqs pins, and
set an appropriate I/O standard for the non-memory interfaces, such as the
clock source and the reset inputs, when assigning pins in your design. For
example, for DDR SDRAM select 2.5 V and for DDR2 SDRAM select 1.8 V.
Also select in which bank or side of the device you want the Quartus II
software to place them.

5. For Stratix III and Stratix IV designs, if you are using advanced I/O timing, specify
board trace models in the Device & Pin Options dialog box. If you are using any
other device and not using advanced I/O timing, specify the output pin loading
for all memory interface pins.

6. Select your required I/O driver strength (derived from your board simulation) to
ensure that you correctly drive each signal or ODT setting and do not suffer from
overshoot or undershoot.

7. To compile the design, on the Processing menu, click Start Compilation.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

4–4 Chapter 4: Compile and Simulate
Simulate the Design
f To attach the SignalTap® II logic analyzer to your design, refer to AN 380: Test DDR or
DDR2 SDRAM Interfaces on Hardware Using the Example Driver.

After you have compiled the example top-level file, you can perform RTL simulation
or program your targeted Altera device to verify the example top-level file in
hardware.

Simulate the Design
During system generation, SOPC Builder optionally generates a simulation model
and testbench for the entire system, which you can use to easily simulate your system
in any of Altera's supported simulation tools. The MegaWizard also generates a set of
ModelSim Tcl scripts and macros that you can use to compile the testbench, IP
functional simulation models, and plain-text RTL design files that describe your
system in the ModelSim simulation software (refer to “Generated Files” on page 2–6).

f For more information about simulating SOPC Builder systems, refer to volume 4 of
the Quartus II Handbook and AN 351: Simulating Nios II Systems. For more information
about simulation, refer to the Simulating an External Memory Interface Design section in
volume 4 of the External Memory Interfaces Handbook. For more information about how
to include your board simulation results in the Quartus II software and how to assign
pins using pin planners, refer to DDR, DDR2, and DDR3 Tutorials in volume 6 of the
External Memory Interfaces Handbook.

In ALTMEMPHY variations for DDR or DDR2 SDRAM interfaces, you have the
following simulation options:

■ Skip calibration—Performs a static setup of the ALTMEMPHY megafunction to
skip calibration and go straight into user mode.

1 Skip calibration mode supports the default ALTMEMPHY
parameterization with CAS latency of 3 for DDR memory, and all CAS
latencies for DDR2 memory. The additive latency must be disabled for all
memory types.

■ Quick calibration—Performs a calibration on a single pin and chip select.

1 You may see memory model warnings about initialization times.

■ Full calibration—Across all pins and chip selects. This option allows for longer
simulation time.

1 In quick and skip calibration modes, the ALTMEMPHY megafunction is not able to
cope with any delays, and it simply assumes that all delays in the testbench and
memory model are 0 ps. In order to successfully simulate a design with delays in the
testbench and memory model, you must generate a full calibration mode model in the
MegaWizard Plug-In Manager.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

http://altera.com/literature/hb/external-memory/emi_debug_verify.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf
http://www.altera.com/literature/an/an351.pdf
http://altera.com/literature/hb/external-memory/emi_tut_ddr.pdf
http://www.altera.com/literature/an/an380.pdf
http://www.altera.com/literature/an/an380.pdf

Chapter 4: Compile and Simulate 4–5
Simulate the Design
Simulating Using NativeLink
To set up simulation using NativeLink for the DDR or DDR2 high-performance
controllers (HPC and HPC II), follow these steps:

1. Create a custom variation with an IP functional simulation model, refer to step 4 in
the “Specify Parameters” section on page 2–4.

2. Set the top-level entity to the example project.

a. On the File menu, click Open.

b. Browse to <variation name>_example_top and click Open.

c. On the Project menu, click Set as Top-Level Entity.

3. Set up the Quartus II NativeLink.

a. On the Assignments menu, click Settings. In the Category list, expand EDA
Tool Settings and click Simulation.

b. From the Tool name list, click on your preferred simulator.

1 Check that the absolute path to your third-party simulator executable is set.
On the Tools menu, click Options and select EDA Tools Options.

c. In NativeLink settings, select Compile test bench and click Test Benches.

d. Click New at the Test Benches page to create a testbench.

4. On the New Test Bench Settings dialog box, do the following:

a. Type a name for the Test bench name.

b. In Top level module in test bench, type the name of the automatically
generated testbench, <variation name>_example_top_tb.

1 If you modified the <variation name>_example_top_tb to have a different
port name, you need to change the testbench file with the new port names
as well.

c. In Design instance in test bench, type the name of the top-level instance, dut.

d. Under Simulation period, set Run simulation until all vector simuli are used.

e. Add the testbench files and automatically-generated memory model files. In
the File name field, browse to the location of the memory model and the
testbench, click Open and then click Add. The testbench is
<variation name>_example_top_tb.v; memory model is
<variation name>_mem_model.v.

f The auto generated generic SDRAM model may be used as a placeholder
for a specific memory vendor supplied model.

f. Select the files and click OK.

5. On the Processing menu, point to Start and click Start Analysis & Elaboration to
start analysis.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

4–6 Chapter 4: Compile and Simulate
Simulate the Design
6. On the Tools menu, point to Run EDA Simulation Tool and click EDA RTL
Simulation.

1 Ensure that the Quartus II EDA Tool Options are configured correctly for
your simulation environment. On the Tools menu, click Options. In the
Category list, click EDA Tool Options and verify the locations of the
executable files.

f If your Quartus II project appears to be configured correctly but the example
testbench still fails, check the known issues on the Knowledge Database page before
filing a service request.

IP Functional Simulations
For VHDL simulations with IP functional simulation models, perform the following
steps:

1. Create a directory in the <project directory>\testbench directory.

2. Launch your simulation tool from this directory and create the following libraries:

■ altera_mf

■ lpm

■ sgate

■ <device name>

■ altera

■ ALTGXB

■ <device name>_hssi

■ auk_ddr_hp_user_lib

3. Compile the files into the appropriate library (AFI mode) as shown in Table 4–1.
The files are in VHDL93 format.

Table 4–1. Files to Compile—VHDL IP Functional Simulation Models (Part 1 of 2)

Library File Name

altera_mf <QUARTUS ROOTDIR>/eda/sim_lib/altera_mf_components.vhd

<QUARTUS ROOTDIR>/eda/sim_lib/altera_mf.vhd

lpm /eda/sim_lib/220pack.vhd

/eda/sim_lib/220model.vhd

sgate eda/sim_lib/sgate_pack.vhd

eda/sim_lib/sgate.vhd

<device name> eda/sim_lib/<device name>_atoms.vhd

eda/sim_lib/<device name>_ components.vhd

eda/sim_lib/<device name>_hssi_atoms.vhd (1)

altera eda/sim_lib/altera_primitives_components.vhd

eda/sim_lib/altera_syn_attributes.vhd

eda/sim_lib/altera_primitives.vhd
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

http://www.altera.com/support/kdb/kdb-index.jsp
http://www.altera.com/support/kdb/kdb-index.jsp

Chapter 4: Compile and Simulate 4–7
Simulate the Design
1 If you are targeting Stratix IV devices, you need both the Stratix IV and
Stratix III files (stratixiv_atoms and stratixiii_atoms) to simulate in your
simulator, unless you are using NativeLink.

4. Load the testbench in your simulator with the timestep set to picoseconds.

For Verilog HDL simulations with IP functional simulation models, follow these
steps:

1. Create a directory in the <project directory>\testbench directory.

ALTGXB (1) <device name>_mf.vhd

<device name>_mf_components.vhd

<device name>_hssi (1) <device name>_hssi_components.vhd

<device name>_hssi_atoms.vhd

auk_ddr_hp_user_lib <QUARTUS ROOTDIR>/

libraries/vhdl/altera/altera_europa_support_lib.vhd

<project directory>/<variation name>_phy_alt_mem_phy_seq_wrapper.vho

<project directory>/<variation name>_phy.vho

<project directory>/<variation name>.vhd

<project directory>/<variation name>_example_top.vhd

<project directory>/<variation name>_controller_phy.vhd

<project directory>/<variation name>_phy_alt_mem_phy_reconfig.vhd (2)

<project directory>/<variation name>_phy_alt_mem_phy_pll.vhd

<project directory>/<variation name>_phy_alt_mem_phy_seq.vhd

<project directory>/<variation name>_example_driver.vhd

<project directory>/<variation name>_ex_lfsr8.vhd

testbench/<variation name>_example_top_tb.vhd

testbench/<variation name>_mem_model.vhd

<project directory>/<variation name>_auk_ddr_hp_controller_wrapper.vho (HPC)

<project directory>/<variation name>_alt_ddrx_controller_wrapper.vho (HPC II)

Note for Table 4–1:

(1) Applicable only for Arria GX, Arria II GX, Stratix GX, Stratix II GX and Stratix IV devices.
(2) Applicable only for Arria GX, Hardcopy II, Stratix II and Stratix II GX devices.

Table 4–1. Files to Compile—VHDL IP Functional Simulation Models (Part 2 of 2)

Library File Name
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

4–8 Chapter 4: Compile and Simulate
Simulate the Design
2. Launch your simulation tool from this directory and create the following libraries:

■ altera_mf_ver

■ lpm_ver

■ sgate_ver

■ <device name>_ver

■ altera_ver

■ ALTGXB_ver

■ <device name>_hssi_ver

■ auk_ddr_hp_user_lib

3. Compile the files into the appropriate library as shown in Table 4–2.

Table 4–2. Files to Compile—Verilog HDL IP Functional Simulation Models (Part 1 of 3)

Library File Name

altera_mf_ver <QUARTUS ROOTDIR>/eda/sim_lib/altera_mf.v

lpm_ver /eda/sim_lib/220model.v

sgate_ver eda/sim_lib/sgate.v

<device name>_ver eda/sim_lib/<device name>_atoms.v

eda/sim_lib/<device name>_hssi_atoms.v (1)

altera_ver eda/sim_lib/altera_primitives.v

ALTGXB_ver (1) <device name>_mf.v

<device name>_hssi_ver (1) <device name>_hssi_atoms.v
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 4: Compile and Simulate 4–9
Simulate the Design
auk_ddr_hp_user_lib <QUARTUS ROOTDIR>/

libraries/vhdl/altera/altera_europa_support_lib.v

alt_mem_phy_defines.v

<project directory>/<variation name>_phy_alt_mem_phy_seq_wrapper.vo

<project directory>/<variation name>.v

<project directory>/<variation name>_example_top.v

<project directory>/<variation name>_phy.v

<project directory>/<variation name>_controller_phy.v

<project directory>/<variation name>_phy_alt_mem_phy_reconfig.v (2)

<project directory>/<variation name>_phy_alt_mem_phy_pll.v

<project directory>/<variation name>_phy_alt_mem_phy.v

<project directory>/<variation name>_example_driver.v

<project directory>/<variation name>_ex_lfsr8.v

testbench/<variation name>_example_top_tb.v

testbench/<variation name>_mem_model.v

<project directory>/<variation name>_auk_ddr_hp_controller_wrapper.vo (HPC)

<project directory>/<variation name>_alt_ddrx_controller_wrapper.v (HPC II)

<project directory>/alt_ddrx_addr_cmd.v (HPC II)

<project directory>/alt_ddrx_afi_block.v (HPC II)

<project directory>/alt_ddrx_bank_tracking.v (HPC II)

<project directory>/alt_ddrx_clock_and_reset.v (HPC II)

<project directory>/alt_ddrx_cmd_queue.v (HPC II)

<project directory>/alt_ddrx_controller.v (HPC II)

<project directory>/alt_ddrx_csr.v (HPC II)

<project directory>/alt_ddrx_ddr2_odt_gen.v (HPC II)

Table 4–2. Files to Compile—Verilog HDL IP Functional Simulation Models (Part 2 of 3)

Library File Name
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

4–10 Chapter 4: Compile and Simulate
Simulate the Design
1 If you are targeting Stratix IV devices, you need both the Stratix IV and
Stratix III files (stratixiv_atoms and stratixiii_atoms) to simulate in your
simulator, unless you are using NativeLink.

4. Configure your simulator to use transport delays, a timestep of picoseconds, and
to include all the libraries in Table 4–2.

<project directory>/alt_ddrx_avalon_if.v (HPC II)

<project directory>/alt_ddrx_decoder_40.v (HPC II)

<project directory>/alt_ddrx_decoder_72.v (HPC II)

<project directory>/alt_ddrx_decoder.v (HPC II)

<project directory>/alt_ddrx_encoder_40.v (HPC II)

<project directory>/alt_ddrx_encoder_72.v (HPC II)

<project directory>/alt_ddrx_encoder.v (HPC II)

<project directory>/alt_ddrx_input_if.v (HPC II)

<project directory>/alt_ddrx_odt_gen.v (HPC II)

<project directory>/alt_ddrx_state_machine.v (HPC II)

<project directory>/alt_ddrx_timers_fsm.v (HPC II)

<project directory>/alt_ddrx_timers.v (HPC II)

<project directory>/alt_ddrx_wdata_fifo.v (HPC II)

<project directory>/alt_avalon_half_rate_bridge.v (HPC II)

Notes for Table 4–2:

(1) Applicable only for Arria GX, Arria II GX, Stratix GX, Stratix II GX and Stratix IV devices.
(2) Applicable only for Arria GX, Hardcopy II, Stratix II and Stratix II GX devices.

Table 4–2. Files to Compile—Verilog HDL IP Functional Simulation Models (Part 3 of 3)

Library File Name
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

© February 2010 Altera Corporation
5. Functional Description—ALTMEMPHY
The ALTMEMPHY megafunction creates the datapath between the memory device
and the memory controller, and user logic in various Altera devices. The
ALTMEMPHY megafunction GUI helps you configure multiple variations of a
memory interface. You can then connect the ALTMEMPHY megafunction variation
with either a user-designed controller or with an Altera high-performance controller.
In addition, the ALTMEMPHY megafunction and the Altera high-performance
controllers are available for full-rate and half-rate DDR and DDR2 SDRAM interfaces.

1 For legacy device families not supported by the ALTMEMPHY megafunction (such as
Cyclone, Cyclone II, Stratix, and Stratix GX devices), use the Altera legacy integrated
static datapath and controller MegaCore functions.

1 If the ALTMEMPHY megafunction does not meet your requirements, you can also
create your own memory interface datapath using the ALTDLL and ALTDQ_DQS
megafunctions, available in the Quartus II software. However, you are then
responsible for every aspect of the interface, including timing analysis and
debugging.

This chapter describes the DDR and DDR2 SDRAM ALTMEMPHY megafunction,
which uses AFI as the interface between the PHY and the controller.

Block Description
Figure 5–1 on page 5–2 shows the major blocks of the ALTMEMPHY megafunction
and how it interfaces with the external memory device and the controller. The
ALTPLL megafunction is instantiated inside the ALTMEMPHY megafunction, so that
you do not need to generate the clock to any of the ALTMEMPHY blocks.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

5–2 Chapter 5: Functional Description—ALTMEMPHY
Block Description
The ALTMEMPHY megafunction comprises the following blocks:

■ Write datapath

■ Address and command datapath

■ Clock and reset management, including DLL and PLL

■ Sequencer for calibration

■ Read datapath

Calibration
This section describes the calibration that the sequencer performs, to find the optimal
clock phase for the memory interface.

The ALTMEMPHY variation for DDR/DDR2 SDRAM interfaces has a similar
calibration process for the AFI and non-AFI.

Figure 5–1. ALTMEMPHY Megafunction Interfacing with the Controller and the External Memory

External
Memory
Device

ALTMEMPHY

Write
Datapath

Address
and

Command
Datapath

Clock
and Reset

Management

Sequencer

Read
Datapath

Memory
Controller

User
Logic

PLL

FPGA

DLL
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 5: Functional Description—ALTMEMPHY 5–3
Block Description
The calibration process for the DDR/DDR2 SDRAM PHY includes the following
steps:

■ “Step 1: Memory Device Initialization”

■ “Step 2: Write Training Patterns”

■ “Step 3: Read Resynchronization (Capture) Clock Phase”

■ “Step 4: Read and Write Datapath Timing”

■ “Step 5: Address and Command Clock Cycle”

■ “Step 6: Postamble”

■ “Step 7: Prepare for User Mode”

f For more detailed information about each calibration step, refer to the Hardware
Debugging section in volume 4 of the External Memory Interfaces Handbook.

Figure 5–2 shows the calibration flow.

Figure 5–2. Calibration Flow—DDR/DDR2 SDRAM

Memory Device
and PHY Initialization

User Mode

Write Training
Patterns

Read Resynchronization
Clock Phase

Prepare for User Mode

Address and Command
Clock Cycle

Postamble

Read and Write
Datapath Timing

VT Tracking
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

http://altera.com/literature/hb/external-memory/emi_debug_hw.pdf
http://altera.com/literature/hb/external-memory/emi_debug_hw.pdf

5–4 Chapter 5: Functional Description—ALTMEMPHY
Block Description
Step 1: Memory Device Initialization
This step initializes the memory device according to the DDR and DDR2 SDRAM
specification. The initialization procedure includes specifying the mode registers and
memory device ODT setting (DDR2 only), and initializing the memory device DLL.
Calibration requires overriding some of the user-specified mode register settings,
which are reverted in “Step 7: Prepare for User Mode”.

Step 2: Write Training Patterns
In this step, a pattern is written to the memory to be read in later calibration stages.
The matched trace lengths to DDR SDRAM devices mean that after memory
initialization, write capture functions. The pattern is 0x30F5 and comprises the
following separately written patterns:

■ All 0: ‘b0000 - DDIO high and low bits held at 0

■ All 1: ‘b1111 - DDIO high and low bits held at 1

■ Toggle: ‘b0101 - DDIO high bits held at 0 and DDIO low bits held at 1

■ Mixed: ‘b0011 - DDIO high and low bits have to toggle

1 This pattern is required to match the characterization behavior for non-DQS capture-
based schemes, for example, the Cyclone III devices.

Loading a mixed pattern is complex, because the write latency is unknown at this
time. Two sets of write and read operations (single pin resynchronization (capture)
clock phase sweeps, (“Step 3: Read Resynchronization (Capture) Clock Phase”) are
required to accurately write the mixed pattern to memory.

1 Memory bank 0, row 0, and column addresses 0 to 55 store calibration data.

Step 3: Read Resynchronization (Capture) Clock Phase
This step adjusts the phase of the resynchronization (or capture) clock to determine
the optimal phase that gives the greatest margin. For DQS-based capture schemes, the
resynchronization clock captures the outputs of DQS capture registers (DQS is the
capture clock). In a non-DQS capture-based scheme, the capture clock captures the
input DQ pin data (the DQS signal is unused, and there is no resynchronization
clock).

To correctly calibrate resynchronization (or capture) clock phase, based on a data
valid window, requires the following degrees of phase sweep:

■ 720° for all half-rate interfaces and full-rate DQS-based capture PHY

■ 360° for a full-rate non-DQS capture PHY
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 5: Functional Description—ALTMEMPHY 5–5
Block Description
Step 4: Read and Write Datapath Timing
In this step, the sequencer calculates the calibrated write latency (the ctl_wlat
signal) between write commands and write data. The sequencer also calculates the
calibrated read latency (the ctl_rlat signal) between the issue of a read command
and valid read data. Both read and write latencies are output to a controller. In
addition to advertising the read latency, the sequencer calibrates a read data valid
signal to the delay between a controller issuing a read command and read data
returning. The controller can use the read data valid signal in place of the advertised
read latency, to determine when the read data is valid.

Step 5: Address and Command Clock Cycle
For half-rate interfaces, this step also optionally adds an additional memory clock
cycle of delay from the address and command path. This delay aligns write data to
memory commands given in the controller clock domain. If you require this
additional delay, this step reruns the calibration (“Step 2: Write Training Patterns” to
“Step 4: Read and Write Datapath Timing”) to calibrate to the new setting.

Step 6: Postamble
This step sets the correct clock cycle for the postamble path. The aim of the postamble
path is to eliminate false DQ data capture because of postamble glitches on the DQS
signal, through an override on DQS. This step ensures the correct clock cycle timing of
the postamble enable (override) signal.

1 Postamble is only required for DQS-based capture schemes.

Step 7: Prepare for User Mode
In this step, the PHY applies user mode register settings and performs periodic VT
tracking.

VT Tracking

VT tracking is a background process that tracks the voltage and temperature
variations to maintain the relationship between the resynchronization or capture
clock and the data valid window that are achieved at calibration.

When the data calibration phase is completed, the sequencer issues the mimic
calibration sequence every 128 ms.

During initial calibration, the mimic path is sampled using the measure clock
(measure_clk has a _1x or _2x suffix, depending whether the ALTMEMPHY is a
full-rate or half-rate design). The sampled value is then stored by the sequencer. After
a sample value is stored, the sequencer uses the PLL reconfiguration logic to change
the phase of the measure clock by one VCO phase tap. The control sequencer then
stores the sampled value for the new mimic path clock phase. This sequence
continues until all mimic path clock phase steps are swept. After the control
sequencer stores all the mimic path sample values, it calculates the phase which
corresponds to the center of the high period of the mimic path waveform. This
reference mimic path sampling phase is used during the VT tracking phase.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

5–6 Chapter 5: Functional Description—ALTMEMPHY
Block Description
In user mode, the sequencer periodically performs a tracking operation as defined in
the tracking calibration description. At the end of the tracking calibration operation,
the sequencer compares the most recent optimum tracking phase against the reference
sampling phase. If the sampling phases do not match, the mimic path delays have
changed due to voltage and temperature variations.

When the sequencer detects that the mimic path reference and most recent sampling
phases do not match, the sequencer uses the PLL reconfiguration logic to change the
phase of the resynchronization clock by the VCO taps in the same direction. This
allows the tracking process to maintain the near-optimum capture clock phase setup
during data tracking calibration as voltage and temperature vary over time.

The relationship between the resynchronization or capture clock and the data valid
window is maintained by measuring the mimic path variations due to the VT
variations and applying the same variation to the resynchronization clock.

Mimic Path

The mimic path mimics the FPGA elements of the round-trip delay, which enables the
calibration sequencer to track delay variation due to VT changes during the memory
read and write transactions without interrupting the operation of the ALTMEMPHY
megafunction.

The assumption made about the mimic path is that the VT variation on the round trip
delay path that resides outside of the FPGA is accounted for in the board skew and
memory parameters entered in the MegaWizard Plug-In Manager. For the write
direction, any VT variation in the memory devices is accounted for by timing analysis.

Figure 5–3 shows the mimic path in Arria GX, Cyclone III, Stratix II, and Stratix II GX
devices, which mimics the delay of the clock outputs to the memory as far as the pads
of the FPGA and the delay from the input DQS pads to a register in the FPGA core.
During the tracking operation, the sequencer measures the delay of the mimic path by
varying the phase of the measure clock. Any change in the delay of the mimic path
indicates a corresponding change in the round-trip delay, and a corresponding
adjustment is made to the phase of the resynchronization or capture clock.

1 The mimic path in Arria II GX, Stratix III and Stratix IV devices is similar to
Figure 5–3. The only difference is that the mem_clk[0] pin is generated by DDIO
register; mem_clk_n[0] is generated by signal splitter.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 5: Functional Description—ALTMEMPHY 5–7
Block Description
Address and Command Datapath
This topic describes the address and command datapath.

Arria GX, Arria II GX, Cyclone III, HardCopy II, Stratix II, and Stratix II GX Devices
The address and command datapath for full-rate designs is similar to half-rate
designs, except that the address and command signals are all asserted for one
memory clock cycle only (1T signaling).

The address and command datapath is responsible for taking the address and
command outputs from the controller and converting them from half-rate clock to
full-rate clock. Two types of addressing are possible:

■ 1T (full rate)—The duration of the address and command is a single memory clock
cycle (mem_clk_2x, Figure 5–4). This applies to all address and command signals
in full-rate designs or mem_cs_n, mem_cke, and mem_odt signals in half-rate
designs.

■ 2T (half rate)—The duration of the address and command is two memory clock
cycles. For half-rate designs, the ALTMEMPHY megafunction supports only a
burst size of four, which means the burst size on the local interface is always set to
1. The size of the data is 4n-bits wide on the local side and is n-bits wide on the
memory side. To transfer all the 4n-bits at the double data rate, two memory-clock
cycles are required. The new address and command can be issued to memory
every two clock cycles. This scheme applies to all address and command signals,
except for mem_cs_n, mem_cke, and mem_odt signals in half-rate mode.

f Refer to Table 5–4 in “PLL” on page 5–9 to see the frequency relationship of
mem_clk_2x with the rest of the clocks.

Figure 5–4 shows a 1T chip select signal (mem_cs_n), which is active low, and
disables the command in the memory device. All commands are masked when the
chip-select signal is inactive. The mem_cs_n signal is considered part of the command
code.

Figure 5–3. Mimic Path in Arria GX, Arria II GX, Cyclone III, Stratix II, and Stratix II GX Devices

mem_clk[0]

datain 1

ddiodatain 0

outclk

ALTPLL

mem_clk_2x

measure_clk

mimic_data_in

measure_clk
alt_mem_phy_mimic

combout
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

5–8 Chapter 5: Functional Description—ALTMEMPHY
Block Description
The command interface is made up of the signals mem_ras_n, mem_cas_n,
mem_we_n, mem_cs_n, mem_cke, and mem_odt.

The waveform in Figure 5–4 shows a NOP command followed by back-to-back write
commands. The following sequence corresponds with the numbered items in
Figure 5–4:

1. The commands are asserted either on the rising edge of ac_clk_2x. The
ac_clk_2x is derived from either mem_clk_2x (0°), write_clk_2x (270°), or
the inverted variations of those two clocks (for 180° and 90° phase shifts). This
depends on the setting of the address and command clock in the ALTMEMPHY
MegaWizard interface. Refer to “Address and Command Datapath” on page 5–7
for illustrations of this clock in relation to the mem_clk_2x or write_clk_2x
signals.

2. All address and command signals (except for mem_cs_ns, mem_cke, and
mem_odt signals) remain asserted on the bus for two clock cycles, allowing
sufficient time for the signals to settle.

3. The mem_cs_n, mem_cke, and mem_odt signals are asserted during the second
cycle of the address/command phase. By asserting the chip-select signal in
alternative cycles, back-to-back read or write commands can be issued.

4. The address is incremented every other ac_clk_2x cycle.

1 The ac_clk_2x clock is derived from either mem_clk_2x (when you choose 0° or
180° phase shift) or write_clk_2x (when you choose 90° or 270° phase shift).

1 The address and command clock can be 0, 90, 180, or 270° from the system clock (refer
to “Address and Command Datapath” on page 5–7).

Figure 5–4. Arria GX, Arria II GX, Cyclone II, HardCopy III, Stratix II, and Stratix II GX Address and Command Datapath

Command

ac_clk_2x

mem_addr

mem_ba

mem_cs_n

mem_ras_n

mem_cas_n

mem_we_n

mem_dq

[1] [2] [4] [4] [4]

NOP NOP

[3]

mem-dqs

PHY Command Outputs

[3][1]

NOP NOPPCH ACT WR

0000

00

0001 0000 0004 0008 000C 0010 0000
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 5: Functional Description—ALTMEMPHY 5–9
Block Description
Stratix III and Stratix IV Devices
The address and command clock in Stratix III and Stratix IV devices is one of the PLL
dedicated clock outputs whose phase can be adjusted to meet the setup and hold
requirements of the memory clock. The Stratix III address and command clock,
ac_clk_1x, is half-rate. The command and address pins use the DDIO output
circuitry to launch commands from either the rising or falling edges of the clock. The
chip select (cs_n) pins and ODT are only enabled for one memory clock cycle and can
be launched from either the rising or falling edge of ac_clk_1x signal, while the
address and other command pins are enabled for two memory clock cycles and can
also be launched from either the rising or falling edge of ac_clk_1x signal.

The full-rate address and command datapath is the same as that of the half-rate
address and command datapath, except that there is no full-rate to half-rate
conversion in the IOE. The address and command signals are full-rate here.

Clock and Reset Management
This topic describes the clock and reset management for specific device types.

Arria GX, Arria II GX, HardCopy II, Stratix II, and Stratix II GX Devices
The clocking and reset block is responsible for clock generation, reset management,
and phase shifting of clocks. It also has control of clock network types that route the
clocks.

Clock Management

The clock management feature allows the ALTMEMPHY megafunction to work out
the optimum resynchronization clock phase during calibration, and track the system
voltage and temperature (VT) variations. Clock management is achieved by
phase-shifting the clocks relative to each other.

Clock management circuitry is implemented by the following device resources:

■ PLL

■ PLL reconfiguration

■ DLL

PLL

The ALTMEMPHY MegaWizard interface automatically generates an ALTPLL
megafunction instance. The ALTPLL megafunction is responsible for generating the
different clock frequencies and relevant phases used within the ALTMEMPHY
megafunction.

The minimum PHY requirement is to have 16 phases of the highest frequency clock.
The PLL uses the With No Compensation option to minimize jitter.

You must choose a PLL and PLL input clock pin that are located on the same side of
the memory interface to ensure minimal jitter. Cascaded PLLs are not recommended
for DDR/DDR2 SDRAM interfaces as jitter can accumulate with the use of cascaded
PLLs causing the memory output clock to violate the memory device jitter
specification. Also, ensure that the input clock to the PLL is stable before the PLL
locks. If not, you must perform a manual PLL reset and relock the PLL to ensure that
the phase relationship between all PLL outputs are properly set.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

5–10 Chapter 5: Functional Description—ALTMEMPHY
Block Description
1 If the design cascades PLLs, the source (upstream) PLL should have a low-bandwidth
setting; the destination (downstream) PLL should have a high-bandwidth setting.
Adjacent PLLs cascading is recommended to reduce clock jitters.

f For more information about the VCO frequency range and the available phase shifts,
refer to the PLLs in Stratix II and Stratix II GX Devices chapter in the respective device
family handbook.

Table 5–4 shows the clock outputs for Arria GX, HardCopy II, Stratix II, and
Stratix II GX devices.

Table 5–1. DDR/DDR2 SDRAM Clocking in Arria GX, HardCopy II, Stratix II, and Stratix II GX Devices (Part 1 of 3)

Design
Rate Clock Name

Postscale
Counter

Phase
(Degrees) Clock Rate

Clock
Network Type Notes

Half-rate phy_clk_1x

and

aux_half_rate_
clk

C0 0° Half-Rate Global The only clocks
parameterizable for the
ALTMEMPHY
megafunction. These
clocks also feed into a
divider circuit to provide
the PLL scan_clk
signal (for
reconfiguration) that must
be lower than 100 MHz.

mem_clk_2x

and

aux_full_
rate_clk

C1 0° Full-Rate Global Clocks DQS and as a
reference clock for the
memory devices.

Full rate aux_half_rate_
clk

C0 0° Half-Rate Global The only clock
parameterizable for the
ALTMEMPHY
megafunction. This clock
also feeds into a divider
circuit to provide the PLL
scan_clk signal (for
reconfiguration) that must
be lower than 100 MHz.

phy_clk_1x (1)

and

mem_clk_2x

and

aux_full_
rate_clk

C1 0° Full-Rate Global Clocks DQS and as a
reference clock for the
memory devices.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 5: Functional Description—ALTMEMPHY 5–11
Block Description
Half-rate
and full rate

write_clk_2x C2 –90° Full-Rate Global Clocks the data out of the
DDR I/O (DDIO) pins in
advance of the DQS strobe
(or equivalent). As a
result, its phase leads that
of the mem_clk_2x by
90°.

Half-rate
and full rate

mem_clk_ext_2x C3 > 0° Full-Rate Dedicated This clock is only used if
the memory clock
generation uses dedicated
output pins. Applicable
only in HardCopy II or
Stratix II prototyping for
HardCopy II designs.

Half-rate
and full rate

resync_clk_2x C4 Calibrated Full-Rate Regional Clocks the
resynchronization
registers after the capture
registers. Its phase is
adjusted to the center of
the data valid window
across all the
DQS-clocked DDIO
groups.

Half-rate
and full rate

measure_clk_2x C5 Calibrated Full-Rate Regional (2) This clock is for VT
tracking. This free-running
clock measures relative
phase shifts between the
internal clock(s) and those
being fed back through a
mimic path. As a result,
the ALTMEMPHY
megafunction can track
VT effects on the FPGA
and compensate for the
effects.

Table 5–1. DDR/DDR2 SDRAM Clocking in Arria GX, HardCopy II, Stratix II, and Stratix II GX Devices (Part 2 of 3)

Design
Rate Clock Name

Postscale
Counter

Phase
(Degrees) Clock Rate

Clock
Network Type Notes
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

5–12 Chapter 5: Functional Description—ALTMEMPHY
Block Description
For full-rate clock and reset management refer to Table 5–4. The PLL is configured
exactly in the same way as in half-rate designs. The PLL information and restriction
from half-rate designs also applies.

1 The phy_clk_1x clock is now full-rate, despite the “1x” naming convention.

You must choose a PLL and PLL input clock pin that are located on the same side of
the memory interface to ensure minimal jitter. Cascaded PLLs are not recommended
for DDR/DDR2 SDRAM interfaces as jitter can accumulate with the use of cascaded
PLLs causing the memory output clock to violate the memory device jitter
specification. Also, ensure that the input clock to the PLL is stable before the PLL
locks. If not, you must perform a manual PLL reset and relock the PLL to ensure that
the phase relationship between all PLL outputs are properly set. The PLL restrictions
in half-rate designs also applies to full-rate designs.

Half-rate
and full rate

ac_clk_2x — 0,
90°,180°,

270°

Full-Rate Global The ac_clk_2x clock is
derived from either
mem_clk_2x (when you
choose 0° or 180° phase
shift) or
write_clk_2x (when
you choose 90° or 270°
phase shift). Refer to
“Address and Command
Datapath” on page 5–7 for
illustrations of the address
and command clock
relationship with the
mem_clk_2x or
write_clk_2x
signals.

Notes to Table 5–4:

(1) In full-rate designs a _1x clock may run at full rate clock.
(2) This clock should be of the same clock network clock as the resync_clk_2x clock.

Table 5–1. DDR/DDR2 SDRAM Clocking in Arria GX, HardCopy II, Stratix II, and Stratix II GX Devices (Part 3 of 3)

Design
Rate Clock Name

Postscale
Counter

Phase
(Degrees) Clock Rate

Clock
Network Type Notes
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 5: Functional Description—ALTMEMPHY 5–13
Block Description
Table 5–2 shows the clock outputs that Arria II GX devices use.

Table 5–2. DDR/DDR2 SDRAM Clocking in Arria II GX Devices (Part 1 of 2)

Design
Rate Clock Name (1)

Postscale
Counter

Phase
(Degrees) Clock Rate

Clock
Network Type Notes

Half-rate phy_clk_1x

and

aux_half_rate_
clk

C0 0° Half-Rate Global The only clock
parameterizable for the
ALTMEMPHY
megafunction. This clock
also feeds into a divider
circuit to provide the PLL
scan_clk signal (for
reconfiguration) that must
be lower than 100 MHz.

mem_clk_2x

and

aux_full_
rate_clk

C1 0° Full-Rate Global Clocks DQS and as a
reference clock for the
memory devices.

Full rate aux_half_rate_
clk

C0 0° Half-Rate Global The only clock
parameterizable for the
ALTMEMPHY
megafunction. This clock
also feeds into a divider
circuit to provide the PLL
scan_clk signal (for
reconfiguration) that must
be lower than 100 MHz.

phy_clk_1x (1)

and

mem_clk_2x

and

aux_full_
rate_clk

C1 0° Full-Rate Global Clocks DQS and as a
reference clock for the
memory devices.

Half-rate
and full rate

Unused C2 — — — —

Half-rate
and full rate

write_clk_2x C3 –90° Full-Rate Global Clocks the data out of the
DDR I/O (DDIO) pins in
advance of the DQS strobe
(or equivalent). As a
result, its phase leads that
of the mem_clk_2x by
90°.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

5–14 Chapter 5: Functional Description—ALTMEMPHY
Block Description
Half-rate
and full rate

ac_clk_2x C3 90° Full-Rate Global Address and command
clock.

The ac_clk_2x clock is
derived from either
mem_clk_2x (when you
choose 0° or 180° phase
shift) or
write_clk_2x (when
you choose 90° or 270°
phase shift). Refer tp
“Address and Command
Datapath” on page 5–7 for
illustrations of the address
and command clock
relationship with the
mem_clk_2x or
write_clk_2x
signals.

Half-rate
and full rate

cs_n_clk_2x C3 90° Full-Rate Global Memory chip-select clock.

The cs_n_clk_2x
clock is derived from
ac_clk_2x.

Half-rate
and full rate

resync_clk_2x C4 Calibrated Full-Rate Global Clocks the
resynchronization
registers after the capture
registers. Its phase is
adjusted to the center of
the data valid window
across all the
DQS-clocked DDIO
groups.

Half-rate
and full rate

measure_clk_2x C5 Calibrated Full-Rate Global This clock is for VT
tracking. This free-running
clock measures relative
phase shifts between the
internal clock(s) and those
being fed back through a
mimic path. As a result,
the ALTMEMPHY
megafunction can track
VT effects on the FPGA
and compensate for the
effects.

Note to Table 5–2:

(1) In full-rate designs, a _1x clock may run at full-rate clock rate.

Table 5–2. DDR/DDR2 SDRAM Clocking in Arria II GX Devices (Part 2 of 2)

Design
Rate Clock Name (1)

Postscale
Counter

Phase
(Degrees) Clock Rate

Clock
Network Type Notes
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 5: Functional Description—ALTMEMPHY 5–15
Block Description
PLL Reconfiguration

The ALTMEMPHY MegaWizard interface automatically generates the PLL
reconfiguration block by instantiating an ALTPLL_RECONFIG variation for Stratix II
and Stratix II GX devices to match the generated ALTPLL megafunction instance. The
ALTPLL_RECONFIG megafunction varies the resynchronization clock phase and the
measure clock phase.

1 The ALTMEMPHY MegaWizard interface does not instantiate an
ALTPLL_RECONFIG megafunction for Arria II GX devices, as this device uses the
dedicated phase stepping I/O on the PLL.

DLL

A DLL instance is included in the generated ALTMEMPHY variation. When using the
DQS to capture the DQ read data, the DLL center-aligns the DQS strobe to the DQ
data. The DLL settings depend on the interface clock frequency.

f For more information, refer to the External Memory Interfaces chapter in the device
handbook for your target device family.

Reset Management

The reset management block is responsible for the following:

■ Provides appropriately timed resets to the ALTMEMPHY megafunction datapaths
and functional modules

■ Performs the reset sequencing required for different clock domains

■ Provides reset management of PLL and PLL reconfiguration functions

■ Manages any circuit-specific reset sequencing

Each reset is an asynchronous assert and synchronous deassert on the appropriate
clock domain. The reset management design uses a standard two-register
synchronizer to avoid metastability. A unique reset metastability protection circuit for
the clock divider circuit is required because the phy_clk domain reset metastability
protection flipflops have fan-in from the soft_reset_n input, and so these registers
cannot be used.

Figure 5–5 shows the ALTMEMPHY reset management block for Arria GX,
Arria II GX, HardCopy II, Stratix II, and Stratix II GX devices. The pll_ref_clk
signal goes directly to the PLL, eliminating the need for global clock network routing.
If you are using the pll_ref_clk signal to feed other parts of your design, you must
use a global clock network for the signal. If pll_reconfig_soft_reset_en signal
is held low, the PLL reconfig is not reset during a soft reset, which allows designs
targeting HardCopy II devices to hold the PHY in reset while still accessing the PLL
reconfig block. However, designs targeting Arria GX, Arria II GX, or Stratix II devices
are expected to tie the pll_reconfig_soft_en shell to VCC to enable PLL reconfig
soft resets.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

5–16
Chapter 5:

Functional Description—
ALTM

EM
PHY

Block Description

DDR and DDR2 SDRAM
 High-Perform

ance Controllers and ALTM
EM

PHY IP User Guide
©

 February 2010
Altera Corporation

 is responsible for generating all the

he PLL uses Normal mode, unlike other
do not require to set the PLL in the With
rate timing results.

 GX Devices (Note 1)

Q

QSET

CLR

D

Q

QSET

CLR

D

phy_clk_out

reset_request_n

phy_internal_reset_n

reset_master_ams

global_pre_clear

Reset
pipes

PHY resets
Cyclone III Devices
Clock management circuitry is implemented using the ALTPLL megafunction.

The ALTPLL megafunction is instantiated within the ALTMEMPHY megafunction and
clocks used by the ALTMEMPHY megafunction and the memory controller.

The minimum PHY requirement is to have 48 phases of the highest frequency clock. T
device families. Cyclone III PLL in normal mode emits low jitter already such that you
no compensation option. Changing the PLL compensation mode may result in inaccu

Figure 5–5. ALTMEMPHY Reset Management Block for Arria GX, Arria II GX, Cyclone III, HardCopy II, Stratix II, and Stratix II

Note to Figure 5–5:

(1) The reset circuit for Arria II GX and Cyclone III devices have no PLL reconfig block.

PLL

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

PLL
reconfig

Q

QSET

CLR

D

soft_reset_n

global_reset_n

pll_ref_clk

areset (active HIGH)

pll_reconfig_reset_ams_n

pll_reconfig_reset_ams_n_r

refclk

c0

locked

scan_clk

reset

pll_reset

pll_locked

Optional
reset_request_n
edge detect and
reset counter

Another
system
clock

clk_divider_reset_n

clk
divider
circuit

phy_clk

reset_n

scan_clk

clk_div_reset_ams_n

clk_div_reset_ams_n_r

pll_reconfig_soft_reset_en

pll_reconfig_reset_n

global_or_soft_reset_n

Chapter 5: Functional Description—ALTMEMPHY 5–17
Block Description
You must choose a PLL and PLL input clock pin that are located on the same side of
the memory interface to ensure minimal jitter. Cascaded PLLs are not recommended
as jitter can accumulate with the use of cascaded PLLs causing the memory output
clock to violate the memory device jitter specification. Also, ensure that the input
clock to the PLL is stable before the PLL locks. If not, you must perform a manual PLL
reset and relock the PLL to ensure that the phase relationship between all PLL outputs
are properly set.

Table 5–3 lists the clocks generated by the ALTPLL megafunction.

Table 5–3. DDR/DDR2 SDRAM Clocking in Cyclone III Devices (Part 1 of 2) (Part 1 of 2)

Design
Rate Clock Name

Post-Scale
Counter

Phase
(Degrees)

Clock
Rate

Clock
Network

Type Notes

Half-rate phy_clk_1x

and

aux_half_rate_
clk

C0 0° Half-Rate Global The only half-rate clock
parameterizable for the
ALTMEMPHY megafunction to
be used by the controller. This
clock is not used in full-rate
controllers. This clock also
feeds into a divider circuit to
provide the PLL scan_clk
signal for reconfiguration.

mem_clk_2x

and

aux_full_
rate_clk

C1 0° Full-Rate Global Generates DQS signals and the
memory clock and to clock the
PHY in full-rate mode.

Full rate aux_half_rate_
clk

C0 0° Half-Rate Global The only half-rate clock
parameterizable for the
ALTMEMPHY megafunction to
be used by the controller. This
clock is not used in full-rate
controllers. This clock also
feeds into a divider circuit to
provide the PLL scan_clk
signal for reconfiguration.

phy_clk_1x

and

mem_clk_2x

and

aux_full_
rate_clk

C1 0° Full-Rate Global Generates DQS signals and the
memory clock and to clock the
PHY in full-rate mode.

Half-rate
and full rate

write_clk_2x C2 -90° Full-Rate Global Clocks the data (DQ) when you
perform a write to the memory.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

5–18 Chapter 5: Functional Description—ALTMEMPHY
Block Description
Reset Management

The reset management for Cyclone III devices is instantiated in the same way as it is
with Stratix II devices.

Stratix III and Stratix IV Devices
The clocking and reset block is responsible for clock generation, reset management,
and phase shifting of clocks. It also has control of clock network types that route the
clocks.

The ability of the ALTMEMPHY megafunction to work out the optimum phase
during calibration and to track voltage and temperature variation relies on phase
shifting the clocks relative to each other.

1 Certain clocks need to be phase shifted during the ALTMEMPHY megafunction
operation.

Clock management circuitry is implemented by using:

■ PLL

■ DLL

Half-rate
and full rate

resynch_clk_2x C3 Calibrated Full-Rate Global A full-rate clock that captures
and resynchronizes the
captured read data. The capture
and resynchronization clock has
a variable phase that is
controlled via the PLL
reconfiguration logic by the
control sequencer block.

Half-rate
and full rate

measure_clk_2x C4 Calibrated Full-Rate Global This clock is for VT tracking.
This free-running clock
measures relative phase shifts
between the internal clock(s)
and those being fed back
through a mimic path. As a
result, you can track VT effects
on the FPGA and compensate
for them.

Half-rate
and full rate

ac_clk_2x — 0°, 90°,
180°, 270°

Full-Rate Global This clock is derived from
mem_clk_2x when you
choose 0° or 180° phase shift)
or write_clk_2x (when you
choose 90° or 270° phase
shift), refer to “Address and
Command Datapath” on
page 5–7.

Table 5–3. DDR/DDR2 SDRAM Clocking in Cyclone III Devices (Part 2 of 2) (Part 2 of 2)

Design
Rate Clock Name

Post-Scale
Counter

Phase
(Degrees)

Clock
Rate

Clock
Network

Type Notes
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 5: Functional Description—ALTMEMPHY 5–19
Block Description
PLL

The ALTMEMPHY MegaWizard interface automatically generates an ALTPLL
megafunction instance. The ALTPLL megafunction is responsible for generating the
different clock frequencies and relevant phases used within the ALTMEMPHY
megafunction.

The device families available have different PLL capabilities. The minimum PHY
requirement is to have 16 phases of the highest frequency clock. The PLL uses With
No Compensation operation mode to minimize jitter. Changing the PLL
compensation mode may result in inaccurate timing results.

You must choose a PLL and PLL input clock pin that are located on the same side of
the device as the memory interface to ensure minimal jitter. Cascaded PLLs are not
recommended as jitter can accumulate, causing the memory output clock to violate
the memory device jitter specification. Also, ensure that the input clock to the PLL is
stable before the PLL locks. If not, you must perform a manual PLL reset (by driving
the global_reset_n signal low) and relock the PLL to ensure that the phase
relationship between all PLL outputs are properly set.

f For more information about the VCO frequency range and the available phase shifts,
refer to the Clock Networks and PLLs in Stratix III Devices chapter in volume 1 of the
Stratix III Device Handbook or the Clock Networks and PLLs in Stratix IV Devices chapter
in volume 1 of the Stratix IV Device Handbook.

For Stratix IV and Stratix III devices, the PLL reconfiguration is done using the
phase-shift inputs on the PLL instead of using the PLL reconfiguration megafunction.
Table 5–4 shows the Stratix IV and Stratix III PLL clock outputs.

Table 5–4. DDR2 SDRAM Clocking in Stratix IV and Stratix III Devices (Part 1 of 3)

Design Rate Clock Name (1)
Postscale
Counter

Phase
(Degrees) Clock Rate

Clock Network
Type Notes

Half-rate phy_clk_1x

and

aux_half_
rate_clk

C0 30 Half-Rate Global The only clock
parameterizable for the
ALTMEMPHY
megafunction. It is set to
30° to ensure proper
half-rate to full-rate
transfer for write data and
DQS. This clock also feeds
into a divider circuit to
provide the PLL
scan_clk signal for
reconfiguration.

aux_full_
rate_clk

C2 60 Full-Rate Global The aux_clk. The
60°-offset maintains edge
alignment with the offset
on phy_clk_1x.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

http://www.altera.com/literature/hb/stx3/stx3_siii51006.pdf
http://www.altera.com/literature/hb/stratix-iv/stx4_siv51005.pdf

5–20 Chapter 5: Functional Description—ALTMEMPHY
Block Description
Full-rate aux_half_

rate_clk

C0 0 Half-Rate Global The aux_clk.

phy_clk_1x

and

aux_full_
rate_clk

C2 0 Full-Rate Global The only clock
parameterizable for the
ALTMEMPHY
megafunction. This clock
also feeds into a divider
circuit to provide the PLL
scan_clk signal for
reconfiguration.

Half-rate and
full-rate

mem_clk_2x C1 0 Full-Rate Special Generates mem_clk that
provides the reference
clock for the DLL. A
dedicated routing resource
exists from the PLL to the
DLL, which you select with
the regional routing
resource for the
mem_clk using the
following attribute in the
HDL:
(-name
global_signal
dual_regional
_clock;
-to dll~DFFIN
-name
global_signal
off). If you use an
external DLL, apply this
attribute similarly to the
external DLL.

Half-rate and
full-rate

write_clk_

2x

C3 –90 Full-Rate Dual regional Clocks the data out of the
double data rate
input/output (DDIO) pins
in advance of the DQS
strobe (or equivalent). As
a result, its phase leads
that of the mem_clk_2x
clock by 90°.

Table 5–4. DDR2 SDRAM Clocking in Stratix IV and Stratix III Devices (Part 2 of 3)

Design Rate Clock Name (1)
Postscale
Counter

Phase
(Degrees) Clock Rate

Clock Network
Type Notes
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 5: Functional Description—ALTMEMPHY 5–21
Block Description
Clock and reset management for full-rate designs is similar to half-rate support (see
Table 5–4 on page 5–19). The PLL is configured exactly in the same way as for
half-rate support. The mem_clk_2x output acts as the PHY full-rate clock. Also,
instead of going through the I/O clock divider, the resync_clk_2x output is now
directly connected to the resynchronization registers. The rest of the PLL outputs are
connected in the same way as for half-rate support.

You must choose a PLL and PLL input clock pin that are located on the same side of
the device as the memory interface to ensure minimal jitter. Cascaded PLLs are not
recommended as jitter can accumulate, causing the memory output clock to violate
the memory device jitter specification. Also, ensure that the input clock to the PLL is
stable before the PLL locks. If not, you must perform a manual PLL reset (by driving
the global_reset_n signal low) and relock the PLL to ensure that the phase
relationship between all PLL outputs are properly set. The PLL restrictions in half-rate
designs also applies to full-rate designs.

DLL

DLL settings are set depending on the memory clock frequency of operation.

Half-rate and
full-rate

resync_clk_

2x

C4 Calibrated Full-Rate Dual regional This clock feeds the I/O
clock divider that then
clocks the
resynchronization
registers after the capture
registers. Its phase is
adjusted in the calibration
process. You can use an
inverted version of this
clock for postamble
clocking.

Half-rate and
full-rate

measure_clk
_1x (2)

C5 Calibrated Half-Rate Dual regional This clock is for VT
tracking. This free-running
clock measures relative
phase shifts between the
internal clock(s) and those
being fed back through a
mimic path. As a result,
the ALTMEMPHY
megafunction can track VT
effects on the FPGA and
compensate for the
effects.

Half-rate and
full-rate

ac_clk_1x C6 Set in the
GUI

Half-Rate Dual regional Address and command
clock.

Notes to Table 5–4:

(1) In full-rate designs a _1x clock may run at full-rate clock rate.
(2) This clock should be of the same clock network clock as the resync_clk_2x clock.

Table 5–4. DDR2 SDRAM Clocking in Stratix IV and Stratix III Devices (Part 3 of 3)

Design Rate Clock Name (1)
Postscale
Counter

Phase
(Degrees) Clock Rate

Clock Network
Type Notes
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

5–22 Chapter 5: Functional Description—ALTMEMPHY
Block Description
f For more information on the DLL, refer to the External Memory Interfaces in Stratix III
Devices chapter in volume 1 of the Stratix III Device Handbook and the External Memory
Interfaces in Stratix IV Devices chapter in volume 1 of the Stratix IV Device Handbook.

Reset Management

Figure 5–6 shows the main features of the reset management block for the DDR3
SDRAM PHY. You can use the pll_ref_clk input to feed the optional
reset_request_n edge detect and reset counter module. However, this requires the
pll_ref_clk signal to use a global clock network resource.

There is a unique reset metastability protection circuit for the clock divider circuit
because the phy_clk domain reset metastability protection registers have fan-in
from the soft_reset_n input so these registers cannot be used.

Read Datapath
This topic describes the read datapath.

Arria GX, Arria II GX, HardCopy II, Stratix II, and Stratix II GX Devices
The following section discusses support for DDR/DDR2 SDRAM for
Arria GX, Arria II GX, HardCopy II, Stratix II, and Stratix II GX devices.

The full-rate datapath is similar to the half-rate datapath. The full-rate datapath also
consists of a RAM with the same width as the data input (just like that of the
half-rate), but the width on the data output of the RAM is half that of the half-rate
PHY. The function of the RAM is to transfer the read data from the resynchronization
clock domain to the system clock domain.

Figure 5–6. ALTMEMPHY Reset Management Block for Stratix IV and Stratix III Devices

PLL

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

soft_reset_n

global_reset_n

pll_ref_clk

phy_clk_out

reset_request_n

phy_internal_reset_n

 areset
(active HIGH)

pll_reconfig_reset_ams_n

pll_reconfig_reset_ams_n_r

refclk

c0

locked

reset_master_ams global_pre_clear

Reset
Pipes

PHY resets

pll_reset

pll_locked

Internal reset signal
signal for the
PLL clock-domain
crossing registers

Optional
reset_request_n
edge detect and

reset counter, not
created by the PHY

clk_divider_reset_n

clk
divider
circuit

phy_clk

reset_n

scan_clk

clk_div_reset_ams_n

clk_div_reset_ams_n_r

pll_reconfig_reset_n

global_or_soft_reset_n

Another
system
clock
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

http://www.altera.com/literature/hb/stx3/stx3_siii51008.pdf
http://www.altera.com/literature/hb/stx3/stx3_siii51008.pdf
http://www.altera.com/literature/hb/stratix-iv/stx4_siv51005.pdf
http://www.altera.com/literature/hb/stratix-iv/stx4_siv51005.pdf

Chapter 5: Functional Description—ALTMEMPHY 5–23
Block Description
The read datapath logic is responsible for capturing data sent by the memory device
and subsequently aligning the data back to the system clock domain. The following
functions are performed by the read datapath:

1. Data capture and resynchronization

2. Data demultiplexing

3. Data alignment

Figure 5–7 shows the order of the functions performed by the read datapath, along
with the frequency at which the read data is handled.

Data Capture and Resynchronization

Data capture and resynchronization is the process of capturing the read data (DQ)
with the DQS strobe and re-synchronizing the captured data to an internal
free-running full-rate clock supplied by the enhanced phase-locked loop (PLL).

The resynchronization clock is an intermediate clock whose phase shift is determined
during the calibration stage.

Timing constraints ensure that the data resynchronization registers are placed close to
the DQ pins to achieve maximum performance. Timing constraints also further limit
skew across the DQ pins. The captured data (rdata_2x_p and rdata_2x_n) is
synchronized to the resynchronization clock (resync_clk_2x), refer to Figure 5–7.

Figure 5–7. DDR/DDR2 SDRAM Read Datapath in Arria GX, Arria II GX, HardCopy II, Stratix II, and Stratix II GX
Devices (Note 1)

Note to Figure 5–7:

(1) In Arria II GX devices the resynchronization register is implemented in IOE.

SDR SDR/HDRDDR

D Q D Q

Data Capture
IOE

D Q D Q

D Q

Data Resynchronization Data Demux and Alignment

rdata_1x[4n]
wr_data[2n] rd_data[4n]

wr_clk rd_clk

FIFO

phy_clk_1x

rdata_2x_p[n]

rdata_2x_n[n]

resync_clk_2x

DQ[n]

DQS
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

5–24 Chapter 5: Functional Description—ALTMEMPHY
Block Description
Data Demultiplexing

Data demultiplexing is the process of SDR data into HDR data. Data demultiplexing
is required to bring the frequency of the resynchronized data down to the frequency
of the system clock, so that data from the external memory device can ultimately be
brought into the FPGA DDR or DDR2 SDRAM controller clock domain. Before data
capture, the data is DDR and n-bit wide. After data capture, the data is SDR and 2n-bit
wide. After data demuxing, the data is HDR of width 4n-bits wide. The system clock
frequency is half the frequency of the memory clock.

Demultiplexing is achieved using a dual-port memory with a 2n-bit wide write-port
operating on the resynchronization clock (SDR) and a 4n-bit wide read-port operating
on the PHY clock (HDR). The basic principle of operation is that data is written to the
memory at the SDR rate and read from the memory at the HDR rate while
incrementing the read- and write-address pointers. As the SDR and HDR clocks are
generated, the read and write pointers are continuously incremented by the same
PLL, and the 4n-bit wide read data follows the 2n-bit wide write data with a constant
latency.

Read Data Alignment

Data alignment is the process controlled by the sequencer to ensure the correct
captured read data is present in the same half-rate clock cycle at the output of the read
data DPRAM. Data alignment is implemented using either M4K or M512K memory
blocks. The bottom of Figure 5–8 shows the concatenation of the read data into valid
HDR data.

Postamble Protection

The ALTMEMPHY megafunction provides the DQS postamble logic. The postamble
clock is derived from the resynchronization clock and is the negative edge of the
resynchronization clock. The ALTMEMPHY megafunction calibrates the
resynchronization clock such that it is in the center of the data-valid window. The
clock that controls the postamble logic, the postamble clock, is the negative edge of
the resynchronization clock. No additional clocks are required. Figure 5–8 shows the
relationship between the postamble clock and the resynchronization clock.

Figure 5–8. Relationship Between Postamble Clock and Resynchronization Clock (Note 1)

resync_clk_2x

postamble_clk

H1 H2 L2L1

dqs (90˚ shifted)

dq

Data input to resync reg's

ARST at postamble reg's

H1L1 H2L2
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 5: Functional Description—ALTMEMPHY 5–25
Block Description
f For more information about the postamble circuitry, refer to the External Memory
Interfaces chapter in the Stratix II Device Handbook.

Cyclone III Devices
Figure 5–9 shows the Cyclone III read datapath for a single DQ pin. The diagram
shows a half-rate read path where four data bits are produced for each DQ pin. Unlike
Stratix® II and Stratix III devices, data capture is entirely done in the core logic
because the I/O element (IOE) does not contain DDIO capture registers (nonDQS
capture).

The full-rate read datapath for Cyclone III devices is similar to the half-rate
Cyclone III implementation, except that the data is read out of the FIFO buffer with a
full-rate clock instead of a half-rate clock.

Capture and Pipelining

The DDR and DDR2 SDRAM read data is captured using registers in the Cyclone III
FPGA core. These capture registers are clocked using the capture clock
(resynch_clk_2x). The captured read data generates two data bits per DQ pin; one
data bit for the read data captured by the rising edge of the capture clock and one data
bit for the read data captured by the falling edge of the capture clock.

After the read data has been captured, it may be necessary to insert registers in the
read datapath between the capture registers and the read data FIFO buffer to help
meet timing. These registers are known as pipeline registers and are clocked off the
same clock used by the capture registers, the capture clock (resync_clk_2x).

Note to Figure 5–8:

(1) resync_clk_2x is delayed further to allow for the I/O element (IOE) to core transition time.

Figure 5–8. Relationship Between Postamble Clock and Resynchronization Clock (Note 1)

Figure 5–9. Cyclone III Read Datapath

DQ

resync_clk_2x

FIFO

wr_data rd_data
4-bits

phy_clk

read_data

Data Capture Data Pipeline Registers Data Demux & Alignment

D Q D Q

D Q D Q D Q
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

http://www.altera.com/literature/hb/stx2/stx2_sii52003.pdf
http://www.altera.com/literature/hb/stx2/stx2_sii52003.pdf

5–26 Chapter 5: Functional Description—ALTMEMPHY
Block Description
Data Demultiplexing

The data demultiplexing for Cyclone III devices is instantiated in the same way as it is
with Stratix II devices.

Postamble Protection

Postamble protection circuitry is not required in the Cyclone III device
implementation as DQS mode capture of the DQ data is not supported. The data
capture is done using the clock (resync_clk_2x) generated from the ALTPLL
megafunction.

Stratix III and Stratix IV Devices
Stratix IV and Stratix III devices support half-rate or full-rate DDR/DDR2 SDRAM.

The Stratix IV and Stratix III read datapath (Figure 5–10) consists of two main blocks:

■ Data capture, resynchronization, and demultiplexing

■ Read datapath logic (read datapath)

Data Capture, Resynchronization, and Demultiplexing

In Stratix IV and Stratix III devices, the smart interface module in the IOE performs
the following tasks:

■ Captures the data

■ Resynchronizes the captured data from the DQS domain to the resynchronization
clock (resync_clk_1x) domain

■ Converts the resynchronized data into half-rate data, which is performed by
feeding the resynchronized data into the HDR conversion block within the IOE,
which is clocked by the half-rate version of the resynchronization clock. The
resync_clk_1x signal is generated from the I/O clock divider module based on
the resync_clk_2x signal from the PLL.

Figure 5–10. DDR/DDR2 SDRAM Data Capture and Read Data Mapping in Stratix IV and Stratix III Devices

Note to Figure 5–10:

(1) This figure shows a half-rate variation. For a full-rate controller, dio_radata2_1x and dio_rdata3_1x are unconnected.

Dual Port RAM

Read Datapath
Data Capture, Resynchronization,
and Data Demultiplexing

mem_dq

dio_rdata3_1x

IOE

mem_dqs

mem_dqsn

dio_rdata2_1x

dio_rdata1_1x

dio_rdata0_1x

resync_clk_1x

4n bits
wr_data

wr_clk

rd_data

rd_clk

ctl_rdata

ram_rdata_1x[4n]

phy_clk_1x

Data
Mapping

Logic
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 5: Functional Description—ALTMEMPHY 5–27
Block Description
f For more information about IOE registers, refer to the External Memory Interfaces in
Stratix III Devices chapter in volume 1 of the Stratix III Device Handbook and the
External Memory Interfaces in Stratix IV Devices chapter in volume 1 of the Stratix IV
Device Handbook.

Data Resynchronization

The read datapath block performs the following two tasks:

1. Transfers the captured read data (rdata[n]_1x) from the half-rate
resynchronization clock (resync_clk_1x) domain to the half-rate system clock
(phy_clk_1x) domain using DPRAM. Resynchronized data from the FIFO buffer
is shown as ram_data_1x.

2. Reorders the resynchronized data (ram_rdata_1x) into ctl_mem_rdata.

The full-rate datapath is similar to the half-rate datapath, except that the
resynchronization FIFO buffer converts from the full-rate resynchronization clock
domain (resync_clk_2x) to the full-rate PHY clock domain, instead of converting it
to the half-rate PHY clock domain as in half-rate designs.

Postamble Protection

A dedicated postamble register controls the gating of the shifted DQS signal that
clocks the DQ input registers at the end of a read operation. This ensures that any
glitches on the DQS input signals at the end of the read postamble time do not cause
erroneous data to be captured as a result of postamble glitches. The postamble path is
also calibrated to determine the correct clock cycle, clock phase shift, and delay chain
settings. You can see the process in simulation if you choose Full calibration (long
simulation time) mode in the MegaWizard Plug-In Manager.

f For more information about the postamble protection circuitry, refer to the External
Memory Interfaces in Stratix III Devices chapter in volume 1 of the Stratix III Device
Handbook and the External Memory Interfaces in Stratix IV Devices chapter in volume 1
of the Stratix IV Device Handbook.

Write Datapath
This topic describes the write datapath.

Arria GX, Arria II GX, Cyclone III, HardCopy II, Stratix II, and Stratix II GX Devices
The write datapath logic efficiently transfers data from the HDR memory controller to
DDR SDRAM-based memories. The write datapath logic consists of:

■ DQ and DQ output-enable logic

■ DQS and DQS output-enable logic

■ Data mask (DM) logic

The memory controller interface outputs 4n-bit wide data (ctl_wdata[4n]) at
half-rate frequency. Figure 5–11 shows that the HDR write data (ctl_wdata[4n]) is
clocked by the half-rate clock phy_clk_1x and is converted into SDR which is
represented by wdp_wdata_h and wdp_wdata_l and clocked by the full-rate clock
write_clk_2x.

The DQ IOEs convert 2-n SDR bits to n-DDR bits.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

http://www.altera.com/literature/hb/stx3/stx3_siii51008.pdf
http://www.altera.com/literature/hb/stratix-iv/stx4_siv51007.pdf
http://www.altera.com/literature/hb/stx3/stx3_siii51008.pdf
http://www.altera.com/literature/hb/stratix-iv/stx4_siv51007.pdf

5–28 Chapter 5: Functional Description—ALTMEMPHY
Block Description
The write datapath for full-rate PHYs is similar to the half-rate PHY. The IOE block is
identical to the half-rate PHY. The latency of the write datapath in the full-rate PHY is
less than in the half-rate PHY because the full-rate PHY does not have the
half-rate-to-full-rate conversion logic.

Stratix III and Stratix IV Devices
The memory controller interface outputs 4 n-bit wide data (ctl_wdata) at
phy_clk_1x frequency. The write data is clocked by the system clock phy_clk_1x
at half data rate and reordered into HDR of width 4 n-bits represented in Figure 5–12
by wdp_wdata3_1x, wdp_wdata2_1x, wdp_wdata1_1x, and wdp_wdata0_1x.

All of the write datapath registers in the Stratix IV and Stratix III devices are clocked
by the half-rate clock, phy_clk_1x.

Figure 5–11. DDR/DDR2 SDRAM Write Datapath in Arria GX, Arria II GX, Cyclone III, HardCopy II, Stratix II, and Stratix II GX
Devices

Write DatapathStratix II IOE

wdp_wdata_l

phy_clk_1x (ctl_clk)

DQ

DQ

OE

DQ[n]

write_clk_2x

ctl_wdata[4n]

write_clk_2x

Data
Multiplexing

wdp_wdata_h

Figure 5–12. DDR and DDR2 SDRAM Write Datapath in Stratix IV and Stratix III Devices

Data
Ordering

Data Ordering
HDR to DDR
Conversion

mem_dq Stratix III
IOE

write_clk_2x

phy_clk_1x

ctl_wdata[4n]

phy_clk_1x

wdp_wdata3_1x

wdp_wdata2_1x
wdp_wdata1_1x

wdp_wdata0_1x
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 5: Functional Description—ALTMEMPHY 5–29
ALTMEMPHY Signals
1 For full-rate controllers, phy_clk_1x runs at full rate and there are only two bits of
wdata.

The write datapath for full-rate PHYs is similar to the half-rate PHY. The IOE block is
identical to the half-rate PHY. The latency of the write datapath in the full-rate PHY is
less than in the half-rate PHY because the full-rate PHY does not have half-rate to
full-rate conversion logic.

f For more information about the Stratix III I/O structure, refer to the External Memory
Interfaces in Stratix III Devices chapter in volume 1 of the Stratix III Device Handbook and
the External Memory Interfaces in Stratix IV Devices chapter in volume 1 of the Stratix IV
Device Handbook.

ALTMEMPHY Signals
This section describes the ALMEMPHY megafunction ports for AFI variants.

Table 5–5 through Table 5–7 show the signals.

1 Signals with the prefix mem_ connect the PHY with the memory device; signals with
the prefix ctl_ connect the PHY with the controller.

The signal lists include the following signal groups:

■ I/O interface to the SDRAM devices

■ Clocks and resets

■ External DLL signals

■ User-mode calibration OCT control

■ Write data interface

■ Read data interface

■ Address and command interface

■ Calibration control and status interface

■ Debug interface

Table 5–5. Interface to the SDRAM Devices (Note 1)

Signal Name Type Width (2) Description

mem_addr Output MEM_IF_ROWADDR_WIDTH The memory row and column address bus.

mem_ba Output MEM_IF_BANKADDR_WIDTH The memory bank address bus.

mem_cas_n Output 1 The memory column address strobe.

mem_cke Output MEM_IF_CS_WIDTH The memory clock enable.

mem_clk Bidirectional MEM_IF_CLK_PAIR_COUNT The memory clock, positive edge clock. (3)

mem_clk_n Bidirectional MEM_IF_CLK_PAIR_COUNT The memory clock, negative edge clock.

mem_cs_n Output MEM_IF_CS_WIDTH The memory chip select signal.

mem_dm Output MEM_IF_DM_WIDTH The optional memory DM bus.

mem_dq Bidirectional MEM_IF_DWIDTH The memory bidirectional data bus.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

http://www.altera.com/literature/hb/stx3/stx3_siii51008.pdf
http://www.altera.com/literature/hb/stx3/stx3_siii51008.pdf
http://www.altera.com/literature/hb/stratix-iv/stx4_siv51005.pdf

5–30 Chapter 5: Functional Description—ALTMEMPHY
ALTMEMPHY Signals
mem_dqs Bidirectional MEM_IF_DWIDTH/
MEM_IF_DQ_PER_DQS

The memory bidirectional data strobe bus.

mem_dqsn Bidirectional MEM_IF_DWIDTH/
MEM_IF_DQ_PER_DQS

The memory bidirectional data strobe bus.

mem_odt Output MEM_IF_CS_WIDTH The memory on-die termination control signal.

mem_ras_n Output 1 The memory row address strobe.

mem_reset_n Output 1 The memory reset signal.

mem_we_n Output 1 The memory write enable signal.

Notes to Table 5–5:

(1) Connected to I/O pads.
(2) Refer to Table 5–8 for parameter description.
(3) Output is for memory device, and input path is fed back to ALTMEMPHY megafunction for VT tracking.

Table 5–5. Interface to the SDRAM Devices (Note 1)

Signal Name Type Width (2) Description

Table 5–6. AFI Signals (Part 1 of 3)

Signal Name Type Width (1) Description

Clocks and Resets

pll_ref_clk Input 1 The reference clock input to the PHY PLL.

global_reset_n Input 1 Active-low global reset for PLL and all logic in the
PHY. A level set reset signal, which causes a complete
reset of the whole system. The PLL may maintain
some state information.

soft_reset_n Input 1 Edge detect reset input intended for SOPC Builder use
or to be controlled by other system reset logic.
Causes a complete reset of PHY, but not the PLL used
in the PHY.

reset_request_n Output 1 Directly connected to the locked output of the PLL
and is intended for optional use either by automated
tools such as SOPC Builder or could be manually
ANDed with any other system-level signals and
combined with any edge detect logic as required and
then fed back to the global_reset_n input.

Reset request output that indicates when the PLL
outputs are not locked. Use this as a reset request
input to any system-level reset controller you may
have. This signal is always low while the PLL is
locking (but not locked), and so any reset logic using
it is advised to detect a reset request on a falling-edge
rather than by level detection.

ctl_clk Output 1 Half-rate clock supplied to controller and system
logic. The same signal as the non-AFI phy_clk.

ctl_reset_n Output 1 Reset output on ctl_clk clock domain.

Other Signals

aux_half_rate_clk Output 1 In half-rate designs, a copy of the phy_clk_1x
signal that you can use in other parts of your design,
same as phy_clk port.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 5: Functional Description—ALTMEMPHY 5–31
ALTMEMPHY Signals
aux_full_rate_clk Output 1 In full-rate designs, a copy of the mem_clk_2x
signal that you can use in other parts of your design.

aux_scan_clk Output 1 Low frequency scan clock supplied primarily to clock
any user logic that interfaces to the PLL and DLL
reconfiguration interfaces.

aux_scan_clk_reset_
n

Output 1 This reset output asynchronously asserts (drives low)
when global_reset_n is asserted and de-assert
(drives high) synchronous to aux_scan_clk
when global_reset_n is deasserted. It allows
you to reset any external circuitry clocked by
aux_scan_clk.

Write Data Interface

ctl_dqs_burst Input MEM_IF_DQS_WIDTH ×
DWIDTH_RATIO / 2

When asserted, mem_dqs is driven. The
ctl_dqs_burst signal must be asserted before
ctl_wdata_valid and must be driven for the
correct duration to generate a correctly timed
mem_dqs signal.

ctl_wdata_valid Input MEM_IF_DQS_WIDTH ×
DWIDTH_RATIO / 2

Write data valid. Generates ctl_wdata and
ctl_dm output enables.

ctl_wdata Input MEM_IF_DWIDTH ×
DWIDTH_RATIO

Write data input from the controller to the PHY to
generate mem_dq.

ctl_dm Input MEM_IF_DM_WIDTH ×
DWIDTH_RATIO

DM input from the controller to the PHY.

ctl_wlat Output 5 Required write latency between address/command
and write data that is issued to ALTMEMPHY
controller local interface.

This signal is only valid when the ALTMEMPHY
sequencer successfully completes calibration, and
does not change at any point during normal
operation.

The legal range of values for this signal is 0 to 31; and
the typical values are between 0 and ten, 0 mostly for
low CAS latency DDR memory types.

Read Data Interface

ctl_doing_rd Input MEM_IF_DQS_WIDTH ×
DWIDTH_RATIO / 2

Doing read input. Indicates that the DDR or DDR2
SDRAM controller is currently performing a read
operation.

The controller generates ctl_doing_rd to the
ALTMEMPHY megafunction. The ctl_doing_rd
signal is asserted for one phy_clk cycle for every
read command it issues. If there are two read
commands, ctl_doing_rd is asserted for two
phy_clk cycles. The ctl_doing_rd signal also
enables the capture registers and generates the
ctl_mem_rdata_valid signal. The
ctl_doing_rd signal should be issued at the
same time the read command is sent to the
ALTMEMPHY megafunction.

Table 5–6. AFI Signals (Part 2 of 3)

Signal Name Type Width (1) Description
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

5–32 Chapter 5: Functional Description—ALTMEMPHY
ALTMEMPHY Signals
ctl_rdata Output DWIDTH_RATIO ×
MEM_IF_DWIDTH

Read data from the PHY to the controller.

ctl_rdata_valid Output DWIDTH_RATIO/2 Read data valid indicating valid read data on
ctl_rdata. This signal is two-bits wide (as only
half-rate or DWIDTH_RATIO = 4 is supported) to
allow controllers to issue reads and writes that are
aligned to either the half-cycle of the half-rate clock.

ctl_rlat Output READ_LAT_WIDTH Contains the number of clock cycles between the
assertion of ctl_doing_rd and the return of valid
read data (ctl_rdata). This is unused by the
Altera high-performance controllers do not use
ctl_rlat.

Address and Command Interface

ctl_addr Input MEM_IF_ROWADDR_WI
DTH × DWIDTH_RATIO /
2

Row address from the controller.

ctl_ba Input MEM_IF_BANKADDR_W
IDTH ×
DWIDTH_RATIO / 2

Bank address from the controller.

ctl_cke Input MEM_IF_CS_WIDTH ×
DWIDTH_RATIO / 2

Clock enable from the controller.

ctl_cs_n Input MEM_IF_CS_WIDTH
×DWIDTH_RATIO / 2

Chip select from the controller.

ctl_odt Input MEM_IF_CS_WIDTH ×
DWIDTH_RATIO / 2

On-die-termination control from the controller.

ctl_ras_n Input DWIDTH_RATIO / 2 Row address strobe signal from the controller.

ctl_we_n Input DWIDTH_RATIO / 2 Write enable.

ctl_cas_n Input DWIDTH_RATIO / 2 Column address strobe signal from the controller.

ctl_rst_n Input DWIDTH_RATIO / 2 Reset from the controller.

Calibration Control and Status Interface

ctl_mem_clk_disable Input MEM_IF_CLK_PAIR_
COUNT

When asserted, mem_clk and mem_clk_n are
disabled. Unsupported for Cyclone III devices.

ctl_cal_success Output 1 A 1 indicates that calibration was successful.

ctl_cal_fail Output 1 A 1 indicates that calibration has failed.

ctl_cal_req Input 1 When asserted, a new calibration sequence is started.
Currently not supported.

ctl_cal_byte_lane_
sel_n

Input MEM_IF_DQS_WIDTH ×
MEM_CS_WIDTH

Indicates which DQS groups should be calibrated.
Not supported.

Note to Table 5–5:

(1) Refer to Table 5–8 for parameter descriptions.

Table 5–6. AFI Signals (Part 3 of 3)

Signal Name Type Width (1) Description
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 5: Functional Description—ALTMEMPHY 5–33
ALTMEMPHY Signals
Table 5–7. Other Interface Signals

Signal Name Type Width Description

External DLL Signals

dqs_delay_ctrl_ex
port

Output DQS_DEL
AY_CTL_
WIDTH

Allows sharing DLL in this ALTMEMPHY instance with another
ALTMEMPHY instance. Connect the dqs_delay_ctrl_export
port on the ALTMEMPHY instance with a DLL to the
dqs_delay_ctrl_import port on the other ALTMEMPHY
instance.

dqs_delay_ctrl_im
port

Input DQS_DEL
AY_CTL_
WIDTH

Allows the use of DLL in another ALTMEMPHY instance in this
ALTMEMPHY instance. Connect the dqs_delay_ctrl_export
port on the ALTMEMPHY instance with a DLL to the
dqs_delay_ctrl_import port on the other ALTMEMPHY
instance.

dqs_offset_delay_
ctrl_ width

Input DQS_DEL
AY_CTL_
WIDTH

Connects to the DQS delay logic when dll_import_export is
set to IMPORT. Only connect if you are using a DLL offset, which
can otherwise be tied to zero. If you are using a DLL offset, connect
this input to the offset_ctrl_out output of the
dll_offset_ctrl block.

dll_reference_
clk

Output 1 Reference clock to feed to an externally instantiated DLL. This clock
is typically from one of the PHY PLL outputs.

User-Mode Calibration OCT Control Signals

oct_ctl_rs_value Input 14 OCT RS value port for use with ALT_OCT megafunction if you want
to use OCT with user-mode calibration.

oct_ctl_rt_value Input 14 OCT RT value port for use with ALT_OCT megafunction if you want to
use OCT with user-mode calibration.

Debug Interface Signals (Note 1), (Note 2)

dbg_clk Input 1 Debug interface clock.

dbg_reset_n Input 1 Debug interface reset.

dbg_addr Input DBG_A_W
IDTH

Address input.

dgb_wr Input 1 Write request.

dbg_rd Input 1 Read request.

dbg_cs Input 1 Chip select.

dbg_wr_data Input 32 Debug interface write data.

dbg_rd_data Output 32 Debug interface read data.

dbg_waitrequest Output 1 Wait signal.

PLL Reconfiguration Signals—Stratix III and Stratix IV Devices

pll_reconfig_enab
le

Input 1 This signal enables the PLL reconfiguration I/O, and is used if the
user requires some custom PLL phase reconfiguration. It should
otherwise be tied low.

pll_phasecounters
elect

Input 4 When pll_reconfig_enable is asserted, this input is directly
connected to the PLL's phasecounterselect input. Otherwise
this input has no effect.

pll_phaseupdown Input 1 When pll_reconfig_enable is asserted, this input is directly
connected to the PLL's phaseupdown input. Otherwise this input
has no effect.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

5–34 Chapter 5: Functional Description—ALTMEMPHY
ALTMEMPHY Signals
pll_phasestep Input 1 When pll_reconfig_enable is asserted, this input is directly
connected to the PLL's phasestep input. Otherwise this input has
no effect.

pll_phase_done Output 1 Directly connected to the PLL's phase_done output.

PLL Reconfiguration Signals—Stratix II Devices

pll_reconfig_
enable

Input 1 Allows access to the PLL reconfiguration block. This signal should
be held low in normal operation. While the PHY is held in reset (with
soft_reset_n), and reset_request_n is 1, it is safe to
reconfigure the PLL. To reconfigure the PLL, set this signal to 1 and
use the other pll_reconfig signals to access the PLL. When
finished reconfiguring set this signal to 0, and then set the
soft_reset_n signal to 1 to bring the PHY out of reset. For this
signal to work, the PLL_RECONFIG_PORTS_EN GUI parameter
must be set to TRUE.

pll_reconfig_
write_param

Input 9 Refer to the ALTPLL_RECONFIG User Guide, for more information.

pll_reconfig_read
_param

Input 9 Refer to the ALTPLL_RECONFIG User Guide, for more information.

pll_reconfig Input 1 Refer to the ALTPLL_RECONFIG User Guide, for more information.

pll_reconfig_
counter_type

Input 4 Refer to the ALTPLL_RECONFIG User Guide, for more information.

pll_reconfig_
counter_param

Input 3 Refer to the ALTPLL_RECONFIG User Guide, for more information.

pll_reconfig_data
_in

Input 9 Refer to the ALTPLL_RECONFIG User Guide for more information.

pll_reconfig_busy Output 1 Refer to the ALTPLL_RECONFIG User Guide, for more information.

pll_reconfig_data
_out

Output 9 Refer to the ALTPLL_RECONFIG User Guide, for more information.

pll_reconfig_clk Output 1 Synchronous clock to use for any logic accessing the
pll_reconfig interface. The same as aux_scan_clk.

pll_reconfig_
reset

Output 1 Resynchronised reset to use for any logic accessing the
pll_reconfig interface.

Calibration Interface Signals—without leveling only

rsu_codvw_phase Output — The sequencer sweeps the phase of a resynchronization clock across
360° or 720° of a memory clock cycle. Data reads from the DIMM
are performed for each phase position, and a data valid window is
located, which is the set of resynchronization clock phase positions
where data is successfully read. The final resynchronization clock
phase is set at the center of this range: the center of the data valid
window or CODVW. This output is set to the current calculated value
for the CODVW, and represents how many phase steps were
performed by the PLL to offset the resynchronization clock from the
memory clock.

Table 5–7. Other Interface Signals

Signal Name Type Width Description
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

http://www.altera.com/literature/ug/ug_altpll_reconfig.pdf
http://www.altera.com/literature/ug/ug_altpll_reconfig.pdf
http://www.altera.com/literature/ug/ug_altpll_reconfig.pdf
http://www.altera.com/literature/ug/ug_altpll_reconfig.pdf
http://www.altera.com/literature/ug/ug_altpll_reconfig.pdf
http://www.altera.com/literature/ug/ug_altpll_reconfig.pdf
http://www.altera.com/literature/ug/ug_altpll_reconfig.pdf
http://www.altera.com/literature/ug/ug_altpll_reconfig.pdf

Chapter 5: Functional Description—ALTMEMPHY 5–35
PHY-to-Controller Interfaces
Table 5–8 shows the parameters that Table 5–5 through Table 5–7 refer to.

PHY-to-Controller Interfaces
The following section describes the typical modules that are connected to the
ALTMEMPHY variation and the port name prefixes each module uses. This section
also describes using a custom controller. This section describes the AFI.

rsu_codvw_size Output — The final centre of data valid window size (rsu_codvw_size) is
the number of phases where data was successfully read in the
calculation of the resynchronization clock centre of data valid
window phase (rsu_codvw_phase).

rsu_read_latency Output — The rsu_read_latency output is then set to the read latency (in
phy_clk cycles) using the rsu_codvw_phase
resynchronization clock phase. If calibration is unsuccessful then
this signal is undefined.

rsu_no_dvw_err Output — If the sequencer sweeps the resynchronization clock across every
phase and does not see any valid data at any phase position, then
calibration fails and this output is set to 1.

rsu_grt_one_dvw_
err

Output — If the sequencer sweeps the resynchronization clock across every
phase and sees multiple data valid windows, this is indicative of
unexpected read data (random bit errors) or an incorrectly
configured PLL that must be resolved. Calibration has failed and this
output is set to 1.

Notes to Table 5–7:

(1) The debug interface uses the simple Avalon-MM interface protocol.
(2) These ports exist in the Quartus II software, even though the debug interface is for Altera’s use only.

Table 5–7. Other Interface Signals

Signal Name Type Width Description

Table 5–8. Parameters

Parameter Name Description

DWIDTH_RATIO The data width ratio from the local interface to the memory interface.
DWIDTH_RATIO of 2 means full rate, while DWIDTH_RATIO of 4 means half rate.

LOCAL_IF_DWIDTH The width of the local data bus must be quadrupled for half-rate and doubled for
full-rate.

MEM_IF_DWIDTH The data width at the memory interface. MEM_IF_DWIDTH can have values that are
multiples of MEM_IF_DQ_PER_DQS.

MEM_IF_DQS_WIDTH The number of DQS pins in the interface.

MEM_IF_ROWADDR_WIDTH The row address width of the memory device.

MEM_IF_BANKADDR_WIDTH The bank address with the memory device.

MEM_IF_CS_WIDTH The number of chip select pins in the interface. The sequencer only calibrates one chip
select pin.

MEM_IF_DM_WIDTH The number of mem_dm pins on the memory interface.

MEM_IF_DQ_PER_DQS The number of mem_dq[] pins per mem_dqs pin.

MEM_IF_CLK_PAIR_COUNT The number of mem_clk/mem_clk_n pairs in the interface.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

5–36 Chapter 5: Functional Description—ALTMEMPHY
PHY-to-Controller Interfaces
The AFI standardizes and simplifies the interface between controller and PHY for all
Altera memory designs, thus allowing you to easily interchange your own controller
code with Altera's high-performance controllers. The AFI includes an administration
block that configures the memory for calibration and performs necessary mode
registers accesses to configure the memory as required (these calibration processes are
different). Figure 5–13 shows an overview of the connections between the PHY, the
controller, and the memory device.

1 Altera recommends that you use the AFI for new designs.

For half-rate designs, the address and command signals in the ALTMEMPHY
megafunction are asserted for one mem_clk cycle (1T addressing), such that there are
two input bits per address and command pin in half-rate designs. If you require a
more conservative 2T addressing, drive both input bits (of the address and command
signal) identically in half-rate designs.

For DDR3 SDRAM with the AFI, the read and write control signals are on a per-DQS
group basis. The controller can calibrate and use a subset of the available DDR3
SDRAM devices. For example, two devices out of a 64- or 72-bit DIMM, for better
debugging mechanism.

For half-rate designs, the AFI allows the controller to issue reads and writes that are
aligned to either half-cycle of the half-rate phy_clk, which means that the datapaths
can support multiple data alignments—word-unaligned and word-aligned writes and
reads. Figure 5–14 and Figure 5–15 display the half-rate write operation.

Figure 5–13. AFI PHY Connections

AFI
Controller

local_wdata

local_rdata

ctl_addr
ctl_cas_n
ctl_we_n

ctl_rdata

Admin

Sequencer

AFI PHY

mem_dqs
mem_dq

DDR3
SDRAM

Altera Device
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 5: Functional Description—ALTMEMPHY 5–37
PHY-to-Controller Interfaces
Figure 5–16 shows a full-rate write.

After calibration completes, the sequencer sends the write latency in number of clock
cycles to the controller.

Figure 5–17 shows full-rate reads; Figure 5–18 shows half-rate reads.

Figure 5–14. Half-Rate Write with Word-Unaligned Data

Figure 5–15. Half-Rate Write with Word-Aligned Data

Figure 5–16. Full-Rate Write

00 11 0001

00
11 0110 00

-- a x cb xd

ctl_clk

ctl_dqs_burst

ctl_wdata_valid

ctl_wdata

00 10 11 00

00 11 00

-- ba --dc

ctl_clk

ctl_dqs_burst

ctl_wdata_valid

ctl_wdata

-- a --b

ctl_clk

ctl_dqs_burst

ctl_wdata_valid

ctl_wdata
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

5–38 Chapter 5: Functional Description—ALTMEMPHY
PHY-to-Controller Interfaces
Figure 5–17. Full-Rate Reads

Figure 5–18. Half-Rate Reads

ctl_rlat = 9

1 2 3 4 5 6 7 8 9

clock

ctl_addr

ctl_cs_n

ctl_doing_rd

mem_dqs

mem_dq

ctl_rdata_valid

ctl_rdata

clock

ctl_addr

ctl_cs_n

ctl_doing_rd

mem_dqs

mem_dq

ctl_rdata_valid

ctl_rdata

AX XA

10

10 01

10 01

DX XD

ctl_rlat = 9

1 2 3 4 5 6 7 8 9
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 5: Functional Description—ALTMEMPHY 5–39
PHY-to-Controller Interfaces
Figure 5–19 and Figure 5–20 show word-aligned writes and reads. In the following
read and write examples the data is written to and read from the same address. In
each example, ctl_rdata and ctl_wdata are aligned with controller clock
(ctl_clk) cycles. All the data in the bit vector is valid at once. For comparison, refer
Figure 5–21 and Figure 5–22 that show the word-unaligned writes and reads.

1 The ctl_doing_rd is represented as a half-rate signal when passed into the PHY.
Therefore, the lower half of this bit vector represents one memory clock cycle and the
upper half the next memory clock cycle. Figure 5–22 on page 5–44 shows separated
word-unaligned reads as an example of two ctl_doing_rd bits are different.
Therefore, for each x16 device, at least two ctl_doing_rd bits need to be driven,
and two ctl_rdata_valid bits need to be interpreted.

The AFI has the following conventions:

■ With the AFI, high and low signals are combined in one signal, so for a single chip
select (ctl_cs_n) interface, ctl_cs_n[1:0], where location 0 appears on the
memory bus on one mem_clk cycle and location 1 on the next mem_clk cycle.

1 This convention is maintained for all signals so for an 8 bit memory
interface, the write data (ctl_wdata) signal is ctl_wdata[31:0], where
the first data on the DQ pins is ctl_wdata[7:0], then
ctl_wdata[15:8], then ctl_wdata[23:16], then
ctl_wdata[31:24].

■ Word-aligned and word-unaligned reads and writes have the following
definitions:

■ Word-aligned for the single chip select is active (low) in location 1 (_l).
ctl_cs_n[1:0] = 01 when a write occurs. This alignment is the easiest
alignment to design with.

■ Word-unaligned is the opposite, so ctl_cs_n[1:0] = 10 when a read or
write occurs and the other control and data signals are distributed across
consecutive ctl_clk cycles.

1 The Altera high-performance controllers use word-aligned data only.

The timing analysis script does not support word-unaligned reads and
writes.

Word-unaligned reads and writes are only supported on Stratix III and
Stratix IV devices.

■ Spaced reads and writes have the following definitions:

■ Spaced writes—write commands separated by a gap of one controller clock
(ctl_clk) cycle

■ Spaced reads—read commands separated by a gap of one controller clock
(ctl_clk) cycle
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

5–40 Chapter 5: Functional Description—ALTMEMPHY
PHY-to-Controller Interfaces
Figure 5–19 through Figure 5–22 assume the following general points:

■ The burst length is four. A DDR2 SDRAM is used—the interface timing is identical
for DDR3 devices.

■ An 8-bit interface with one chip select.

■ The data for one controller clock (ctl_clk) cycle represents data for two memory
clock (mem_clk) cycles (half-rate interface).
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 5: Functional Description—ALTMEMPHY 5–41
PHY-to-Controller Interfaces
Figure 5–19. Word-Aligned Writes

Notes to Figure 5–19:

(1) To show the even alignment of ctl_cs_n, expand the signal (this convention applies for all other signals).
(2) The ctl_dqs_burst must go high one memory clock cycle before ctl_wdata_valid. Compare with the word-unaligned case.
(3) The ctl_wdata_valid is asserted two ctl_wlat controller clock (ctl_clk) cycles after chip select (ctl_cs_n) is asserted. The

ctl_wlat indicates the required write latency in the system. The value is determined during calibration and is dependant upon the relative delays
in the address and command path and the write datapath in both the PHY and the external DDR SDRAM subsystem. The controller must drive
ctl_cs_n and then wait ctl_wlat (two in this example) ctl_clks before driving ctl_wdata_valid.

(4) Observe the ordering of write data (ctl_wdata). Compare this to data on the mem_dq signal.
(5) In all waveforms a command record is added that combines the memory pins ras_n, cas_n and we_n into the current command that is issued.

This command is registered by the memory when chip select (mem_cs_n) is low. The important commands in the presented waveforms are WR
= write, ACT = activate.

ctl_clk

(4)(2)(1)

ctl_wlat

ctl_ras_n

ctl_cas_n

ctl_we_n

ctl_cs_n

ctl_dqs_burst

ctl_wdata_valid

ctl_wdata

ctl_addr

Memory
Interface

mem_clk

command
(Note 5)

mem_cs_n

mem_dqs

mem_dq

(3)

 00 00 11

2

1111 00

1111 00

1111 01 11 01 11

 00 00 10 11 10 11 00

 00 00 11 00 11

 00000000 00000000 03020100 07060504 0b0a0908 0f0e0d0c

 00000000 00000000 0020008

ACTACT WR
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

5–42 Chapter 5: Functional Description—ALTMEMPHY
PHY-to-Controller Interfaces
Figure 5–20. Word-Aligned Reads

Notes to Figure 5–20:

(1) For AFI, ctl_doing_rd is required to be asserted one memory clock cycle before chip select (ctl_cs_n) is asserted. In the half-rate
ctl_clk domain, this requirement manifests as the controller driving 11 (as opposed to the 01) on ctl_doing_rd.

(2) AFI requires that ctl_doing_rd is driven for the duration of the read. In this example, it is driven to 11 for two half-rate ctl_clks, which
equates to driving to 1, for the four memory clock cycles of this four-beat burst.

(3) The ctl_rdata_valid returns 15 (ctl_rlat) controller clock (ctl_clk) cycles after ctl_doing_rd is asserted. Returned is when
the ctl_rdata_valid signal is observed at the output of a register within the controller. A controller can use the ctl_rlat value to
determine when to register to returned data, but this is unnecessary as the ctl_rdata_valid is provided for the controller to use as an enable
when registering read data.

(4) Observe the alignment of returned read data with respect to data on the bus.

ctl_clk

ctl_rlat

ctl_ras_n

ctl_cas_n

ctl_we_n

ctl_cs_n

ctl_doing_rd

ctl_rdata_valid

ctl_rdata

ctl_ba

ctl_addr

ctl_dm

Memory
Interface

mem_clk

command

mem_cs_n

mem_dqs

mem_dq

15

11

0

 00 00 11

1111 01 11 01 11

 00 00 11 00 11 00

 00 00 11 00 11 00

FFFFFFFFFFFFFFFF

 00

 0000000 0020008

ACT RD

(1) (2) (3) (3)

(4)
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 5: Functional Description—ALTMEMPHY 5–43
PHY-to-Controller Interfaces
Figure 5–21 and Figure 5–22 show spaced word-unaligned writes and reads.

Figure 5–21. Word-Unaligned Writes

Notes to Figure 5–21:

(1) Alternative word-unaligned chip select (ctl_cs_n).
(2) As with word- aligned writes, ctl_dqs_burst is asserted one memory clock cycle before ctl_wdata_valid. You can see

ctl_dqs_burst is 11 in the same cycle where ctl_wdata_valid is 10. The LSB of these two becomes the first value the signal takes in
the mem_clk domain. You can see that ctl_dqs_burst has the necessary one mem_clk cycle lead on ctl_wdata_valid.

(3) The latency between ctl_cs_n being asserted and ctl_wdata_valid going high is effectively ctl_wlat (in this example, two) controller
clock (ctl_clk) cycles. This can be thought of in terms of relative memory clock (mem_clk) cycles, in which case the latency is four mem_clk
cycles.

(4) Only the upper half is valid (as the ctl_wdata_valid signal demonstrates, there is one ctl_wdata_valid bit to two 8-bit words). The
write data bits go out on the bus in order, least significant byte first. So for a continuous burst of write data on the DQ pins, the most significant
half of write data is used, which goes out on the bus last and is therefore contiguous with the following data. The converse is true for the end of
the burst. Write data is spread across three controller clock (ctl_clk) cycles, but still only four memory clock (mem_clk) cycles. However, in
relative memory clock cycles the latency is equivalent in the word-aligned and word-unaligned cases.

(5) The 0504 here is residual from the previous clock cycle. In the same way that only the upper half of the write data is used for the first beat of the
write, only the lower half of the write data is used in the last beat of the write. These upper bits can be driven to any value in this alignment.

ctl_clk

ctl_wlat

ctl_ras_n

ctl_cas_n

ctl_we_n

ctl_cs_n

ctl_dqs_burst

ctl_wdata_valid

ctl_wdata

ctl_ba

ctl_addr

Memory
Interface

mem_clk

command

mem_cs_n

mem_dqs

mem_dq

(4)(2)(1) (5)(3)

1010

2

 01 01 00

 01 01 00

1111 10 11 10 11

 00 00

 00

11 01 11 01 00

 00 00 10 11 01 10 11 01 00

 00000000 00000000 01000000 05040302 05040706 09080706 0d0c0b0a 0d0c0f0e

 0000000 0000000 020000 020008

ACTACT WR
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

5–44 Chapter 5: Functional Description—ALTMEMPHY
PHY-to-Controller Interfaces
Figure 5–22. Word-Unaligned Reads

Notes to Figure 5–22:

(1) Similar to word-aligned reads, ctl_doing_rd is asserted one memory clock cycle before chip select (ctl_cs_n) is asserted, which for a
word-unaligned read is in the previous controller clock (ctl_clk) cycle. In this example the ctl_doing_rd signal is now spread over three
controller clock (ctl_clk) cycles, the high bits in the sequence '10','11','01','10','11','01' providing the required four memory clock cycles of
assertion for ctl_doing_rd for the two 4-beat reads in the full-rate memory clock domain, '011110','011110'.

(2) The return pattern of ctl_rdata_valid is a delayed version of ctl_doing_rd. Advertised read latency (ctl_rlat) is the number of
controller clock (ctl_clk) cycles delay inserted between ctl_doing_rd and ctl_rdata_valid.

(3) The read data (ctl_rdata) is spread over three controller clock cycles and in the pointed to vector only the upper half of the ctl_rdata bit
vector is valid (denoted by ctl_rdata_valid).

ctl_clk

ctl_rlat

ctl_ras_n

ctl_cas_n

ctl_we_n

ctl_cs_n

ctl_doing_rd

ctl_rdata_valid

ctl_rdata

ctl_ba

ctl_addr

ctl_dm

Memory
Interface

mem_clk

command

mem_cs_n

mem_dqs

mem_dq

(2)(1) (3)

 00 00 10

15

1111 10 11 10 11

 00 00 10 11 01 10 11 01 0

 00 00

 00

10 11 01 10 11 01 00

FFFFFFFFFFFFFFFF 0f0e0f0e

 0000000

ACT RD
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 5: Functional Description—ALTMEMPHY 5–45
Using a Custom Controller
Using a Custom Controller
The ALTMEMPHY megafunction can be integrated with your own controller. This
section describes the interface requirement and the handshake mechanism for
efficient read and write transactions.

Preliminary Steps
Perform the following steps to generate the ALTMEMPHY megafunction:

1. If you are creating a custom DDR or DDR2 SDRAM controller, generate the Altera
High-Performance Controller MegaCore function targeting your chosen Altera
memory devices.

2. Compile and verify the timing. This step is optional; refer to “Compile and
Simulate” on page 4–1.

3. If targeting a DDR or DDR2 SDRAM device, simulate the high-performance
controller design.

4. Integrate the top-level ALTMEMPHY design with your controller. If you started
with the high-performance controller, the PHY variation name is
<controller_name>_phy.v/.vhd. Details about integrating your controller with
Altera’s ALTMEMPHY megafunction are described in the following sections.

5. Compile and simulate the whole interface to ensure that you are driving the PHY
properly and that your commands are recognized by the memory device.

Design Considerations
This section discuss the important considerations for implementing your own
controller with the ALTMEMPHY megafunction. This section describes the design
considerations for AFI variants.

1 Simulating the high-performance controller is useful if you do not know how to drive
the PHY signals.

Clocks and Resets
The ALTMEMPHY megafunction automatically generates a PLL instance, but you
must still provide the reference clock input (pll_ref_clk) with a clock of the
frequency that you specified in the MegaWizard Plug-In Manager. An active-low
global reset input is also provided, which you can deassert asynchronously. The clock
and reset management logic synchronizes this reset to the appropriate clock domains
inside the ALTMEMPHY megafunction.

A clock output (half the memory clock frequency for a half-rate controller; the same as
the memory clock for a full-rate controller) is provided and all inputs and outputs of
the ALTMEMPHY megafunction are synchronous to this clock. For AFIs, this signal is
called ctl_clk.

There is also an active-low synchronous reset output signal provided, ctl_reset_n.
This signal is synchronously de-asserted with respect to the ctl_clk or phy_clk
clock domain and it can reset any additional user logic on that clock domain.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

5–46 Chapter 5: Functional Description—ALTMEMPHY
Using a Custom Controller
Calibration Process Requirements
When the global reset_n signal is released, the ALTMEMPHY handles the
initialization and calibration sequence automatically. The sequencer calibrates
memory interfaces by issuing reads to multiple ranks of DDR SDRAM (multiple chip
select). Timing margins decrease as the number of ranks increases. It is impractical to
supply one dedicated resynchronization clock for each rank of memory, as it
consumes PLL resources for the relatively small benefit of improved timing margin.
When calibration is complete, the ctl_cal_success signal goes high if successful;
the ctl_cal_fail signal goes high if calibration fails. Calibration can be repeated
by the controller using the soft_reset_n signal, which when asserted puts the
sequencer into a reset state and when released the calibration process begins again.

1 You can ignore the following two warning and critical warning messages:

Warning: Timing Analysis for multiple chip select DDR/DDR2/DDR3-SDRAM
configurations is preliminary (memory interface has a chip select width
of 4)

Critical Warning: Read Capture and Write timing analyses may not be
valid due to violated timing model assumptions

Other Local Interface Requirements
The memory burst length can be two, four, or eight for DDR SDRAM devices, and
four or eight for DDR2 SDRAM devices. For a half-rate controller, the memory clock
runs twice as fast as the clock provided to the local interface, so data buses on the local
interface are four times as wide as the memory data bus. For a full-rate controller, the
memory clock runs at the same speed as the clock provided to the local interface, so
the data buses on the local interface are two times as wide as the memory data bus.

This section describes the DDR or DDR2 SDRAM high-performance controllers with
the AFI.

Address and Command Interfacing
Address and command signals are automatically sized for 1T operation, such that for
full-rate designs there is one input bit per pin (for example, one cs_n input per
chip-select configured); for half-rate designs there are two. If you require a more
conservative 2T address and command scheme, use a full-rate design and drive the
address/command inputs for two clock cycles, or in a half-rate design drive both
address/command bits for a given pin identically.

1 Although the PHY inherently supports 1T addressing, the high performance
controllers support only 2T addressing, so PHY timing analysis is performed
assuming 2T address and command signals.

Handshake Mechanism Between Read Commands and Read Data
When performing a read, a high-performance controller with the AFI asserts the
ctl_doing_read signal to indicate that a read command is requested and the byte
lanes that it expects valid data to return on. ALTMEMPHY uses the
ctl_doing_read signal for the following actions:

■ Control of the postamble circuit

■ Generation of ctl_rdata_valid
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 5: Functional Description—ALTMEMPHY 5–47
Using a Custom Controller
■ Dynamic termination (Rt) control timing

The read latency, ctl_rlat, is advertised back to the controller. This signal indicates
how long it takes in ctl_clk clock cycles from assertion of the ctl_doing_read
signal to valid read data returning on ctl_rdata. The ctl_rlat signal is only valid
when calibration has successfully completed and never changes values during normal
user mode operation.

The ALTMEMPHY provides a signal, ctl_rdata_valid, to indicate that the data on
read data bus is valid. The width of this signal varies between half-rate and full-rate
designs to support the option to indicate that the read data is not word aligned.
Figure 5–23 and Figure 5–24 show these relationships.

Handshake Mechanism Between Write Commands and Write Data
In the AFI, the ALTMEMPHY output ctl_wlat gives the number of ctl_clk cycles
between the write command that is issued ctl_cs_n asserted and ctl_dqs_burst
asserted. The ctl_wlat signal takes account of the following actions to provide a
single value in ctl_clk clock cycles:

■ CAS write latency

■ Additive latency

■ Datapath latencies and relative phases

■ Board layout

■ Address and command path latency and 1T register setting, which is dynamically
setup to take into account any leveling effects

Figure 5–23. Address and Command and Read-Path Timing—Full-Rate Design

Figure 5–24. Second Read Alignment—Half-Rate Design

ctl_clk

ctl_addr

ctl_cs_n

ctl_doing_read

mem_dqs

mem_dq

ctl_rdata_valid

ctl_rdata

ctl_rlat = 9

1 2 3 4 5 6 7 8 9

ctl_clk

1 2 3 4 5 6 7 8 9

ctl_rlat = 9

ctl_addr

ctl_cs_n

ctl_doing_read

mem_dqs

mem_dq

ctl_rdata_valid

ctl_rdata

A XA

1010

10 0101

10 0101

DX XD
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

5–48 Chapter 5: Functional Description—ALTMEMPHY
Using a Custom Controller
The ctl_wlat signal is only valid when the calibration has been successfully
completed by the ALTMEMPHY sequencer and does not change at any point during
normal user mode operation. Figure 5–25 shows the operation of ctl_wlat port.

For a half-rate design ctl_cs_n is 2 bits, not 1. Also the ctl_dqs_burst and
ctl_wdata_valid waveforms indicate a half-rate design. This write results in a
burst of 8 at the DDR. Where ctl_cs_n is driven 2'b01, the LSB (1) is the first value
driven out of mem_cs_n, and the MSB (0) follows on the next mem_clk. Similarly, for
ctl_dqs_burst, the LSB is driven out of mem_dqs first (0), then a 1 follows on the
next clock cycle. This sequence produces the continuous DQS pulse as required.
Finally, the ctl_addr bus is twice MEM_IF_ADDR_WIDTH bits wide and so the
address is concatenated to result in an address phase two mem_clk cycles wide.

Partial Write Operations
As part of the DDR and DDR2 SDRAM memory specifications, you have the option
for partial write operations by asserting the DM pins for part of the write signal.

For designs targeting the Stratix III device families, deassert the ctl_wdata_valid
signal during partial writes, when the write data is invalid, to save power by not
driving the DQ outputs.

For designs targeting other device families, use only the DM pins if you require
partial writes. Assert the ctl_dqs_burst and ctl_wdata_valid signals as for full
write operations, so that the DQ and DQS pins are driven during partial writes.

The I/O difference between Stratix III device families and other device families makes
it only possible to use the ctl_dqs_burst signal for the DQS enable in Stratix III
devices.

Figure 5–25. Timing for ctl_dqs_burst, ctl_wdata_valid, Address, and Command—Half-Rate Design

ctl_clk

ctl_addr

ctl_cs_n

ctl_dqs_burst

ctl_wdata_valid

ctl_wdata

AdAdAdAd

0101

10 1111

ctl_wlat = 2

1 2
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

© February 2010 Altera Corporation
6. Functional Description—
High-Performance Controller
The high-performance controller (HPC) architecture instantiates encrypted control
logic and the ALTMEMPHY megafunction. The controller accepts read and write
requests from the user on its local interface, using either the Avalon-MM interface
protocol or the native interface protocol. It converts these requests into the necessary
SDRAM commands, including any required bank management commands. Each read
or write request on the Avalon-MM or native interface maps to one SDRAM read or
write command. Since the controller uses a memory burst length of 4, read and write
requests are always of length 1 on the local interface if the controller is in half-rate
mode. In full-rate mode, the controller accepts requests of size 1 or 2 on the local
interface. Requests of size 2 on the local interface produce better throughput as whole
memory burst is used.

The bank management logic in the controller keeps a row open in every bank in the
memory system. For example, a controller configured for a double-sided, 4-bank DDR
or DDR2 SDRAM DIMM keeps an open row in each of the 8 banks. The controller
allows you to request an auto-precharge read or auto-precharge write, allowing
control over whether to keep that row open after the request. You can achieve
maximum efficiency when you issue reads and writes to the same bank, with the last
access to that bank being an auto-precharge read or write. The controller does not do
any access reordering.

Block Description
Figure 6–1 shows the top-level block diagram of the DDR or DDR2 SDRAM HPC.

Figure 6–1. DDR and DDR2 SDRAM HPC Block Diagram

Note to Figure 6–1:

(1) For DDR2 SDRAM HPC only.

local_addr
local_be

local_burstbegin
local_read_req

local_refresh_req
local_size

local_wdata
local_write_req

local_autopch_req
local_powerdn_req
local_self_rfsh_req

mem_a
mem_ba
mem_cas_n
mem_cke
mem_cs_n
mem_dq
mem_dqs
mem_dm
mem_odt (1)
mem_ras_n
mem_we_n

local_init_done
local_rdata

local_rdata_valid
local_ready

local_refresh_ack
local_wdata_req

local_powerdn_ack
local_self_rfsh_ack

Control
Logic

(Encrypted)

DDR/DDR2 SDRAM High-
Performance Controller

ALTMEMPHY
Megafunction

DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

6–2 Chapter 6: Functional Description—High-Performance Controller
Block Description
Figure 6–2 shows a block diagram of the DDR or DDR2 SDRAM high-performance
controller architecture.

The blocks in Figure 6–2 on page 6–2 are described in the following sections.

Command FIFO Buffer
This FIFO buffer allows the controller to buffer up to four consecutive read or write
commands. It is built from logic elements, and stores the address, read or write flag,
and burst count information. If this FIFO buffer fills up, the local_ready signal to
the user is deasserted until the main state machine takes a command from the FIFO
buffer.

Write Data FIFO Buffer
The write data FIFO buffer holds the write data from the user until the main state
machine can send it to the ALTMEMPHY megafunction, which does not have a write
data buffer. In the Avalon-MM interface mode, the user logic presents a write request,
address, burst count, and one or more beats of data at the same time. The write data
beats are placed into the FIFO buffer until they are needed. In the native interface
mode, the user logic presents a write request, address, and burst count. The controller
then requests the correct number of write data beats from the user via the
local_wdata_req signal, and the user logic must return the write data in the clock
cycle after the write data request signal.

This FIFO buffer is sized to be deeper than the command FIFO buffer to prevent it
from filling up and interrupting streaming writes.

Figure 6–2. DDR and DDR2 SDRAM High-Performance Controller Architecture Block Diagram

Timer
Logic

Initialization
State Machine

Command
FIFO

ALTMEMPHY
Interface

Avalon-MM or Native
Slave Interface

Write Data
FIFO

Bank
Management

Logic

Write Data
Tracking Logic

Address and
Command

Decode

PHY Interface
Logic

Main State
Machine
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 6: Functional Description—High-Performance Controller 6–3
Block Description
Write Data Tracking Logic
The write data tracking logic keeps track of the number of write data beats in the FIFO
buffer. In the native interface mode, this logic manages how much more data to
request from the user logic and issues the local_wdata_req signal.

Main State Machine
The main state machine decides what DDR commands to issue based on inputs from
the command FIFO buffer, the bank management logic, and the timer logic.

Bank Management Logic
The bank management logic keeps track the current state of each bank. It can keep a
row open in every bank in your memory system. The state machine uses the
information provided by this logic to decide whether it needs to issue bank
management commands before it reads or writes to the bank. The controller always
leaves the bank open unless the user requests an auto-precharge read or write. The
periodic refresh process also causes all the banks to be closed.

Timer Logic
The timer logic tracks whether the required minimum number of clock cycles has
passed since the last relevant command was issued. For example, the timer logic
records how many cycles have elapsed since the last activate command so that the
state machine knows it is safe to issue a read or write command (tRCD). The timer logic
also counts the number of clock cycles since the last periodic refresh command and
sends a high priority alert to the state machine if the number of clock cycles has
expired.

Initialization State Machine
The initialization state machine issues the appropriate sequence of command to
initialize the memory devices. It is specific to DDR and DDR2 as each memory type
requires a different sequence of initialization commands.

With the AFI, the ALTMEMPHY megafunction initializes the memory, otherwise the
controller is responsible for initializing the memory.

Address and Command Decode
When the state machine wants to issue a command to the memory, it asserts a set of
internal signals. The address and command decode logic turns these into the
DDR-specific RAS, CAS, and WE commands.

PHY Interface Logic
When the main state machine issues a write command to the memory, the write data
for that write burst has to be fetched from the write data FIFO buffer. The relationship
between write command and write data depends on the memory type, ALTMEMPHY
megafunction interface type, CAS latency, and the full-rate or half-rate setting. The
PHY interface logic adjusts the timing of the write data FIFO read request signal so
that the data arrives on the external memory interface DQ pins at the correct time.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

6–4 Chapter 6: Functional Description—High-Performance Controller
Block Description
ODT Generation Logic
The ODT generation logic (not shown) calculates when and for how long to enable the
ODT outputs. It also decides which ODT bit to enable, based on the number of chip
selects in the system.

■ 1 DIMM (1 or 2 Chip Selects)

In the case of a single DIMM, the ODT signal is only asserted during writes. The
ODT signal on the DIMM at mem_cs[0] is always used, even if the write
command on the bus is to mem_cs[1]. In other words, mem_odt[0] is always
asserted even if there are two ODT signals.

■ 2 or more DIMMs

Table 6–1 shows which ODT signal on the adjacent DIMM is enabled.

Low-Power Mode Logic
The low-power mode logic (not shown) monitors the local_powerdn_req and
local_self_rfsh_req request signals. This logic also informs the user of the
current low-power state via the local_powerdn_ack and local_self_rfsh_ack
acknowledge signals.

Control Logic
Bus commands control SDRAM devices using combinations of the mem_ras_n,
mem_cas_n, and mem_we_n signals. For example, on a clock cycle where all three
signals are high, the associated command is a no operation (NOP). A NOP command
is also indicated when the chip select signal is not asserted. Table 6–2 shows the
standard SDRAM bus commands.

Table 6–1. ODT

Write or Read On ODT Enabled

mem_cs[0]or cs[1] mem_odt[2]

mem_cs[2] or cs[3] mem_odt[0]

mem_cs[4] or cs[5] mem_odt[6]

mem_cs[6] or cs[7] mem_odt[4]

Table 6–2. Bus Commands

Command Acronym ras_n cas_n we_n

No operation NOP High High High

Active ACT Low High High

Read RD High Low High

Write WR High Low Low

Burst terminate BT High High Low

Precharge PCH Low High Low

Auto refresh ARF Low Low High

Load mode register LMR Low Low Low
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 6: Functional Description—High-Performance Controller 6–5
Block Description
The DDR or DDR2 SDRAM HPC must open SDRAM banks before they access the
addresses in that bank. The row and bank to be opened are registered at the same time
as the active (ACT) command. The HPC closes the bank and opens it again if it needs
to access a different row. The precharge (PCH) command closes only a bank.

The primary commands used to access SDRAM are read (RD) and write (WR). When
the WR command is issued, the initial column address and data word is registered.
When a RD command is issued, the initial address is registered. The initial data
appears on the data bus 2 to 3 clock cycles later (3 to 5 for DDR2 SDRAM). This delay
is the column address strobe (CAS) latency and is due to the time required to read the
internal DRAM core and register the data on the bus. The CAS latency depends on the
speed of the SDRAM and the frequency of the memory clock. In general, the faster the
clock, the more cycles of CAS latency are required. After the initial RD or WR
command, sequential reads and writes continue until the burst length is reached or a
burst terminate (BT) command is issued. DDR and DDR2 SDRAM devices support
burst lengths of 2, 4, or 8 data cycles. The auto-refresh command (ARF) is issued
periodically to ensure data retention. This function is performed by the DDR or DDR2
SDRAM high-performance controller.

The load mode register command (LMR) configures the SDRAM mode register. This
register stores the CAS latency, burst length, and burst type.

f For more information, refer to the specification of the SDRAM that you are using.

Error Correction Coding (ECC)
The optional ECC comprises an encoder and a decoder-corrector, which can detect
and correct single-bit errors and detect double-bit errors. The ECC uses an 8-bit ECC
for each 64-bit message. The ECC has the following features:

■ Hamming code ECC that encodes every 64-bits of data into 72-bits of codeword
with 8-bits of Hamming code parity bits

■ Latency:

■ Maximum of 1 or 2 clock delay during writes

■ Minimum 1 or 3 clock delay during reads

■ Detects and corrects all single-bit errors. Also the ECC sends an interrupt when the
user-defined threshold for a single-bit error is reached.

■ Detects all double-bit errors. Also, the ECC counts the number of double-bit errors
and sends an interrupt when the user-define threshold for double-bit error is
reached.

■ Accepts partial writes

■ Creates forced errors to check the functioning of the ECC

■ Powers up to a ready state
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

6–6 Chapter 6: Functional Description—High-Performance Controller
Block Description
Figure 6–3 shows the ECC block diagram.

The ECC comprises the following blocks:

■ The encoder—encodes the 64-bit message to a 72-bit codeword

■ The decoder-corrector—decodes and corrects the 72-bit codeword if possible

■ The ECC logic—controls multiple encoder and decoder-correctors, so that the ECC
can handle different bus widths. Also, it controls the following functions of the
encoder and decoder-corrector:

■ Interrupts:

■ Detected and corrected single-bit error

■ Detected double-bit error

■ Single-bit error counter threshold exceeded

■ Double-bit error counter threshold exceeded

■ Configuration registers:

■ Single-bit error detection counter threshold

■ Double-bit error detection counter threshold

■ Capture status for first encountered error or most recent error

■ Enable deliberate corruption of ECC for test purposes

■ Status registers:

■ Error address

■ Error type: single-bit error or double-bit error

■ Respective byte error ECC syndrome

■ Error signal—an error signal corresponding to the data word is provided with
the data and goes high if a double-bit error that cannot be corrected occurs in
the return data word.

Figure 6–3. ECC Block Diagram

Decoder-
Corrector

ECC
Controller

Encoder

Write
Message

N x 64 Bits

ECC

Write
Codeword
N x 72 Bits

Read
Message

N x 64 Bits

32 Bits

Read
Codeword
N x 72 Bits

N x 72 Bits DDR or DDR2
SDRAM

Memory
Controller

To Local
Interface

From Local
Interface

To and From
Local Interface
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 6: Functional Description—High-Performance Controller 6–7
Block Description
■ Counters:

■ Detected and/or corrected single-bit errors

■ Detected double-bit errors

The ECC can instantiate multiple encoders, each running in parallel, to encode any
width of data words assuming they are integer multiples of 64.

The ECC operates between the local (native or Avalon-MM interface) and the memory
controller.

The ECC has an N × 64-bit (where N is an integer) wide interface, between the local
interface and the ECC, for receiving and returning data from the local interface. This
interface can be a native interface or an Avalon-MM slave interface, you select the
type of interface in the MegaWizard interface.

The ECC has a second interface between the local interface and the ECC, which is a
32-bit wide Avalon-MM slave to control and report the status of the operation of the
ECC logic.

The encoded data from the ECC is sent to the memory controller using a N × 72-bit
wide Avalon-MM master interface, which is between the ECC and the memory
controller.

When testing the DDR SDRAM high-performance controller, you can turn off the
ECC.

Interrupts
The ECC issues an interrupt signal when one of the following scenarios occurs:

■ The single-bit error counter reaches the set maximum single-bit error threshold
value.

■ The double-bit error counter reaches the set maximum double-bit error threshold
value.

The error counters increment every time the respective event occurs for all N parts of
the return data word. This incremented value is compared with the maximum
threshold and an interrupt signal is sent when the value is equal to the maximum
threshold. The ECC clears the interrupts when you write a 1 to the respective status
register. You can mask the interrupts from either of the counters using the control
word.

Partial Writes
The ECC supports partial writes. Along with the address, data, and burst signals, the
Avalon-MM interface also supports a signal vector that is responsible for byte-enable.
Every bit of this signal vector represents a byte on the data-bus. Thus, a 0 on any of
these bits is a signal for the controller not to write to that particular location—a partial
write.

For partial writes, the ECC performs the following steps:

1. The ECC logic stalls further read or write commands from the Avalon-MM
interface when it receives a partial write condition.

2. It simultaneously sends a self-generated read command, for the partial write
address, to the memory controller.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

6–8 Chapter 6: Functional Description—High-Performance Controller
Block Description
3. Upon receiving the returned read data from the memory controller for the
particular address, the decoder decodes the data, checks for errors, and then sends
it to the ECC logic.

4. The ECC logic merges the corrected or correct dataword with the incoming
information.

5. The ECC logic sends the updated dataword to the encoder for encoding, and then
sends updated dataword to the memory controller with a write command.

6. The ECC logic stops stalling the commands from the Avalon-MM interface so that
the logic can receive new commands.

The following corner cases can occur:

■ A single-bit error during the read phase of the read-modify-write process. In this
case, the single-bit error is corrected first, the single-bit error counter is
incremented and then a partial write is performed to this corrected decoded data
word.

■ A double-bit error during the read phase of the read-modify-write process. In this
case, the double-bit error counter is incremented and an interrupt is sent through
the Avalon-MM interface. The new write word is not written to its location. A
separate field in the interrupt status register highlights this condition.

Figure 6–4 and Figure 6–5 show the partial write operation for HPC in full-rate and
half-rate mode. The full-rate HPC supports a local size of 1 and 2, and the half-rate
HPC supports a local size of 1 only.

Figure 6–4. Partial Write for HPC—Full Rate

Note to Figure 6–4:

(1) R represents the internal read-back memory data during the read-modify-write process.

Figure 6–5. Partial Write for HPC—Half Rate

Note to Figure 6–5:

(1) R represents the internal read-back memory data during the read-modify-write process.

local_address

local_size

local_be

local_wdata

mem_dm

mem_dq

0 1

2

X1 XF

01234567 89ABCDEF

67 R R R EF CD AB 89

local_address

local_size

local_be

local_wdata

mem_dm

mem_dq

0

1

X1

01234567

67 R R R
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 6: Functional Description—High-Performance Controller 6–9
Block Description
Partial Bursts
DIMMs that do not have the DM pins do not support partial bursts. A minimum of
four words must be written to the memory at the same time.

Figure 6–6 shows the partial burst operation for HPC.

ECC Latency
Using the ECC results in the following latency changes:

■ Local Burst Length 1

■ Local Burst Length 2

Local Burst Length 1

For a local burst length of 1, the write latency increases by one clock cycle; the read
latency increases by one clock cycle (including checking and correction).

A partial write results in a read followed by write in the ECC logic, so latency
depends on the time the controller takes to fetch the data from the particular address.

Table 6–3 shows the relationship between burst lengths and rate.

Local Burst Length 2

For a local burst length of 2, the write latency increases by two clock cycles; the read
latency increases by one clock cycle (including checking and correction).

A partial write results in a read followed by write in the ECC logic, so latency
depends on the time the controller takes to fetch the data from the particular address.

For a single-bit error, the automatic correction of memory takes place without stalling
the read cycle (if enabled), which stalls further commands to the ECC logic, while the
correction takes place.

ECC Registers
Table 6–4 shows the ECC registers.

Figure 6–6. Partial Burst for HPC

Table 6–3. Burst Lengths and Rates

Local Burst Length Rate Memory Burst Length

1 Half 4

2 Full 4

local_address

local_size

local_be

local_wdata

mem_dm

mem_dq

0

1

X1

01234567

67 45 23 01
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

6–10 Chapter 6: Functional Description—High-Performance Controller
Block Description
Table 6–4. ECC Registers (Part 1 of 2)

Name Address
Size
(Bits) Attribute Default Description

Control word specifications 00 32 R/W 0000000F This register contains all commands for
the ECC functioning.

Maximum single-bit error
counter threshold

01 32 R/W 00000001 The single-bit error counter increments
(when a single-bit error occurs) until the
maximum threshold, as defined by this
register. When this threshold is crossed,
the ECC generates an interrupt.

Maximum double-bit error
counter threshold

02 32 R/W 00000001 The double-bit error counter increments
(when a double-bit error occurs) until the
maximum threshold, as defined by this
register. When this threshold is crossed,
the ECC generates an interrupt.

Current single-bit error
count

03 32 RO 00000000 The single-bit error counter increments
(when a single-bit error occurs) until the
maximum threshold. You can find the
value of the count by reading this status
register.

Current double-bit error
count

04 32 RO 00000000 The double-bit error counter increments
(when a double-bit error occurs) until the
maximum threshold. You can find the
value of the count by reading this status
register.

Last or first single-bit error
error address

05 32 RO 00000000 This status register stores the last
single-bit error error address. It can be
cleared using the control word clear. If bit
10 of the control word is set high, the
first occurred address is stored.

Last or first double-bit error
error address

06 32 RO 00000000 This status register stores the last
double-bit error error address. It can be
cleared using the control word clear. If bit
10 of the control word is set high, the
first occurred address is stored.

Last single-bit error error
data

07 32 RO 00000000 This status register stores the last
single-bit error error data word. As the
data word is an Nth multiple of 64, the
data word is stored in a 2N-deep, 32-bit
wide FIFO buffer with the least significant
32-bit sub word stored first. It can be
cleared individually by using the control
word clear.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 6: Functional Description—High-Performance Controller 6–11
Block Description
ECC Register Bits
Table 6–5 shows the control word specification register.

Last single-bit error
syndrome

08 32 RO 00000000 This status register stores the last
single-bit error syndrome, which
specifies the location of the error bit on a
64-bit data word. As the data word is an
Nth multiple of 64, the syndrome is
stored in a N deep, 8-bit wide FIFO buffer
where each syndrome represents errors
in every 64-bit part of the data word. The
register gets updated with the correct
syndrome depending on which part of the
data word is shown on the last single-bit
error error data register. It can be cleared
individually by using the control word
clear.

Last double-bit error error
data

09 32 RO 00000000 This status register stores the last
double-bit error error data word. As the
data word is an Nth multiple of 64, the
data word is stored in a 2N deep, 32-bit
wide FIFO buffer with the least significant
32-bit sub word stored first. It can be
cleared individually by using the control
word clear.

Interrupt status register 0A 5 RO 00000000 This status register stores the interrupt
status in four fields (refer to Table 6–6).
These status bits can be cleared by
writing a 1 in the respective locations.

Interrupt mask register 0B 5 WO 00000001 This register stores the interrupt mask in
four fields (refer to Table 6–7).

Single-bit error location
status register

0C 32 R/W 00000000 This status register stores the occurrence
of single-bit error for each 64-bit part of
the data word in every bit (refer to
Table 6–8). These status bits can be
cleared by writing a 1 in the respective
locations.

Double-bit error location
status register

0D 32 R/W 00000000 This status register stores the occurrence
of double-bit error for each 64-bit part of
the data word in every bit (refer to
Table 6–9). These status bits can be
cleared by writing a 1 in the respective
locations.

Table 6–4. ECC Registers (Part 2 of 2)

Name Address
Size
(Bits) Attribute Default Description

Table 6–5. Control Word Specification Register (Part 1 of 2)

Bit Name Direction Description

0 Count single-bit error Decoder-corrector When 1, count single-bit errors.

1 Correct single-bit error Decoder-corrector When 1, correct single-bit errors.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

6–12 Chapter 6: Functional Description—High-Performance Controller
Block Description
Table 6–6 shows the interrupt status register.

Table 6–7 shows the interrupt mask register.

2 Double-bit error enable Decoder-corrector When 1, detect all double-bit errors and
increment double-bit error counter.

3 Reserved N/A Reserved for future use.

4 Clear all status registers Controller When 1, clear counters single-bit error and
double-bit error status registers for first and last
error address.

5 Reserved N/A Reserved for future use.

6 Reserved N/A Reserved for future use.

7 Counter clear on read Controller When 1, enables counters to clear on read
feature.

8 Corrupt ECC enable Controller When 1, enables deliberate ECC corruption
during encoding, to test the ECC.

9 ECC corruption type Controller When 0, creates single-bit errors in all ECC
codewords; when 1, creates double-bit errors in
all ECC codewords.

10 First or last error Controller When 1, stores the first error address rather
than the last error address of single-bit error or
double-bit error.

11 Clear interrupt Controller When 1, clears the interrupt.

Table 6–5. Control Word Specification Register (Part 2 of 2)

Bit Name Direction Description

Table 6–6. Interrupt Status Register

Bit Name Description

0 Single-bit error When 1, single-bit error occurred.

1 Double-bit error When 1, double-bit error occurred.

2 Maximum single-bit error When 1, single-bit error maximum threshold
exceeded.

3 Maximum double-bit error When 1, double-bit error maximum threshold
exceeded.

4 Double-bit error during
read-modify-write

When 1, double-bit error occurred during a read
modify write condition. (partial write).

Others Reserved Reserved.

Table 6–7. Interrupt Mask Register (Part 1 of 2)

Bit Name Description

0 Single-bit error When 1, masks single-bit error.

1 Double-bit error When 1, masks double-bit error.

2 Maximum single-bit error When 1, masks single-bit error maximum
threshold exceeding condition.

3 Maximum double-bit error When 1, masks double-bit error maximum
threshold exceeding condition.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 6: Functional Description—High-Performance Controller 6–13
Example Top-Level File
Table 6–8 shows the single-bit error location status register.

Table 6–9 shows the double-bit error location status register.

Example Top-Level File
The MegaWizard Plug-In Manager helps you create an example top-level file that
shows you how to instantiate and connect the DDR or DDR2 SDRAM HPC. The
example top-level file consists of the DDR or DDR2 SDRAM HPC, some driver logic
to issue read and write requests to the controller, a PLL to create the necessary clocks,
and a DLL (Stratix series only). The example top-level file is a working system that
you can compile and use for both static timing checks and board tests.

Figure 6–7 shows the testbench and the example top-level file.

4 Double-bit error during
read-modify-write

 When 1, masks interrupt when double-bit error
occurs during a read-modify-write condition.
(partial write).

Others Reserved Reserved.

Table 6–8. Single-Bit Error Location Status Register

Bit Name Description

Bits N – 1 down to 0 Interrupt When 0, no single-bit error; when 1, single-bit
error occurred in this 64-bit part.

Others Reserved Reserved.

Table 6–9. Double-Bit Error Location Status Register

Bit Name Description

Bits N-1 down to 0 Cause of Interrupt When 0, no double-bit error; when 1,
double-bit error occurred in this 64-bit part.

Others Reserved Reserved.

Table 6–7. Interrupt Mask Register (Part 2 of 2)

Bit Name Description

Figure 6–7. Testbench and Example Top-Level File

Example Driver

ALTMEMPHY

Control
Logic

clock_source

test_complete

pnf

Example Design

Testbench

DDR SDRAM Controller Wizard-
Generated

 Memory Model

DLL

PLL
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

6–14 Chapter 6: Functional Description—High-Performance Controller
Example Top-Level File
Table 6–10 describes the files that are associated with the example top-level file and
the testbench.

There are two Altera-generated memory models available—associative-array
memory model and full-array memory model.

The associative-array memory model (<variation name>_mem model.v) allocates
reduced set of memory addresses with a default depth of 2,048 or 2K address spaces.
This allocation allows for a larger memory array compilation and simulation which
enables you to easily reconfigure the depth of the associate array.

The full-array memory model (<variation name>_mem model_full.v) allocates
memory for all addresses accessible by the DDR cores. This allocation makes it
impossible to simulate large memory (more than 2K address spaces) designs, because
simulators need more memory than what is available on a typical system.

Both the memory models display similar behaviors and have the same calibration
time.

1 The memory model, <variation name>_test_component.v/vhd, used in SOPC Builder
designs, is actually a variation of the full-array memory model. To ensure your
simulation works in SOPC Builder, use memory model with less than 512-Mbit
capacity.

Example Driver
The example driver is a self-checking test pattern generator for the memory interface.
It uses a state machine to write and read from the memory to verify that the interface
is operating correctly.

It performs the following tests and loops back the tests indefinitely:

■ Sequential addressing writes and reads

The state machine writes pseudo-random data generated by a linear feedback shift
register (LFSR) to a set of incrementing row, bank, and column addresses. The
state machine then resets the LFSR, reads back the same set of addresses, and
compares the data it receives against the expected data. You can adjust the length
and pattern of the bursts that are written by changing the MAX_ROW, MAX_BANK,
and MAX_COL constants in the example driver source code, and the entire memory
space can be tested by adjusting these values. You can skip this test by setting the
test_seq_addr_on signal to logic zero.

Table 6–10. Example Top-Level File and Testbench Files

Filename Description

<variation name>_example_top_tb.v or .vhd Testbench for the example top-level file.

<variation name>_example_top.v or .vhd Example top-level file.

<variation name>_mem_model.v or .vhd Associative-array memory model.

<variation name>_full_mem_model.v or .vhd Full-array memory model.

<variation name>_example_driver.v or .vhd Example driver.

<variation name> .v or .vhd Top-level description of the custom MegaCore function.

<variation name>.qip Contains Quartus II project information for your MegaCore
function variations.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 6: Functional Description—High-Performance Controller 6–15
Example Top-Level File
■ Incomplete write operation

The state machine issues a series of write requests that are less than the maximum
burst size supported by your controller variation. The addresses are then read
back to ensure that the controller has issued the correct signals to the memory. This
test is only applicable in full-rate mode, when the local burst size is two. You can
skip this test by setting the test_incomplete_writes_on signal to logic zero.

■ Byte enable/data mask pin operation

The state machine issues two sets of write commands, the first of which clears a
range of addresses. The second set of write commands has only one byte enable bit
asserted. The state machine then issues a read request to the same addresses and
the data is verified. This test checks if the data mask pins are operating correctly.
You can skip this test by setting the test_dm_pin_on signal to logic zero.

■ Address pin operation

The example driver generates a series of write and read requests starting with an
all-zeros pattern, a walking-one pattern, a walking-zero pattern, and ending with
an all-zeros pattern. This test checks to make sure that all the individual address
bits are operating correctly. You can skip this test by setting the
test_addr_pin_on signal to logic zero.

■ Low-power mode operation

The example driver requests that the controller place the memory into
power-down and self-refresh states, and hold it in those states for the amount of
time specified by the COUNTER_VALUE signal. You can vary this value to adjust
the duration the memory is kept in the low-power states. This test is only available
if your controller variation enables the low-power mode option.

The example driver has four outputs that allow you to observe which tests are
currently running and if the tests are passing. The pass not fail (pnf) signal goes low
once one or more errors occur and remains low. The pass not fail per byte
(pnf_per_byte) signal goes low when there is incorrect data in a byte but goes back
high again once correct data is observed in the following byte. The test_status
signal indicates the test that is currently running, allowing you to determine which
test has failed. The test_complete signal goes high for a single clock cycle at the
end of the set of tests.

Table 6–11 shows the bit mapping for each test status.

Table 6–11. Test Status[] Bit Mapping

Bit Test

0 Sequential address test

1 Incomplete write test

2 Data mask pin test

3 Address pin test

4 Power-down test

5 Self-refresh test

6 Auto-precharge test
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

6–16 Chapter 6: Functional Description—High-Performance Controller
Top-level Signals Description
Top-level Signals Description
Table 6–12 shows the clock and reset signals.

Table 6–12. Clock and Reset Signals

 Name Direction Description

global_reset_n Input The asynchronous reset input to the controller. All other reset signals
are derived from resynchronized versions of this signal. This signal
holds the complete ALTMEMPHY megafunction, including the PLL, in
reset while low.

pll_ref_clk Input The reference clock input to PLL.

soft_reset_n Input Edge detect reset input intended for SOPC Builder use or to be
controlled by other system reset logic. It is asserted to cause a
complete reset to the PHY, but not to the PLL used in the PHY.

oct_ctl_rs_value Input ALTMEMPHY signal that specifies the serial termination value. Should
be connected to the ALT_OCT megafunction output
seriesterminationcontrol.

oct_ctl_rt_value Input ALTMEMPHY signal that specifies the parallel termination value.
Should be connected to the ALT_OCT megafunction output
parallelterminationcontrol.

dqs_delay_ctrl_import Input Allows the use of DLL in another ALTMEMPHY instance in this
ALTMEMPHY instance. Connect the export port on the
ALTMEMPHY instance with a DLL to the import port on the other
ALTMEMPHY instance.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 6: Functional Description—High-Performance Controller 6–17
Top-level Signals Description
Table 6–13 shows the DDR and DDR2 SDRAM HPC local interface signals.

Table 6–13. Local Interface Signals (Part 1 of 4)

Signal Name Direction Description

local_address[] Input Memory address at which the burst should start.

■ Full rate controllers

The width of this bus is sized using the following equation:

For one chip select:

width = bank bits + row bits + column bits – 1

For multiple chip selects:

width = chip bits + bank bits + row bits + column bits – 1

If the bank address is 2 bits wide, row is 13 bits wide and column is 10 bits
wide, then the local address is 24 bits wide. To map local_address to
bank, row and column address:

local_address[23:22] = bank address [1:0]

local_address[21:9] = row address [13:0]

local_address [8:0] = col_address[9:1]

The least significant bit (LSB) of the column address (multiples of four) on the
memory side is ignored, because the local data width is twice that of the
memory data bus width.

■ Half rate controllers

The width of this bus is sized using the following equation:

For one chip select:

width = bank bits + row bits + column bits – 2

For multiple chip selects:

width = chip bits + bank bits + row bits + column bits – 2

If the bank address is 2 bits wide, row is 13 bits wide and column is 10 bits
wide, then the local address is 23 bits wide. To map local_address to
bank, row and column address:

local_address is 23 bits wide

local_address[22:21] = bank address

local_address[20:8] = row address [13:0]

local_address [7:0] = col_address[9:2]

Two LSBs of the column address on the memory side are ignored, because the
local data width is four times that of the memory data bus width.

1 You can get the information on address mapping from the
<variation_name>_example_top.v or vhd file.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

6–18 Chapter 6: Functional Description—High-Performance Controller
Top-level Signals Description
local_be[] Input Byte-enable signal, which you use to mask off individual bytes during writes.
local_be is active high; mem_dm is active low.

To map local_wdata and local_be to mem_dq and mem_dm, consider
a full-rate design with 32-bit local_wdata and 16-bit mem_dq.

Local_wdata = < 22334455 >< 667788AA >< BBCCDDEE >

Local_be = < 1100 >< 0110 >< 1010 >

These values map to:

Mem_dq = <4455><2233><88AA><6677><DDEE><BBCC>

Mem_dm = <1 1 ><0 0 ><0 1 ><1 0 ><0 1 ><0 1 >

local_burstbegin Input The Avalon burst begin strobe, which indicates the beginning of an Avalon
burst. This signal is only available when the local interface is an Avalon-MM
interface and the memory burst length is greater than 2. Unlike all other
Avalon-MM signals, the burst begin signal does not stay asserted if
local_ready is deasserted.

For write transactions, assert this signal at the beginning of each burst transfer
and keep this signal high for one cycle per burst transfer, even if the slave has
deasserted the local_ready signal. This signal is sampled at the rising edge
of phy_clk when the local_write_req signal is asserted. After the
slave deasserts the local_ready signal, the master keeps all the write
request signals asserted until local_ready signal becomes high again.

For read transactions, assert this signal for one clock cycle when read request
is asserted and the local_address from which the data should be read is
given to the memory. After the slave deasserts local_ready
(waitrequest_n in Avalon interface), the master keeps all the read request
signals asserted until the local_ready signal becomes high again.

local_read_req Input Read request signal.

You cannot assert read request and write request signals at the same time.

local_refresh_req Input User-controlled refresh request. If Enable User Auto-Refresh Controls option
is turned on, local_refresh_req becomes available and you are
responsible for issuing sufficient refresh requests to meet the memory
requirements. This option allows complete control over when refreshes are
issued to the memory including ganging together multiple refresh commands.
Refresh requests take priority over read and write requests unless they are
already being processed.

local_size[] Input Controls the number of beats in the requested read or write access to memory,
encoded as a binary number. The range of values depend on the memory burst
length and whether you select full or half rate in the wizard.

If you select a memory burst length 4 and half rate, the local burst length is 1
and so local_size should always be driven with 1.

If you select a memory burst length 4 and full rate, the local burst length is 2
and you should set the local_size to either 1 or 2 for each read or write
request.

local_wdata[] Input Write data bus. The width of local_wdata is twice that of the memory data
bus for a full rate controller; four times the memory data bus for a half rate
controller.

local_write_req Input Write request signal. You cannot assert read request and write request signals
at the same time.

Table 6–13. Local Interface Signals (Part 2 of 4)

Signal Name Direction Description
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 6: Functional Description—High-Performance Controller 6–19
Top-level Signals Description
local_autopch_req Input User control of precharge. If Enable Auto-Precharge Control is turned on,
local_autopch_req becomes available and you can request the
controller to issue an auto-precharge write or auto-precharge read command.
These commands cause the memory to issue a precharge command to the
current bank at the appropriate time without an explicit precharge command
from the controller. This is particularly useful if you know the current read or
write is the last one you intend to issue to the currently open row. The next
time you need to use that bank, the access could be quicker as the controller
does not need to precharge the bank before activating the row you wish to
access.

local_powerdn_req Input User control of the power-down feature. If Enable Power Down Controls
option is enabled, you can request that the controller place the memory
devices into a power-down state as soon as it can without violating the relevant
timing parameters and responds by asserting the local_powerdn_ack
signal. You can hold the memory in the power-down state by keeping this
signal asserted. The controller brings the memory out of the power-down state
to issue periodic auto-refresh commands to the memory at the appropriate
interval if you hold it in the power-down state. You can release the memory
from the power-down state at any time by deasserting the
local_powerdn_ack signal once it has successfully brought the memory
out of the power-down state.

local_self_rfsh_req Input User control of the self-refresh feature. If Enable Self-Refresh Controls
option is enabled, you can request that the controller place the memory
devices into a self-refresh state by asserting this signal. The controller places
the memory in the self-refresh state as soon as it can without violating the
relevant timing parameters and responds by asserting the
local_self_rfsh_ack signal. You can hold the memory in the
self-refresh state by keeping this signal asserted. You can release the memory
from the self-refresh state at any time by deasserting the
local_self_rfsh_req signal and the controller responds by
deasserting the local__self_rfsh_ack signal once it has successfully
brought the memory out of the self-refresh state.

phy_clk Output The system clock that the ALTMEMPHY megafunction provides to the user. All
user inputs to and outputs from the DDR high-performance controller must be
synchronous to this clock.

reset_phy_clk_n Output The reset signal that the ALTMEMPHY megafunction provides to the user. It is
asserted asynchronously and deasserted synchronously to phy_clk clock
domain.

aux_full_rate_clk Output An alternative clock that the ALTMEMPHY megafunction provides to the user.
This clock always runs at the same frequency as the external memory
interface. In half-rate mode, this clock is twice the frequency of the phy_clk
and can be used whenever a 2x clock is required. In full-rate mode, this clock
is driven by the same PLL output as the phy_clk signal.

aux_half_rate_clk Output An alternative clock that the ALTMEMPHY megafunction provides to the user.
This clock always runs at half the frequency as the external memory interface.
In full-rate mode, this clock is half the frequency of the phy_clk and can be
used, for example to clock the user side of a half-rate bridge. In half-rate
mode, this clock is driven by the same PLL output as the phy_clk signal.

dll_reference_clk Output Reference clock to feed to an externally instantiated DLL.

Table 6–13. Local Interface Signals (Part 3 of 4)

Signal Name Direction Description
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

6–20 Chapter 6: Functional Description—High-Performance Controller
Top-level Signals Description
reset_request_n Output Reset request output that indicates when the PLL outputs are not locked. Use
this signal as a reset request input to any system-level reset controller you
may have. This signal is always low when the PLL is trying to lock, and so any
reset logic using it is advised to detect a reset request on a falling edge rather
than by level detection.

local_init_done Output When the memory initialization, training, and calibration are complete, the
ALTMEMPHY sequencer asserts the ctrl_usr_mode_rdy signal to the
memory controller, which then asserts this signal to indicate that the memory
interface is ready to be used.

Read and write requests are still accepted before local_init_done is
asserted, however they are not issued to the memory until it is safe to do so.

This signal does not indicate that the calibration is successful. To find out if the
calibration is successful, look for the calibration signal,
resynchronization_successful, or postamble_successful
for Stratix IV devices.

local_rdata[] Output Read data bus. The width of local_rdata is twice that of the memory data
bus for a full rate controller; four times the memory data bus for a half rate
controller.

local_rdata_error Output Asserted if the current read data has an error. This signal is only available if the
Enable Error Detection and Correction Logic option is turned on. This signal
is asserted together with the local_rdata_valid signal.

If the controller encounters double-bit errors, no correction is made and the
controller asserts this signal.

local_rdata_valid Output Read data valid signal. The local_rdata_valid signal indicates that
valid data is present on the read data bus.

local_ready Output The local_ready signal indicates that the DDR or DDR2 SDRAM
high-performance controller is ready to accept request signals. If
local_ready is asserted in the clock cycle that a read or write request is
asserted, that request has been accepted. The local_ready signal is
deasserted to indicate that the DDR or DDR2 SDRAM high-performance
controller cannot accept any more requests. The controller is able to buffer
four read or write requests.

local_refresh_ack Output Refresh request acknowledge, which is asserted for one clock cycle every time
a refresh is issued. Even if the Enable User Auto-Refresh Controls option is
not selected, local_refresh_ack still indicates to the local interface that
the controller has just issued a refresh command.

local_wdata_req Output Write data request signal, which indicates to the local interface that it should
present valid write data on the next clock edge. This signal is only required
when the controller is operating in Native interface mode.

local_powerdn_ack Output Power-down request acknowledge signal. This signal is asserted and
deasserted in response to the local_powerdn_req signal from the user.

local_self_rfsh_ack Output Self-refresh request acknowledge signal. This signal is asserted and
deasserted in response to the local_self_rfsh_req signal from the
user.

Table 6–13. Local Interface Signals (Part 4 of 4)

Signal Name Direction Description
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 6: Functional Description—High-Performance Controller 6–21
Top-level Signals Description
Table 6–14 shows the DDR and DDR2 SDRAM interface signals.

Table 6–15 shows the ECC logic signals.

Table 6–14. DDR and DDR2 SDRAM Interface Signals

Signal Name Direction Description

mem_dq[] Bidirectional Memory data bus. This bus is half the width of the local read and write data
busses.

mem_dqs[] Bidirectional Memory data strobe signal, which writes data into the DDR or DDR2 SDRAM and
captures read data into the Altera device.

mem_clk (1) Bidirectional Clock for the memory device.

mem_clk_n (1) Bidirectional Inverted clock for the memory device.

mem_a[] Output Memory address bus.

mem_ba[] Output Memory bank address bus.

mem_cas_n Output Memory column address strobe signal.

mem_cke[] Output Memory clock enable signals.

mem_cs_n[] Output Memory chip select signals.

mem_dm[] Output Memory data mask signal, which masks individual bytes during writes.

mem_odt[] Output Memory on-die termination control signal, for DDR2 SDRAM only.

mem_ras_n Output Memory row address strobe signal.

mem_we_n Output Memory write enable signal.

Note to Table 6–14:

(1) The mem_clk signals are output only signals from the FPGA. However, in the Quartus II software they must be defined as bidirectional (INOUT)
I/Os to support the mimic path structure that the ALTMEMPHY megafunction uses.

Table 6–15. ECC Logic Signals

Signal Name Direction Description

ecc_addr[] Input Address for ECC logic.

ecc_be[] Input ECC logic byte enable.

ecc_read_req Input Read request for ECC logic.

ecc_wdata[] Input ECC logic write data.

ecc_write_req Input Write request for ECC logic.

ecc_interrupt Output Interrupt from ECC logic.

ecc_rdata[] Output Return data from ECC logic.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

6–22 Chapter 6: Functional Description—High-Performance Controller
Top-level Signals Description
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

© February 2010 Altera Corporation
7. Functional Description—
High-Performance Controller II
The high-performance controller II (HPC II) architecture is an upgraded controller
with higher efficiency and more features than the HPC. HPC II is recommended for all
new designs.

HPC II is pin-out compatible with your existing DDR high-performance designs.
HPC II has the following additional features:

■ Higher efficiency with in-order read and write commands, and out-of-order bank
management command.

■ Run-time programmability to configure the behavior of the controller.

■ Half-rate bridge option to reduce memory access latency.

■ Integrated burst adapter supporting a range of burst sizes on the local interface.

■ Integrated ECC, supporting 40-bit and 72-bit interfaces with partial word writes
and optional write back on error.

■ Support for multi-rank UDIMMs and RDIMMs.

Upgrading from HPC to HPC II
If you want to migrate your designs from the existing HPC to the more efficient
HPC II, you have to ensure that you do the following:

■ In the Preset Editor dialog box, assign the following HPC II timing parameters to
match your memory specification. Set these parameters according to the memory
datasheet:

■ tFAW

■ tRRD

■ tRTP

For example, for Micron DDR3-800 datasheet, tFAW=40 ns, tRRD=10 ns, tRTP=10 ns.

■ If you are using the Avalon-MM interface, HPC II replaces the port interface level
for the AFI and Avalon interface without requiring any top-level change.

■ The side-band signals differ slightly for HPC II. If you use these signals, you need
to perform the following steps.

■ local_refresh_req

You need to drive an additional active high signal, local_refresh_chip, to
control which chip to issue the user-refresh to.

■ local_powerdn_req

The user-manual power signal is no longer supported in HPC II. Instead, you
can select auto power-down on the Controller Settings tab in the MegaWizard
Plug-In Manager, and specify the desired time-out (n cyles) after which the
controller automatically powers down the memory.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

7–2 Chapter 7: Functional Description—High-Performance Controller II
Block Description
■ Because HPC II only supports a specific memory burst length, you must update
the memory burst length to match the controller settings in Table 7–1.

■ Because HPC II supports arbitrary user burst length ranging from of 1 to 64, you
can adjust the max_local_size value in HPC II. Adjusting the maximum local
size value changes the width of the local_size signal. The maximum
local_size signal value is 2n–1, where n is the width of the local_size signal.
HP has a fixed local_size signal width of either 1 or 2.

Block Description
Figure 7–1 shows the top-level block diagram of the DDR or DDR2 SDRAM HPC II.

Table 7–1. Burst Length Support

Controller HPC HPC II

DDR Burst length of 2 and 4 Burst length of 4 in full-rate
mode, and burst length of 8 in
half-rate mode.

DDR2 Burst length of 4

Figure 7–1. DDR and DDR2 SDRAM HPC II Block Diagram

Note to Figure 7–1:

(1) For DDR2 SDRAM HPC II only.

local_addr
local_be

local_burstbegin
local_read_req

local_refresh_req
local_refresh_chip

local_size
local_wdata

local_write_req
local_autopch_req
local_self_rfsh_req

local_multicast
csr_addr

csr_read_req
csr_wdata

csr_write_req

mem_a
mem_ba
mem_cas_n
mem_cke
mem_cs_n
mem_dq
mem_dqs
mem_dm
mem_odt (1)
mem_ras_n
mem_we_n

local_init_done
local_rdata

local_rdata_valid
local_rdata_error

local_ready
local_refresh_ack
local_wdata_req

local_powerdn_ack
local_self_rfsh_ack

ecc_interrupt
csr_rdata

csr_rdata_valid
csr_waitrequest

Control
Logic

DDR/DDR2 SDRAM High-
Performance Controller II

ALTMEMPHY
Megafunction

DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 7: Functional Description—High-Performance Controller II 7–3
Block Description
Figure 7–2 shows a block diagram of the DDR or DDR2 SDRAM HPC II architecture.

The blocks in Figure 7–2 are described in the following sections.

Avalon-MM Data Slave Interface
The Avalon-MM data slave interface accepts read and write requests from the
Avalon-MM master. The width of the data busses, local_wdata and local_rdata,
is twice or four times the width of the external memory interface, depending on
whether you choose full or half rate.

Figure 7–2. DDR and DDR2 SDRAM HPC II Architecture Block Diagram

Timer
Logic

ECC
Decoder and

Correction

ECC-enabled

ECC-enabled

Read Data

Write DataWrite Data
FIFO

PHY Register
Table

Bank
Management

Logic
Command

Queue
Command-Issuing

State Machine

Address and
Command

Decode

ECC
Encoder

Control Register
Table

A
va

lo
n-

M
M

 D
at

a
S

la
ve

 In
te

rfa
ce

H
al

f-R
at

e
B

rid
ge

A
va

lo
n-

M
M

 C
S

R
S

la
ve

 In
te

rfa
ce

Write
Datapath

Read
Datapath

Write Data
Timing Logic

ODT
Generation

Logic

A
FI
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

7–4 Chapter 7: Functional Description—High-Performance Controller II
Block Description
The local address width is sized based on the memory chip, row, bank, and column
address widths. For example:

■ For multiple chip selects:

width = chip bits + row bits + bank bits + column – N

■ For a single chip select:

width = row bits + bank bits + column – N

Where N = 1 for full-rate controller and 2 for half-rate controller.

For every Avalon transaction, the number of read or write requests can go up to the
maximum local burst count of 64. Altera recommends that you set this maximum
burst count to match your system master's supported burst count.

Write Data FIFO Buffer
The write data FIFO buffer holds the write data and byte-enable from the user logic
until the data is needed by the main state machine. The local_ready signal is
deasserted when either the command queue or write data FIFO buffer is full. The
write data FIFO buffer is wide enough to store the write data and the byte-enable
signals.

Command Queue
The command queue allows the controller to buffer up to eight consecutive reads or
writes. The command queue presents the next 4, 6, or 6 accesses to the internal logic
for the look-ahead bank management. The bank management is more efficient if the
look-ahead is deeper, but a deeper queue consumes more resources, and may cause
maximum frequency degradation.

Other than storing incoming commands, the command queue also maps the local
address to memory address based on the address mapping option selected. By
default, the command queue leverages bank interleaving scheme, where the address
increment goes to the next bank instead of the next row to increase chances of page
hit.

Bank Management Logic
The bank management logic keeps track of the current state in each bank across
multiple chips. It can keep a row open in every bank in your memory system. When a
command is issued by the state machine, the bank management logic is updated with
the latest bank status. With the look-ahead capability, the main state machine is able to
issue early bank management commands. With the auto-precharge feature, the
controller supports an open page policy, where the last accessed row in each bank is
kept open and a close page policy, where a bank is closed after it is used.

Timer Logic
The timer logic models the state of each bank in the memory interface. The timer logic
models the internal behavior of each bank and provides status output signals to the
state machine. The state machine then decides whether to issue the look-ahead bank
management command based on the timer status signals.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 7: Functional Description—High-Performance Controller II 7–5
Block Description
Command-Issuing State Machine
The command-issuing state machine decides what DDR commands to issue based on
the inputs from the command queue, the bank management logic, and the timer logic.
The command-issuing state machine operates in two modes: full-rate or half-rate. The
full-rate state machine supports 1T address and command, and always issues
memory burst length of 4. The half-rate state machine supports 2T address and
command, and always issues memory burst length of 8.

1 A longer memory burst length, in this case 8 beats, increases the command bandwidth
by allowing more data cycles for the same amount of command cycles. A longer
memory burst length also provides more command cycles that ensures a more
effective look-ahead bank management. However, longer memory burst lengths are
less efficient if the bursts you issue do not provide enough data to fill the burst.

This state machine accepts any local burst count of 1 to 64. The built-in burst adapter
in this state machine maps the local burst count to the most efficient memory burst.
The state machine also supports reads and writes that start on non-aligned memory
burst boundary addresses. For effective command bus bandwidth, this state machine
supports additive latency which issues reads and writes immediately after the ACT
command. This state machine accepts additive latency values greater or equal to tRCD
– 1, in clock cycle unit (tCK).

Address and Command Decode Logic
When the main state machine issues a command to the memory, it asserts a set of
internal signals. The address and command decode logic turns these signals into AFI
specific commands and address. This block generates the following signals:

■ Clock enable and reset signals: afi_cke, afi_rst_n

■ Command and address signals: afi_cs_n, afi_ba, afi_addr, afi_ras_n,
afi_cas_n, afi_we_n

Write and Read Datapath, and Write Data Timing Logic
The write and read datapath, and the write data timing logic generate the AFI read
and write control signals.

When the state machine issues a write command to the memory, the write data for
that write burst has to be fetched from the write data FIFO buffer. The relationship
between the write command and write data depends on the afi_wlat signal. This
logic presents the write data FIFO read request signal so that the data arrives on the
external memory interface DQ pins at the correct time.

During write, the following AFI signals are generated based on the state machine
outputs and the afi_wlat signal:

■ afi_dqs_burst

■ afi_wdata_valid

■ afi_wdata

■ afi_dm
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

7–6 Chapter 7: Functional Description—High-Performance Controller II
Block Description
During read, the afi_doing_read signal generates the afi_rdata_valid signal
and controls the ALTMEMPHY postamble circuit.

ODT Generation Logic
The ODT generation logic generates the necessary ODT signals for DDR2 memory
devices, based on the scheme recommended by Altera.

Figure 7–2 shows which ODT signal on the adjacent DIMM is enabled for DDR2
SDRAM.

User-Controlled Side-Band Signals
The user-controlled side-band signals consists of the following signals.

User Auto-Precharge Commands
The auto-precharge read and auto-precharge write commands allow you to indicate
to the memory device that this read or write command is the last access to the
currently open row. The memory device automatically closes or auto-precharges the
page it is currently accessing so that the next access to the same bank is quicker.

This command is useful for applications that require fast random accesses. You can
request an auto-precharge by asserting the local_autopch signal during a read or
write request.

User-Refresh Commands
The user-refresh command enables the request to place the memory into refresh
mode. The user-refresh control takes precedence over a read or write request. You can
issue up to nine consecutive refresh commands to the memory.

Multi-Cast Write
The multi-cast write request signal allows you to ask the controller to send the current
write requests to all the chip-selects. This means that the write data is written to all the
ranks in the system. The multi-cast write feature is useful for tRC mitigation where you
can cycle through chips to continuously read data without hitting tRC. The multi-cast
write is not supported in ECC and RDIMM modes.

Low-Power Mode Logic
There are two types of low-power mode logic: user-controlled self-refresh logic and
automatic power-down with programmable time-out logic.

Table 7–2. ODT

Write or Read On ODT Enabled

mem_cs[0] mem_odt[2]

mem_cs[1] mem_odt[3]

mem_cs[2] mem_odt[0]

mem_cs[3] mem_odt[1]
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 7: Functional Description—High-Performance Controller II 7–7
Block Description
User-Controlled Self-Refresh Logic

When you assert the local_self_rfsh_req signal, the controller completes all
pending reads and writes before it places the memory into self-refresh mode. Once the
controller places the memory into self-refresh mode, it responds by asserting the
acknowledge signal, local_self_rfsh_ack. You can leave the memory in
self-refresh mode for as long as you choose.

To bring the memory out of self-refresh mode, you must deassert the request signal,
and the controller responds by deasserting the acknowledge signal when the memory
is no longer in self-refresh mode.

Automatic Power-Down with Programmable Time-Out

The controller automatically places the memory in power-down mode to save power
if the requested number of idle controller clock cycles is observed in the controller.
The Auto Power Down Cycles parameter on the Controller Settings tab allows you
to specify a range between 1 to 65,535 idle controller clock cycles. The counter for the
programmable time-out starts when there are no user read or write requests in the
command queue. Once the controller places the memory in power-down mode, it
responds by asserting the acknowledge signal, local_powerdown_ack.

Configuration and Status Register (CSR) Interface
The configuration and status register interface is a 32-bit wide interface that uses the
Avalon-MM interface standard. The CSR interface allows you to configure the timing
parameters, address widths, and the behavior of the controller. If you do not need this
feature, you can disable it and all the programmable settings are fixed to the values
configured during the generation process. This interface is synchronous to the
controller clock.

Refer to Table 7–9 through Table 7–23 on page 7–20 for detailed information about the
register maps.

Error Correction Coding (ECC)
The optional ECC logic comprises an encoder and a decoder-corrector, which can
detect and correct single-bit errors, and detect double-bit errors. The ECC logic is
available in two widths: 64/72 bit and 32/40 bit. The ECC logic has the following
features:

■ Hamming code ECC that encodes every 64 or 32 bits of data into 72 or 40 bits of
codeword.

■ A latency increase of one clock for both writes and reads.

■ Detects and corrects all single-bit errors.

■ Detects all double-bit errors.

■ Counts the number of single-bit and double-bit errors.

■ Accepts partial writes, which trigger a read-modify-write cycle, for memory
devices with dm pins.

■ Is able to inject single-bit and double-bit errors to trigger ECC correction for
testing and debugging purposes.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

7–8 Chapter 7: Functional Description—High-Performance Controller II
Block Description
■ Generates an interrupt signal when an error occurs.

When a single-bit or double-bit error occurs, the ECC logic triggers the
ecc_interrupt signal to inform you that an ECC error has occurred. When a
single-bit error occurs, the ECC logic issues an internal read to the error address, and
performs an internal write to write back the corrected data. When a double-bit error
occurs, the ECC logic does not do any error correction but it asserts the
local_rdata_error signal to indicate that the data is incorrect. The
local_rdata_error signal follows the same timing as the local_rdata_valid
signal.

Enabling auto-correction allows the ECC logic to hold off all controller pending
activities until the correction is complete. You can choose to disable auto-correction
and schedule the correction manually when the controller is idle to ensure better
system efficiency. To manually correct ECC errors, do the following:

1. When an interrupt occurs, read out the SBE_ERROR register. When a single-bit
error occurs, the SBE_ERROR register is equal to one.

2. Read out the ERR_ADDR register.

3. Correct the single-bit error by doing one of the following:

■ Issue a dummy write to the memory address stored in the ERR_ADDR register.
A dummy write is a write request with the local_be signal zero, that triggers
a partial write which is effectively a read-modify-write event. The partial write
corrects the data at that address and writes it back.

or

■ Enable the ENABLE_AUTO_CORR register using the CSR interface and issue a
read request to the memory address stored in the ERR_ADDR register. The read
request triggers auto-error correction to the memory address stored in the
ERR_ADDR register.

Partial Writes
The ECC logic supports partial writes. Along with the address, data, and burst
signals, the Avalon-MM interface also supports a signal vector, local_be, that is
responsible for byte-enable. Every bit of this signal vector represents a byte on the
data-bus. Thus, a logic low on any of these bits instructs the controller not to write to
that particular byte, resulting in a partial write. The ECC code is calculated on all
bytes of the data-bus. If any bytes are changed, the ECC code must be recalculated
and the new code must be written back to the memory.

For partial writes, the ECC logic performs the following steps:

1. The ECC logic sends a read command to the partial write address.

2. Upon receiving a return data from the memory for the particular address, the ECC
logic decodes the data, checks for errors, and then merges the corrected or correct
dataword with the incoming information.

3. The ECC logic issues a write to write back the updated data and the new ECC
code.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 7: Functional Description—High-Performance Controller II 7–9
Block Description
The following corner cases can occur:

■ A single-bit error during the read phase of the read-modify-write process. In this
case, the single-bit error is corrected first, the single-bit error counter is
incremented and then a partial write is performed to this corrected decoded data
word.

■ A double-bit error during the read phase of the read-modify-write process. In this
case, the double-bit error counter is incremented and an interrupt is issued. A new
write word is written back to the memory location. The ECC status register keeps
track of the error information.

Figure 7–3 and Figure 7–4 show the partial write operation for HPC II.

Partial Bursts
DIMMs that do not have the DM pins do not support partial bursts. A minimum of
four (half rate) or eight words (full rate) must be written to the memory at the same
time.

Figure 7–3. Partial Write for HPC II—Full Rate

Note to Figure 7–3:

(1) R represents the internal read-back memory data during the read-modify-write process.

Figure 7–4. Partial Write for HPC II—Half Rate

Note to Figure 7–4:

(1) R represents the internal read-back memory data during the read-modify-write process.

local_address

local_size

local_be

local_wdata

mem_dm

mem_dq

0 1

2

X1 XF

01234567 89ABCDEF

67 R R R EF CD AB 89

local_address

local_size

local_be

local_wdata

mem_dm

mem_dq

0

1

X1

01234567

67 R R R
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

7–10 Chapter 7: Functional Description—High-Performance Controller II
Example Top-Level File
Figure 7–5 shows the partial burst operation for HPC II.

Example Top-Level File
The MegaWizard Plug-In Manager helps you create an example top-level file that
shows you how to instantiate and connect the DDR or DDR2 SDRAM HPC II. The
example top-level file consists of the DDR or DDR2 SDRAM HPC II, some driver logic
to issue read and write requests to the controller, a PLL to create the necessary clocks,
and a DLL (Stratix series only). The example top-level file is a working system that
you can compile and use for both static timing checks and board tests.

Figure 7–5. Partial Burst for HPC II

local_address

local_size

local_be

local_wdata

mem_dm

mem_dq

0

1

X1

01234567

67 45 23 01
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 7: Functional Description—High-Performance Controller II 7–11
Example Top-Level File
Figure 7–6 shows the testbench and the example top-level file.

Table 7–3 describes the files that are associated with the example top-level file and the
testbench.

There are two Altera-generated memory models available—associative-array
memory model and full-array memory model.

The associative-array memory model (<variation name>_mem model.v) allocates
reduced set of memory addresses with a default depth of 2,048 or 2K address spaces.
This allocation allows for a larger memory array compilation and simulation which
enables you to easily reconfigure the depth of the associate array.

The full-array memory model (<variation name>_mem model_full.v) allocates
memory for all addresses accessible by the DDR cores. This allocation makes it
impossible to simulate large memory designs.

Both the memory models display similar behaviors and have the same calibration
time.

1 The memory model, <variation name>_test_component.v/vhd, used in SOPC Builder
designs, is actually a variation of the full-array memory model. To ensure your
simulation works in SOPC Builder, use memory model with less than 512-Mbit
capacity.

Figure 7–6. Testbench and Example Top-Level File

Example Driver

ALTMEMPHY

Control
Logic

clock_source

test_complete

pnf

Example Design

Testbench

DDR SDRAM Controller Wizard-
Generated

 Memory Model

DLL

PLL

Table 7–3. Example Top-Level File and Testbench Files

Filename Description

<variation name>_example_top_tb.v or .vhd Testbench for the example top-level file.

<variation name>_example_top.v or .vhd Example top-level file.

<variation name>_mem_model.v or .vhd Associative-array memory model.

<variation name>_full_mem_model.v or .vhd Full-array memory model.

<variation name>_example_driver.v or .vhd Example driver.

<variation name> .v or .vhd Top-level description of the custom MegaCore function.

<variation name>.qip Contains Quartus II project information for your MegaCore
function variations.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

7–12 Chapter 7: Functional Description—High-Performance Controller II
Example Top-Level File
Example Driver
The example driver is a self-checking test pattern generator for the memory interface.
It uses a state machine to write and read from the memory to verify that the interface
is operating correctly.

The example driver performs the following tests and loops back the tests indefinitely:

■ Sequential addressing writes and reads

The state machine writes pseudo-random data generated by a linear feedback shift
register (LFSR) to a set of incrementing row, bank, and column addresses. The
state machine then resets the LFSR, reads back the same set of addresses, and
compares the data it receives against the expected data. You can adjust the length
and pattern of the bursts that are written by changing the MAX_ROW, MAX_BANK,
and MAX_COL constants in the example driver source code, and the entire memory
space can be tested by adjusting these values. You can skip this test by setting the
test_seq_addr_on signal to logic zero.

■ Incomplete write operation

The state machine issues a series of write requests that are less than the maximum
burst size supported by your controller variation. The addresses are then read
back to ensure that the controller has issued the correct signals to the memory. This
test is only applicable in full-rate mode, when the local burst size is two. You can
skip this test by setting the test_incomplete_writes_on signal to logic zero.

■ Byte enable/data mask pin operation

The state machine issues two sets of write commands, the first of which clears a
range of addresses. The second set of write commands has only one byte enable bit
asserted. The state machine then issues a read request to the same addresses and
the data is verified. This test checks if the data mask pins are operating correctly.
You can skip this test by setting the test_dm_pin_on signal to logic zero.

■ Address pin operation

The example driver generates a series of write and read requests starting with an
all-zeros pattern, a walking-one pattern, a walking-zero pattern, and ending with
an all-zeros pattern. This test checks to make sure that all the individual address
bits are operating correctly. You can skip this test by setting the
test_addr_pin_on signal to logic zero.

■ Low-power mode operation

The example driver requests the controller to place the memory into power-down
and self-refresh states, and hold it in those states for the amount of time specified
by the COUNTER_VALUE signal. You can vary this value to adjust the duration the
memory is kept in the low-power states. This test is only available if your
controller variation enables the low-power mode option.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 7: Functional Description—High-Performance Controller II 7–13
Top-level Signals Description
The example driver has four outputs that allow you to observe which tests are
currently running and if the tests are passing. The pass not fail (pnf) signal goes low
once one or more errors occur and remains low. The pass not fail per byte
(pnf_per_byte) signal goes low when there is incorrect data in a byte but goes back
high again once correct data is observed in the following byte. The test_status
signal indicates the test that is currently running, allowing you to determine which
test has failed. The test_complete signal goes high for a single clock cycle at the
end of the set of tests.

Table 7–4 shows the bit mapping for each test status.

Top-level Signals Description
Table 7–5 shows the clock and reset signals.

Table 7–4. Test Status[] Bit Mapping

Bit Test

0 Sequential address test

1 Incomplete write test

2 Data mask pin test

3 Address pin test

4 Power-down test

5 Self-refresh test

6 Auto-precharge test

Table 7–5. Clock and Reset Signals (Part 1 of 2)

 Name Direction Description

global_reset_n Input The asynchronous reset input to the controller. All other reset signals
are derived from resynchronized versions of this signal. This signal
holds the complete ALTMEMPHY megafunction, including the PLL, in
reset while low.

pll_ref_clk Input The reference clock input to PLL.

phy_clk Output The system clock that the ALTMEMPHY megafunction provides to the
user. All user inputs to and outputs from the DDR HPC II must be
synchronous to this clock.

reset_phy_clk_n Output The reset signal that the ALTMEMPHY megafunction provides to the
user. It is asserted asynchronously and deasserted synchronously to
phy_clk clock domain.

aux_full_rate_clk Output An alternative clock that the ALTMEMPHY megafunction provides to
the user. This clock always runs at the same frequency as the external
memory interface. In half-rate mode, this clock is twice the frequency
of the phy_clk and can be used whenever a 2x clock is required. In
full-rate mode, this clock is driven by the same PLL output as the
phy_clk signal.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

7–14 Chapter 7: Functional Description—High-Performance Controller II
Top-level Signals Description
aux_half_rate_clk Output An alternative clock that the ALTMEMPHY megafunction provides to
the user. This clock always runs at half the frequency as the external
memory interface. In full-rate mode, this clock is half the frequency of
the phy_clk and can be used, for example to clock the user side of a
half-rate bridge. In half-rate mode, or if the Enable Half Rate Bridge
option is turned on, this clock is driven by the same PLL output that
drives the phy_clk signal.

dll_reference_clk Output Reference clock to feed to an externally instantiated DLL.

reset_request_n Output Reset request output that indicates when the PLL outputs are not
locked. Use this signal as a reset request input to any system-level
reset controller you may have. This signal is always low when the PLL
is trying to lock, and so any reset logic using it is advised to detect a
reset request on a falling edge rather than by level detection.

soft_reset_n Input Edge detect reset input intended for SOPC Builder use or to be
controlled by other system reset logic. It is asserted to cause a
complete reset to the PHY, but not to the PLL used in the PHY.

oct_ctl_rs_value Input ALTMEMPHY signal that specifies the serial termination value. Should
be connected to the ALT_OCT megafunction output
seriesterminationcontrol.

oct_ctl_rt_value Input ALTMEMPHY signal that specifies the parallel termination value.
Should be connected to the ALT_OCT megafunction output
parallelterminationcontrol.

dqs_delay_ctrl_import Input Allows the use of DLL in another ALTMEMPHY instance in this
ALTMEMPHY instance. Connect the export port on the
ALTMEMPHY instance with a DLL to the import port on the other
ALTMEMPHY instance.

Table 7–5. Clock and Reset Signals (Part 2 of 2)

 Name Direction Description
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 7: Functional Description—High-Performance Controller II 7–15
Top-level Signals Description
Table 7–6 shows the DDR and DDR2 SDRAM HPC II local interface signals.

Table 7–6. Local Interface Signals (Part 1 of 4)

Signal Name Direction Description

local_address[] Input Memory address at which the burst should start.

By default, the local address is mapped to the bank interleaving scheme. You
can change the ordering via the Local-to-Memory Address Mapping option
in the Controller Settings page.

The width of this bus is sized using the following equation:

■ Full rate controllers

The width of this bus is sized using the following equation:

For one chip select:

width = row bits + bank bits + column bits – 1

For multiple chip selects:

width = chip bits + row bits + bank bits + column bits – 1

If the bank address is 2 bits wide, row is 13 bits wide and column is 10 bits
wide, then the local address is 24 bits wide. To map local_address to
bank, row and column address:

local_address is 24 bits wide

local_address[23:11] = row address[12:0]

local_address[10:9] = bank address [1:0]

local_address [8:0] = column address[9:1]

The least significant bit (LSB) of the column address (multiples of four) on
the memory side is ignored, because the local data width is twice that of the
memory data bus width.

■ Half rate controllers

The width of this bus is sized using the following equation:

For one chip select:

width = row bits + bank bits + column bits – 2

For multiple chip selects:

width = chip bits + row bits + bank bits + column bits – 2

If the bank address is 2 bits wide, row is 13 bits wide and column is 10 bits
wide, then the local address is 23 bits wide. To map local_address to
bank, row and column address:

local_address is 23 bits wide

local_address[22:10] = row address[12:0]

local_address[9:8] = bank address [1:0]

local_address [7:0] = column address[9:2]

Two LSBs of the column address on the memory side are ignored, because
the local data width is four times that of the memory data bus width.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

7–16 Chapter 7: Functional Description—High-Performance Controller II
Top-level Signals Description
local_be[] Input Byte enable signal, which you use to mask off individual bytes during writes.
local_be is active high; mem_dm is active low.

To map local_wdata and local_be to mem_dq and mem_dm,
consider a full-rate design with 32-bit local_wdata and 16-bit mem_dq.

Local_wdata = < 22334455 >< 667788AA >< BBCCDDEE >

Local_be = < 1100 >< 0110 >< 1010 >

These values map to:

Mem_dq = <4455><2233><88AA><6677><DDEE><BBCC>

Mem_dm = <1 1 ><0 0 ><0 1 ><1 0 ><0 1 ><0 1 >

local_burstbegin Input The Avalon burst begin strobe, which indicates the beginning of an Avalon
burst. Unlike all other Avalon-MM signals, the burst begin signal does not
stay asserted if local_ready is deasserted.

For write transactions, assert this signal at the beginning of each burst
transfer and keep this signal high for one cycle per burst transfer, even if the
slave has deasserted the local_ready signal. This signal is sampled at the
rising edge of phy_clk when the local_write_req signal is asserted.
After the slave deasserts the local_ready signal, the master keeps all the
write request signals asserted until local_ready signal becomes high
again.

For read transactions, assert this signal for one clock cycle when read
request is asserted and the local_address from which the data should
be read is given to the memory. After the slave deasserts local_ready
(waitrequest_n in Avalon interface), the master keeps all the read
request signals asserted until the local_ready signal becomes high
again.

local_read_req Input Read request signal. You cannot assert read request and write request signal
at the same time.

local_refresh_req Input User-controlled refresh request. If Enable User Auto-Refresh Controls
option is turned on, local_refresh_req becomes available and you are
responsible for issuing sufficient refresh requests to meet the memory
requirements. This option allows complete control over when refreshes are
issued to the memory including grouping together multiple refresh
commands. Refresh requests take priority over read and write requests,
unless the requests are already being processed.

local_refresh_chip Input Controls which chip to issue the user refresh to. This active high signal is
used together with the local_refresh_req signal. This signal is as
wide as the memory chip select. This signal asserts a high value to each bit
that represents the refresh for the corresponding memory chip.

For example: If the local_refresh_chip signal is assigned with a
value of 4’b0101, the controller refreshes the memory chips 0 and 2, and
memory chips 1 and 3 are not refreshed.

local_size[] Input Controls the number of beats in the requested read or write access to
memory, encoded as a binary number. The range of supported Avalon burst
lengths is 1 to 64. The width of this signal is derived based on the burst count
specified in the Local Maximum Burst Count option. With the derived width,
choose a value ranging from 1 to the local maximum burst count specified.

Table 7–6. Local Interface Signals (Part 2 of 4)

Signal Name Direction Description
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 7: Functional Description—High-Performance Controller II 7–17
Top-level Signals Description
local_wdata[] Input Write data bus. The width of local_wdata is twice that of the memory
data bus for a full rate controller; four times the memory data bus for a half
rate controller.

local_write_req Input Write request signal. You cannot assert read request and write request signal
at the same time.

local_multicast Input In-band multi-cast write request signal. This active high signal is used
together with the local_write_req signal. When this signal is asserted
high, data is written to all the memory chips available.

local_autopch_req Input User control of auto-precharge. If Enable Auto-Precharge Control option is
turned on, the local_autopch_req signal becomes available, and you
can request the controller to issue an auto-precharge write or auto-precharge
read command. These commands cause the memory to issue a precharge
command to the current bank at the appropriate time without an explicit
precharge command from the controller. This is particularly useful if you
know the current read or write is the last one you intend to issue to the
currently open row. The next time you need to use that bank, the access
could be quicker as the controller does not need to precharge the bank before
activating the row you wish to access.

If you issue a local burst longer than the memory burst with the
local_autopch_req signal asserted, the controller only issues
auto-precharge with the last read or write command.

local_self_rfsh_req Input User control of the self-refresh feature. If Enable Self-Refresh Controls
option is enabled, you can request that the controller place the memory
devices into a self-refresh state by asserting this signal. The controller places
the memory in the self-refresh state as soon as it can without violating the
relevant timing parameters and responds by asserting the
local_self_rfsh_ack signal. You can hold the memory in the
self-refresh state by keeping this signal asserted. You can release the
memory from the self-refresh state at any time by deasserting the
local_self_rfsh_req signal and the controller responds by
deasserting the local__self_rfsh_ack signal once it has
successfully brought the memory out of the self-refresh state.

local_init_done Output When the memory initialization, training, and calibration are complete, the
ALTMEMPHY sequencer asserts the ctrl_usr_mode_rdy signal to the
memory controller, which then asserts this signal to indicate that the memory
interface is ready to be used.

Read and write requests are still accepted before local_init_done is
asserted, however they are not issued to the memory until it is safe to do so.

This signal does not indicate that the calibration is successful.

local_rdata[] Output Read data bus. The width of local_rdata is twice that of the memory
data bus for a full rate controller; four times the memory data bus for a half
rate controller.

local_rdata_error Output Asserted if the current read data has an error. This signal is only available if
the Enable Error Detection and Correction Logic option is turned on. This
signal is asserted together with the local_rdata_valid signal.

If the controller encounters double-bit errors, no correction is made and the
controller asserts this signal.

local_rdata_valid Output Read data valid signal. The local_rdata_valid signal indicates that
valid data is present on the read data bus.

Table 7–6. Local Interface Signals (Part 3 of 4)

Signal Name Direction Description
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

7–18 Chapter 7: Functional Description—High-Performance Controller II
Top-level Signals Description
local_ready Output The local_ready signal indicates that the DDR or DDR2 SDRAM HPC II
is ready to accept request signals. If local_ready is asserted in the clock
cycle that a read or write request is asserted, that request has been accepted.
The local_ready signal is deasserted to indicate that the DDR or DDR2
SDRAM HPC II cannot accept any more requests. The DDR or DDR2 SDRAM
HPC II is able to buffer eight read or write requests.

local_refresh_ack Output Refresh request acknowledge, which is asserted for one clock cycle every
time a refresh is issued. Even if the Enable User Auto-Refresh Controls
option is not selected, local_refresh_ack still indicates to the local
interface that the controller has just issued a refresh command.

local_self_rfsh_ack Output Self-refresh request acknowledge feature. This signal is asserted and
deasserted in response to the local_self_rfsh_req signal from the
user.

local_power_down_ack Output Auto power-down acknowledge signal. This signal is asserted for one clock
cycle every time auto power-down is issued.

ecc_interrupt Output Interrupt signal from the ECC logic. This signal is asserted when the ECC
feature is turned on, and an error is detected. This signal remains asserted
until the user logic clears the error through the CSR interface.

Table 7–6. Local Interface Signals (Part 4 of 4)

Signal Name Direction Description
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 7: Functional Description—High-Performance Controller II 7–19
Top-level Signals Description
Table 7–7 shows the DDR and DDR2 SDRAM HPC II CSR interface signals.

Table 7–8 shows the DDR and DDR2 SDRAM interface signals.

Table 7–7. CSR Interface Signals

Signal Name Direction Description

csr_addr[] Input Register map address.The width of csr_addr is 16 bits.

csr_be[] Input Byte-enable signal, which you use to mask off individual bytes during writes.
csr_be is active high.

csr_wdata[] Input Write data bus. The width of csr_wdata is 32 bits.

csr_write_req Input Write request signal. You cannot assert csr_write_req and
csr_read_req signals at the same time.

csr_read_req Input Read request signal. You cannot assert csr_read_req and
csr_write_req signals at the same time.

csr_rdata[] Output Read data bus. The width of csr_rdata is 32 bits.

csr_rdata_valid Output Read data valid signal. The csr_rdata_valid signal indicates that valid
data is present on the read data bus.

csr_waitrequest Output The csr_waitrequest signal indicates that the HPC II is busy and not
ready to accept request signals. If the csr_waitrequest signal goes
high in the clock cycle when a read or write request is asserted, that request
is not accepted. If the csr_waitrequest signal goes low, the HPC II is
then ready to accept more requests.

Table 7–8. DDR and DDR2 SDRAM Interface Signals

Signal Name Direction Description

mem_dq[] Bidirectional Memory data bus. This bus is half the width of the local read and write data
busses.

mem_dqs[] Bidirectional Memory data strobe signal, which writes data into the DDR or DDR2 SDRAM and
captures read data into the Altera device.

mem_dqs_n[] Bidirectional Inverted memory data strobe signal, which is used together with the mem_dqs
signal to improve signal integrity.

mem_clk (1) Bidirectional Clock for the memory device.

mem_clk_n (1) Bidirectional Inverted clock for the memory device.

mem_addr[] Output Memory address bus.

mem_ba[] Output Memory bank address bus.

mem_cas_n Output Memory column address strobe signal.

mem_cke[] Output Memory clock enable signals.

mem_cs_n[] Output Memory chip select signals.

mem_dm[] Output Memory data mask signal, which masks individual bytes during writes.

mem_odt[] Output Memory on-die termination control signal, for DDR2 SDRAM only.

mem_ras_n Output Memory row address strobe signal.

mem_we_n Output Memory write enable signal.

Note to Table 7–8:

(1) The mem_clk signals are output only signals from the FPGA. However, in the Quartus II software they must be defined as bidirectional (INOUT)
I/Os to support the mimic path structure that the ALTMEMPHY megafunction uses.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

7–20 Chapter 7: Functional Description—High-Performance Controller II
Register Maps Description
Register Maps Description
Table 7–9 through Table 7–23 show the register maps for the DDR and DDR2 SDRAM
HPC II.

Table 7–9. Register Map

Address Contents

0x005 Mode register 0-1

0x006 Mode register 2-3

0x100 ALTMEMPHY status and control register

0x110 Controller status and configuration register

0x120 Memory address size register 0

0x121 Memory address size register 1

0x122 Memory address size register 2

0x123 Memory timing parameters register 0

0x124 Memory timing parameters register 1

0x125 Memory timing parameters register 2

0x126 Memory timing parameters register 3

0x130 ECC control register

0x131 ECC status register

0x132 ECC error address register

Table 7–10. Address 0x005 Mode Register 0-1 (Part 1 of 2)

Bit Name Default Access Description

0-2 Burst length 8 RO This value is set to 4 for full-rate and 8 in half-rate
for DDR or DDR2 SDRAM HPC II

3 BT 0 RO This value is set to 0 because the DDR or DDR2
SDRAM HPC II only supports sequential bursts.

4–6 CAS latency — RW This value must be set to match the memory CAS
latency. You must set this value in CSR interface
register map as well.

7 Reserved 0 — Reserved for future use.

8 DLL 0 RW Not used by the controller, but you can set and
programm into the memory device mode register.

9–11 Write recovery — RW This value must be set to match the memory write
recovery time (tWR). You must set this value in CSR
interface register map as well.

12 PD 0/1 RO This value is set to 0 because the DDR or DDR2
SDRAM HPC II only supports power-down fast exit
mode.

13–15 Reserved 0 — Reserved for future use.

16 DLL 0 RW Not used by the controller, but you can set and
program into the memory device mode register.

17 ODS 0 RW Not used by the controller, but you can set and
program into the memory device mode register.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 7: Functional Description—High-Performance Controller II 7–21
Register Maps Description
18 RTT 0 RW Not used by the controller, but you can set and
program into the memory device mode register.

19–21 AL — RW Additive latency setting. The default value for these
bits is set by the MegaWizard Additive Latency
setting for your controller instance. You must set
this value in CSR interface register map as well.

22 RTT 0 RW Not used by the controller, but you can set and
program into the memory device mode register.

23–25 RTT/WL/OCD 0 RW Not used by the controller, but you can set and
program into the memory device mode register.

26 DQS# 0 RW Not used by the controller, but you can set and
program into the memory device mode register.

27 TDQS/RDQS 0 RW Not used by the controller, but you can set and
program into the memory device mode register.

28 QOFF 0 RW Not used by the controller, but you can set and
program into the memory device mode register.

29–31 Reserved 0 — Reserved for future use.

Table 7–11. Address 0x006 Mode Register 2-3

Bit Name Default Access Description

0-2 Reserved 0 — Reserved for future use.

3-5 CWL — RW CAS write latency setting. You must set this value
in CSR interface register map as well.

6 ASR 0 RW Not used by the controller, but you can set and
program into the memory device mode register.

7 SRT/ET 0 RW Not used by the controller, but you can set and
program into the memory device mode register.

8 Reserved 0 — Reserved for future use.

9–10 RTT_WR 0 RW Not used by the controller, but you can set and
program into the memory device mode register.

11–15 Reserved 0 — Reserved for future use.

16–17 MPR_RF 0 RW Not used by the controller, but you can set and
program into the memory device mode register.

18 MPR 0 RW Not used by the controller, but you can set and
program into the memory device mode register.

19–31 Reserved 0 — Reserved for future use.

Table 7–10. Address 0x005 Mode Register 0-1 (Part 2 of 2)

Bit Name Default Access Description
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

7–22 Chapter 7: Functional Description—High-Performance Controller II
Register Maps Description
Table 7–12. Address 0x100 ALTMEMPHY Status and Control Register

Bit Name Default Access Description

0 CAL_SUCCESS — RO This bit reports the value of the ALTMEMPHY
ctl_cal_success output. Writing to this bit
has no effect.

1 CAL_FAIL — RO This bit reports the value of the ALTMEMPHY
ctl_cal_fail output. Writing to this bit has no
effect.

2 CAL_REQ 0 RW Writing a 1 to this bit asserts the ctl_cal_req
signal to the ALTMEMPHY megafunction. Writing a
0 to this bit deaaserts the signal, and the
ALTMEMPHY megafunction will then initiate its
calibration sequence.

c You must not use this register during the
ALTMEMPHY megafunction calibration. You
must wait until the CAL_SUCCESS or
CAL_FAIL register shows a value of 1.

3–7 Reserved 0 — Reserved for future use.

8–13 CLOCK_OFF 0 RW Writing a 1 to any of the bits in this register causes
the appropriate ctl_mem_clk_disable signal
to the ALTMEMPHY megafunction to be asserted,
which will disable the memory clock outputs.
Writing a 0 to this register causes the signal to be
deasserted and the memory clocks to be reenabled.
ALTMEMPHY can support up to 6 individual
memory clocks, each bit will represent each
individual clock.

14-30 Reserved 0 — Reserved for future use.

Table 7–13. Address 0x110 Controller Status and Configuration Register (Part 1 of 2)

Bit Name Default Access Description

0–15 AUTO_PD_CYCLES 0x0 RW The number of idle clock cycles after which the
controller should place the memory into
power-down mode. The controller is considered
to be idle if there are no commands in the
command queue. Setting this register to 0
disables the auto power-down mode. The
default value of this register depends on the
values set during the generation of the design.

16 AUTO_PD_ACK 1 RO This bit indicates that the memory is in
power-down state.

17 SELF_RFSH 0 RW Setting this bit, or asserting the
local_self_rfsh signal, causes the
memory to go into self-refresh state.

18 SELF_RFSH-ACK 0 RO This bit indicates that the memory is in
self-refresh state.

19 Reserved 0 — Reserved for future use.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 7: Functional Description—High-Performance Controller II 7–23
Register Maps Description
20–21 ADDR_ORDER 00 RW 00 - Chip, row, bank, column.

01 - Chip, bank, row, column.

10 - Reserved for future use.

11 - Reserved for future use.

22 REGDIMM 0 RW Setting this bit to 1 enables REGDIMM support
in controller.

23–24 CTRL_DRATE 00 RO These bits represent controller date rate:

00 - Full rate.

01 - Half rate.

10 - Reserved for future use.

11 - Reserved for future use.

24–30 Reserved 0 — Reserved for future use.

Table 7–14. Address 0x120 Memory Address Size Register 0

Bit Name Default Access Description

0–7 Column address
width

— RW The number of column address bits for the
memory devices in your memory interface. The
range of legal values is 7-12.

8–15 Row address width — RW The number of row address bits for the memory
devices in your memory interface. The range of
legal values is 12-16.

16–19 Bank address width — RW The number of bank address bits for the memory
devices in your memory interface. The range of
legal values is 2-3.

20–23 Chip select address
width

— RW The number of chip select address bits for the
memory devices in your memory interface. The
range of legal values is 0-2. If there is only one
single chip select in the memory interface, set
this bit to 0.

24–31 Reserved 0 — Reserved for future use.

Table 7–15. Address 0x121 Memory Address Size Register 1

Bit Name Default Access Description

0–31 Data width
representation
(word)

— RW The number of DQS bits in the memory interface.
This bit can be used to derive the width of the
memory interface by multiplying this value by the
number of DQ pins per DQS pin (typically 8).

Table 7–13. Address 0x110 Controller Status and Configuration Register (Part 2 of 2)

Bit Name Default Access Description
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

7–24 Chapter 7: Functional Description—High-Performance Controller II
Register Maps Description
Table 7–16. Address 0x122 Memory Address Size Register 2

Bit Name Default Access Description

0–7 Chip select
representation

— RW The number of chip select in binary
representation.

For example, a design with 2 chip selects has the
value of 00000011.

8–31 Reserved 0 — Reserved for future use.

Table 7–17. Address 0x123 Memory Timing Parameters Register 0

Bit Name Default Access Description

0–3 tRCD — RW The activate to read or write the timing
parameter. The range of legal values is 2-11
cycles.

4–7 tRRD — RW The activate to activate timing parameter. The
range of legal values is 2-8 cycles.

8–11 tRP — RW The precharge to activate timing parameter. The
range of legal values is 2-11 cycles.

11–15 tMRD — RW The mode register load time parameter. This
value is not used by the controller, as the
controller derives the correct value from the
memory type setting.

16–23 tRAS — RW The activate to precharge timing parameter. The
range of legal values is 4-29 cycles.

24–31 tRC — RW The activate to activate timing parameter. The
range of legal values is 8-40 cycles.

Table 7–18. Address 0x124 Memory Timing Parameters Register 1

Bit Name Default Access Description

0–3 tWTR — RW The write to read timing parameter. The range of
legal values is 1-10 cycles.

4–7 tRTP — RW The read to precharge timing parameter. The
range of legal values is 2-8 cycles.

8–15 tFAW — RW The four-activate window timing parameter. The
range of legal values is 6-32 cycles.

16–31 Reserved 0 — Reserved for future use.

Table 7–19. Address 0x125 Memory Timing Parameters Register 2

Bit Name Default Access Description

0–15 tREFI — RW The refresh interval timing parameter. The range
of legal values is 780-6240 cycles.

16–23 tRFC — RW The refresh cycle timing parameter. The range of
legal values is 12-88 cycles.

24–31 Reserved 0 — Reserved for future use.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 7: Functional Description—High-Performance Controller II 7–25
Register Maps Description
Table 7–20. Address 0x126 Memory Timing Parameters Register 3

Bit Name Default Access Description

0–3 CAS latency, tCL — RW This value must be set to match the memory CAS
latency. You must set this value in the 0x04
register map as well.

4–7 Additive latency, AL — RW Additive latency setting. The default value for
these bits is set in the Memory additive CAS
latency setting in the Preset Editor dialog
box.You must set this value in the 0x05 register
map as well.

8–11 CAS write latency,
CWL

— RW CAS write latency setting. You must set this value
in the 0x06 register map as well.

12–15 Write recovery, tWR — RW This value must be set to match the memory
write recovery time (tWR). You must set this value
in the 0x04 register map as well.

16–31 Reserved 0 — Reserved for future use.

Table 7–21. Address 0x130 ECC Control Register

Bit Name Default Access Description

0 ENABLE_ECC 1 RW When 1, enables the generation and checking
of ECC.

1 ENABLE_AUTO_CORR 1 RW When 1, enables auto-correction when a
single-bit error is detected.

2 GEN_SBE 0 RW When 0, enables the deliberate insertion of
single-bit errors, bit 0, in the data written to
memory. This bit is only used for testing
purposes.

3 GEN_DBE 0 RW When 0, enables the deliberate insertion of
double-bit errors, bits 0 and 1, in the data
written to memory. This bit is only used for
testing purposes.

4 ENABLE_INTR 0 RW When 0, enables the interrupt output.

5 MASK_SBE_INTR 0 RW When 0, masks the single-bit error interrupt.

6 MASK_DBE_INTR 0 RW When 0, masks the double-bit error interrupt

7 CLEAR 0 RW When 0, writing to this self-clearing bit clears
the interrupt signal, and the error status and
error address registers.

9 Reserved 0 — Reserved for future use.

Table 7–22. Address 0x131 ECC Status Register (Part 1 of 2)

Bit Name Default Access Description

0 SBE_ERROR 1 RO Set to 1 when any single-bit errors occur.

1 DBE_ERROR 1 RO Set to 1 when any double-bit errors occur.

2–7 Reserved 0 — Reserved for future use.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

7–26 Chapter 7: Functional Description—High-Performance Controller II
Register Maps Description
8–15 SBE_COUNT 0 RO Reports the number of single-bit errors that have
occurred since the status register counters were
last cleared.

16–23 DBE_COUNT 0 RO Reports the number of double-bit errors that
have occurred since the status register counters
were last cleared.

24–31 Reserved 0 — Reserved for future use.

Table 7–23. Address 0x132 ECC Error Address Register

Bit Name Default Access Description

0–31 ERR_ADDR 0 RO The address of the most recent ECC error. This
address contains concatenation of chip, bank,
row, and column addresses.

Table 7–22. Address 0x131 ECC Status Register (Part 2 of 2)

Bit Name Default Access Description
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

© February 2010 Altera Corporation
8. Latency
Latency is defined using the local (user) side frequency and absolute time (ns). There
are two types of latencies that exists while designing with memory controllers—read
and write latencies, which have the following definitions:

■ Read latency—the amount of time it takes for the read data to appear at the local
interface after initiating the read request.

■ Write latency—the amount of time it takes for the write data to appear at the
memory interface after initiating the write request.

1 For a half-rate controller, the local side frequency is half of the memory interface
frequency. For a full-rate controller, the local side frequency is equal to the memory
interface frequency.

Altera defines read and write latencies in terms of the local interface clock frequency
and by the absolute time for the memory controllers. These latencies apply to
supported device families (Table 1–1 on page 1–2) with the following memory
controllers:

■ Legacy DDR and DDR2 SDRAM controllers

■ Half-rate HPC and HPC II

■ Full-rate HPC and HPC II

The latency defined in this section uses the following assumptions:

■ The row is already open, there is no extra bank management needed.

■ The controller is idle, there is no queued transaction pending, indicated by the
local_ready signal asserted high.

■ No refresh cycles occur before the transaction.

The latency for the high-performance controllers comprises many different stages of
the memory interface. Figure 8–1 on page 8–2 shows a typical memory interface read
latency path showing read latency from the time a local_read_req signal assertion
is detected by the controller up to data available to be read from the dual-port RAM
(DPRAM) module.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

8–2 Chapter 8: Latency
Table 8–1 shows the different stages that make up the whole read and write latency
that Figure 8–1 shows.

From Figure 8–1, the read latency in the high-performance controllers is made up of
four components:

Read latency = controller latency + command output latency + CAS latency +
PHY read data input latency = T1 + T2 + T3 + T4

Similarly, the write latency in the high-performance controllers is made up of three
components:

Write latency = controller latency + write data latency = T1 + T2 + T3

You can separate the controller and ALTMEMPHY read data input latency into
latency that occurred in the I/O element (IOE) and latency that occurred in the FPGA
fabric.

Figure 8–1. Typical Latency Path

Shifted
DQS Clk

High-
Performance

Controller

PLLphy_clk

local_rdata

local_read_req

control_doing_rd

PLL
0° or 180°

PHY

FPGA Device Memory Device

Latency T3
(includes CAS

latency)

Latency T1

local_addr
mem_cs_n

mem_dq []

mem_dqs []

Latency T2
Address/Command Generation

Core I/O

Alignment and
Synchronization

Capture

Shifted
DQS Clock

Resynchronization
 Clock

Half-
rate

DPRAM

Read Datapath
Latency T4

mem_clk []

mem_clk_n []

Table 8–1. High Performance Controller Latency Stages and Descriptions

Latency Number Latency Stage Description

T1 Controller local_read_req or local_write_req signal assertion to
ddr_cs_n signal assertion.

T2 Command Output ddr_cs_n signal assertion to mem_cs_n signal assertion.

T3 CAS or WL Read command to DQ data from the memory or write command to DQ
data to the memory.

T4 ALTMEMPHY
read data input

Read data appearing on the local interface.

T2 + T3 Write data latency Write data appearing on the memory interface.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 8: Latency 8–3
Table 8–2 shows the minimum and maximum supported CAS latency for the DDR
and DDR2 SDRAM high-performance controllers (HPC and HPC II).

Table 8–3 through Table 8–6 show a typical latency that can be achieved in Arria GX,
Arria II GX, Cyclone III, Cyclone IV, Stratix IV, Stratix III, Stratix II, and Stratix II GX
devices. The exact latency for your memory controller depends on your precise
configuration. You can obtain precise latency from simulation, but this figure can vary
slightly in hardware because of the automatic calibration process.

The actual memory CAS and write latencies shown are halved in half-rate designs as
the latency calculation is based on the local clock.

The read latency also depends on your board trace delay. The latency found in
simulation can be different from that found in board testing as functional simulation
does not take into account the board trace delays. For a given design on a given board,
the latency may change by one clock cycle (for full-rate designs) or two clock cycles
(for half-rate designs) upon resetting the board. Different boards could also show
different latencies even with the same design.

The CAS and write latencies are different between DDR and DDR2 SDRAM
interfaces. To calculate latencies for DDR SDRAM interfaces, use the numbers from
DDR2 SDRAM listed below and replace the CAS and write latency with the DDR
SDRAM values.

Table 8–2. Supported CAS Latency (Note 1)

Device Family

Minimum Supported
CAS Latency

Maximum Supported CAS
Latency

DDR DDR2 DDR DDR2

Arria GX 3.0 3.0 3.0 6.0

Arria II GX 3.0 3.0 3.0 6.0

Cyclone III 2.0 3.0 3.0 6.0

Cyclone IV 2.0 3.0 3.0 6.0

HardCopy III 3.0 3.0 3.0 6.0

HardCopy IV 3.0 3.0 3.0 6.0

Stratix II 3.0 3.0 3.0 6.0

Stratix III 3.0 3.0 3.0 6.0

Stratix IV 3.0 3.0 3.0 6.0

Note to Table 8–2:

(1) The registered DIMMs, where supported, effectively introduce one extra cycle of CAS latency. For the registered
DIMMs, you need to subtract 1.0 from the CAS figures to determine the minimum supported CAS latency, and add
1.0 to the CAS figures to determine the maximum supported CAS latency.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

8–4 Chapter 8: Latency
Table 8–3. Typical Read Latency in HPC (Note 1), (2)

Device
Frequency

(MHz) Interface

Controller
Latency

(3)

Address and
Command
Latency

CAS
Latency

(4)

Read Data
Latency

Total Read
Latency (5)

FPGA I/O FPGA I/O

Local
Clock
Cycles

Time
(ns)

Arria GX 233 Half-rate 5 3 1 2 4.5 1 17 154

167 Full-rate 4 2 1 4 5 1 17 108

Arria II GX 233 Half-rate 5 3 1 2.5 5.5 1 18 154

167 Full-rate 4 2 1 4 6 1 18 114

Cyclone III and
Cyclone IV

200 Half-rate 5 3 1 2 4.5 1 17 180

167 Full-rate 4 2 1 4 5 1 17 108

Stratix II and
Stratix II GX

333 Half-rate 5 3 1 2 4.5 1 17 108

267 Half-rate 5 3 1 2 4.5 1 17 135

200 Full-rate 4 2 1 4 5 1 17 90

Stratix III and
Stratix IV

400 Half-rate 5 3 1 2.5 7.125 1.5 21 100

267 Full-rate 4 2 1.5 4 7 1 20 71

Notes to Table 8–3:

(1) These are typical latency values using the assumptions listed in the beginning of the section. Your actual latency may be different than shown.
Perform your own simulation for your actual latency.

(2) Numbers shown may have been rounded up to the nearest higher integer.
(3) The controller latency value is from the Altera high-performance controller.
(4) CAS latency is per memory device specification and is programmable in the MegaWizard Plug-In Manager.
(5) Total read latency is the sum of controller, address and command, CAS, and read data latencies.

Table 8–4. Typical Read Latency in HPC II (Note 1), (2) (Part 1 of 2)

Device
Frequency

(MHz) Interface

Controller
Latency

(3)

Address and
Command
Latency

CAS
Latency

(4)

Read Data
Latency

Total Read
Latency (5)

FPGA I/O FPGA I/O

Local
Clock
Cycles

Time
(ns)

Arria GX 233 Half-rate 5 3 1 2 4.5 1 18 154

167 Full-rate 5 2 1 4 5 1 19 114

Arria II GX 233 Half-rate 5 3 1 2.5 5.5 1 18 154

167 Full-rate 5 2 1 4 6 1 20 120

Cyclone III and
Cyclone IV

200 Half-rate 5 3 1 2 4.5 1 18 180

167 Full-rate 5 2 1 4 5 1 19 114

Stratix II and
Stratix II GX

333 Half-rate 5 3 1 2 4.5 1 18 108

267 Half-rate 5 3 1 2 4.5 1 18 135

200 Full-rate 5 2 1 4 5 1 19 95
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 8: Latency 8–5
Stratix III and
Stratix IV

400 Half-rate 5 3 1 2.5 7.125 1.5 20 100

267 Full-rate 4 2 1.5 4 7 1 20 75

Notes to Table 8–3:

(1) These are typical latency values using the assumptions listed in the beginning of the section. Your actual latency may be different than shown.
Perform your own simulation for your actual latency.

(2) Numbers shown may have been rounded up to the nearest higher integer.
(3) The controller latency value is from the Altera high-performance controller.
(4) CAS latency is per memory device specification and is programmable in the MegaWizard Plug-In Manager.
(5) Total read latency is the sum of controller, address and command, CAS, and read data latencies.

Table 8–4. Typical Read Latency in HPC II (Note 1), (2) (Part 2 of 2)

Device
Frequency

(MHz) Interface

Controller
Latency

(3)

Address and
Command
Latency

CAS
Latency

(4)

Read Data
Latency

Total Read
Latency (5)

FPGA I/O FPGA I/O

Local
Clock
Cycles

Time
(ns)

Table 8–5. Typical Write Latency in HPC (Note 1), (2)

Device
Frequency

(MHz) Interface

Controller
Latency

(3)

Address and
Command Latency

Memory
Write

Latency
(4)

Total Write
Latency (5)

FPGA I/O

Local
Clock
Cycles

Time
(ns)

Arria GX 233 Half-rate 5 3 1 1.5 12 103

167 Full-rate 4 2 1 3 11 66

Arria II GX 233 Half-rate 5 3 1 2.5 12 103

167 Full-rate 4 2 1 4 11 66

Cyclone III and
Cyclone IV

200 Half-rate 5 3 1 1.5 12 120

167 Full-rate 4 2 1 3 11 66

Stratix II and
Stratix II GX

333 Half-rate 5 3 1 1.5 12 72

267 Half-rate 5 3 1 1.5 12 90

200 Full-rate 4 2 1 3 11 55

Stratix III and
Stratix IV

400 Half-rate 5 3 1 2 12 60

267 Full-rate 4 2 1.5 3 12 44

Notes to Table 8–5:

(1) These are typical latency values using the assumptions listed in the beginning of the section. Your actual latency may be different than shown.
Perform your own simulation for your actual latency.

(2) Numbers shown may have been rounded up to the nearest higher integer.
(3) The controller latency value is from the Altera high-performance controller.
(4) Memory write latency is per memory device specification. The latency from when you provide the command to write to when you need to

provide data at the memory device.
(5) Total write latency is the sum of controller, address and command, and memory write latencies.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

8–6 Chapter 8: Latency
f To see the latency incurred in the IOE for both read and write paths for ALTMEMPHY
variations in Stratix IV and Stratix III devices refer to the IOE figures in the External
Memory Interfaces in Stratix III Devices chapter of the Stratix III Device Handbook and the
External Memory Interfaces in Stratix IV Devices chapter of the Stratix IV Device
Handbook.

Table 8–6. Typical Write Latency in HPC II (Note 1), (2)

Device
Frequency

(MHz) Interface

Controller
Latency

(3)

Address and
Command Latency

Memory
Write

Latency
(4)

Total Write
Latency (5)

FPGA I/O

Local
Clock
Cycles

Time
(ns)

Arria GX 233 Half-rate 5 3 1 1.5 12 103

167 Full-rate 5 2 1 3 12 72

Arria II GX 233 Half-rate 5 3 1 2.5 12 103

167 Full-rate 5 2 1 4 12 72

Cyclone III and
Cyclone IV

200 Half-rate 5 3 1 1.5 12 120

167 Full-rate 5 2 1 3 12 72

Stratix II and
Stratix II GX

333 Half-rate 5 3 1 1.5 12 72

267 Half-rate 5 3 1 1.5 12 90

200 Full-rate 5 2 1 3 12 60

Stratix III and
Stratix IV

400 Half-rate 5 3 1 2 12 60

267 Full-rate 5 2 1.5 3 13 49

Notes to Table 8–5:

(1) These are typical latency values using the assumptions listed in the beginning of the section. Your actual latency may be different than shown.
Perform your own simulation for your actual latency.

(2) Numbers shown may have been rounded up to the nearest higher integer.
(3) The controller latency value is from the Altera high-performance controller.
(4) Memory write latency is per memory device specification. The latency from when you provide the command to write to when you need to

provide data at the memory device.
(5) Total write latency is the sum of controller, address and command, and memory write latencies.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

www.altera.com/literature/hb/stx3/stx3_siii51008.pdf
www.altera.com/literature/hb/stx3/stx3_siii51008.pdf
www.altera.com/literature/hb/stratix-iv/stx4_siv51007.pdf

© February 2010 Altera Corporation
9. Timing Diagrams
This chapter details the timing diagrams for the DDR and DDR2 SDRAM
high-performance controllers (HPC) and high-performance controllers II (HPC II).

DDR and DDR2 High-Performance Controllers
This section discusses the following timing diagrams for HPC in AFI mode:

■ “Auto-Precharge”

■ “User Refresh”

■ “Full-Rate Read”

■ “Half-Rate Read”

■ “Full-Rate Write”

■ “Half Rate Write”

■ “Initialization Timing”

■ “Calibration Timing”
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

9–2 Chapter 9: Timing Diagrams
DDR and DDR2 High-Performance Controllers
Auto-Precharge
The auto-precharge read and auto-precharge write commands allow you to indicate
to the memory device that this read or write command is the last access to the
currently open row. The memory device automatically closes (auto-precharges) the
page it is currently accessing so that the next access to the same bank is quicker. This
command is particularly useful for applications that require fast random accesses.

Figure 9–1. Auto-Precharge Operation for HPC

Notes to Figure 9–1:

(1) The auto-precharge request goes high.
(2) The local_ready signal is asserted and remains high until the auto-precharge request goes low.
(3) A new row address begins.

phy_clk

local_autopch_req

Local Interface

local_ready

local_write_req

local_read_req

local_row_addr[13:0]

local_col_addr[9:0]

local_bank_addr[2:0]

mem_local_addr[24:0]

Memory Command[2:0]

AFI Memory Interface

mem_addr[13:0]

mem_clk

mem_clk_n

mem_cs_n

mem_dq[7:0]

mem_dqs

mem_dqsn

0002 0003

004 008 00C 010 000 004 008 00C 010 000

0C00100 0C00200

NOP WR NOP WR NOP NOPWR

0003 0000 0004 0008 000C 0410 0000 0004 0008 000C 0410

00 00

[1] [2] [3]
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 9: Timing Diagrams 9–3
DDR and DDR2 High-Performance Controllers
User Refresh
Figure 9–2 shows the user refresh control interface. This feature allows you to control
when the controller issues refreshes to the memory. This feature allows better control
of worst case latency and allows refreshes to be issued in bursts to take advantage of
idle periods.

Figure 9–2. User-Refresh Operation for HPC

Notes to Figure 9–2:

(1) The local refresh request signal is asserted.
(2) The controller asserts the local_refresh_ack signal.
(3) The auto-refresh (ARF) command on the command bus.

global_reset_n

phy_clk

mem_local_refresh_req

local_init_done

local_refresh_ack

local_refresh_req

local_refresh_ack

local_ready

ddr_a[13:0]

ddr_ba[2:0]

ddr_cs_n

ddr_cke_h

ddr_cke_l

ddr_ras_n

ddr_cas_n

ddr_we_n

Mem Command[2:0] ARFNOP NOP

[1] [2]

[3]

Local Interface

Controller - AFI

AFI Memory Interface
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

9–4
Chapter 9:

Tim
ing Diagram

s
DDR and DDR2 High-Perform

ance Controllers

DDR and DDR2 SDRAM
 High-Perform

ance Controllers and ALTM
EM

PHY IP User Guide
©

 February 2010
Altera Corporation

0002
004

0
0000402

5808 B010 7D20 FA40 E980 CF1D

0000 0004 0000

0000 0004 0000

5808 B010 7D20 FA40 E980 CF1D

00

0001 0000

[8]

[7]

NOP NOP NOP

NOPNOP

RD RD

RDBT
Full-Rate Read

Figure 9–3. Full-Rate Read Operation for HPC Using Native and Avalon-MM Interfaces

phy_clk

local_read_req
Local Interface

local_write_req
local_row_addr[13:0]

local_col_addr[9:0]
local_bank_addr[2:0]

mem_local_addr[25:0]
local_size[1:0]

local_burst_begin
local_rdata[15:0]
local_rdata_valid

local_read_req
local_ready

ddr_a[13:0]
Controller - AFI

ddr_ba[2:0]
ddr_cs_n

ctl_addr[13:0]
ctl_ba[2:0]

ctl_cke
ctl_cs_n

ctl_odt
ctl_rdata[15:0]
ctl_rdata_valid

ctl_doing_rd
ctl_dqs_burst

ctl_rlat[4:0]
DDR Command[2:0]

AFI Memory Interface
Mem Command[2:0]

mem_dq[7:0]
mem_dqs

mem_dqsn
mem_addr[13:0]

mem_ba[2:0]
mem_cke
mem_clk

mem_clk_n
mem_cs_n

mem_odt

0001
000 004 010 000

0000200 0000202 0000208 0000400

0B01 1602 2C04

0000 0004 0000 0010 0000 0001
7 0

0000 0004 0000 0010 0000 0001
7 0

0B01 1602 2C04

WR NOP RD PCH ACT

BT
00 01 0B 02 16 04 2C 08 58 10 B0 20 7D 40 FA 80 E9 1D CF 3A 83

0000 0000 000C 0000 0010 0000
0

[1] [2] [3]

[4] [5] [6]

NOP NOP NOP NOP NOP

NOPNOPNOP NOP NOP

RD

RD RDRD PCH

Chapter 9: Timing Diagrams 9–5
DDR and DDR2 High-Performance Controllers
The following sequence corresponds with the numbered items in Figure 9–3:

1. The local read request signal is asserted.

2. The controller accepts the request, the local_ready signal is asserted.

3. The controller asserts the ctl_doing_rd to tell the PHY how many clock cycles
of read data to expect.

4. The read command (RD) on the bus.

5. The mem_dqs signal has the read data.

6. These are the data to the controller with the valid signal.

7. The controller returns the valid read data to the user logic by asserting the
local_rdata_valid signal when there is valid local read data.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

9–6
Chapter 9:

Tim
ing Diagram

s
DDR and DDR2 High-Perform

ance Controllers

DDR and DDR2 SDRAM
 High-Perform

ance Controllers and ALTM
EM

PHY IP User Guide
©

 February 2010
Altera Corporation

008 00C 010
0

0000202 0000203 0000204

1F150B01 3E2A1602 7C542C04 F8A85808 ED4DB010

0008 000C 0010 0000

0020008 003000C 0040010 0000000

1 3 1

1F150B01 3E2A1602 7C542C04 F8A85808 ED4DB010
3

3

0C

OP RD

00 20 7D 9A C7

0000 0004 0008 000C 0010

[8]

[7]
Half-Rate Read

Figure 9–4. Half-Rate Read Operation for HPC Using Native and Avalon-MM Interfaces

phy_clk

local_read_req
Local Interface

local_write_req
local_row_addr[13:0]

local_col_addr[9:0]
local_bank_addr[2:0]

mem_local_addr[24:0]
local_size

local_rdata[31:0]
burst_begin

local_rdata_valid

local_read_req
local_ready

Controller - AFI Interface
ddr_a[13:0]
ddr_ba[2:0]

ddr_cs_n
ctl_addr[27:0]

ctl_ba[5:0]
ctl_cke[1:0]

ctl_cs_n[1:0]
ctl_odt[1:0]

ctl_rdata[31:0]
ctl_rdata_valid[1:0]

ctl_doing_rd[1:0]
ctl_dqs_burst[1:0]

ctl_rlat[4:0]
DDR Command [1:0]

AFI Memory Interface
Mem Command[2:0]

mem_ras_n
mem_cas_n
mem_we_n

mem_dq[7:0]
mem_dqs

mem_dqsn
mem_addr[13:0]

mem_ba[2:0]
mem_cke
mem_clk

mem_clk_n
mem_cs_n

mem_odt

0000 0001 0002
000 000 004 008 00C 000 004

0000000 0000100 0000101 0000102 0000200 0000201

0000 0000 0000 0004 0008 000C 0000 0001 0000 0004
0 0 7

0000000 0000000 0000000 0010004 0020008 0000000 0004001 0000000 0010004
00 00 3F

33 3 1 3 1 1 3 1 3
0

3 0
3 2 0

33F 0C 3F 0C 3F

NOP ACT 7 ACT NOP RD NOP PCH NOP N

55 6D 25 1D AA DA 4A 3A 49 A9 00 00 01 0B 15 1F 02 16 2A 3E 04 2C 54 7C 08 58 A8 F8 10 B0 4DED

000C 0010 0000 0003 0000 000C 0010 0000
0 0 7

[1] [2] [3]

[4] [5] [6]

Chapter 9: Timing Diagrams 9–7
DDR and DDR2 High-Performance Controllers
The following sequence corresponds with the numbered items in Figure 9–4:

1. The local read request signal is asserted.

2. The controller accepts the request, the local_ready signal is asserted.

3. The controller asserts the ctl_doing_rd to tell the PHY how many clock cycles
of read data to expect.

4. The read command (RD) on the bus.

5. The mem_dqs signal has the read data.

6. These are the data to the controller with the valid signal.

7. The controller returns the valid read data to the user logic by asserting the
local_rdata_valid signal when there is valid local read data.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

9–8 Chapter 9: Timing Diagrams
DDR and DDR2 High-Performance Controllers
Full-Rate Write

The following sequence corresponds with the numbered items in Figure 9–5:

1. The local write request signal is asserted.

2. The local_ready signal is high at the time of the write request.

3. The date is written to the memory for this write command.

4. The write command (WR) on the command bus.

Figure 9–5. Full-Rate Write Operation for HPC Using Native and Avalon-MM Interfaces

phy_clk

local_read_req

Local Interface

local_write_req

local_row_addr[13:0]

local_col_addr[9:0]

local_bank_addr[2:0]

mem_local_addr[25:0]

local_size[1:0]

local_be[1:0]

local_wdata[15:0]

Controller - AFI

local_write_req

local_ready

ddr_a[13:0]

ddr_ba[2:0]

ddr_cs_n

ctl_addr[13:0]

ctl_ba[2:0]

ctl_cke

ctl_cs_n

ctl_odt

ctl_wdata[15:0]

ctl_wdata_valid

ctl_wlat[4:0]

control_dm[1:0]

ctl_dqs_burst

control_be[1:0]

DDR Command[2:0]

AFI Memory Interface

Mem Command[2:0]

mem_dq[7:0]

mem_dqs

mem_dqsn

mem_addr[13:0]

mem_ba[2:0]

mem_cke

mem_clk

mem_clk_n

mem_cs_n

mem_odt

mem_dm

0000 0001 0002 0010 0020

000 004 008 040 080

0 1 2 5 6

0800202 1000404 2802020 3004040

11

F6AE F141 FF82 E319 620E C41C 9538

0000

0 1 0

0000

0 1 0

F6AE

2 1 NOP 2 NOP

NOP WR NOP 2

00 F6 41

0000

0 1

[1] [2] [4]

[5][3] [6]

AE F1

F141
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 9: Timing Diagrams 9–9
DDR and DDR2 High-Performance Controllers
5. The valid write data on the ctl_wdata signal. The ctl_wdata_valid is 1.

6. Data on the mem_dqs signal goes to the controller.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

9–10
Chapter 9:

Tim
ing Diagram

s
DDR and DDR2 High-Perform

ance Controllers

DDR and DDR2 SDRAM
 High-Perform

ance Controllers and ALTM
EM

PHY IP User Guide
©

 February 2010
Altera Corporation

0000 0010
000 040

0 1 5
0000000 1401010

461EF6AE 28E7AB64

0000
0 0

0000000
00 00

3 3 3
0 3

461EF6AE
0

D
0 2

2
3 3 3

NOP WR NOP

0 00 AEF6 1E 46

0

[5]

6]
Half Rate Write

Figure 9–6. Half-Rate Write Operation for HPC Using Native and Avalon-MM Interfaces

phy_clk

local_write_req
local_read_req

local_row_addr[13:0]
local_col_addr[9:0]

local_bank_addr[2:0]
mem_local_addr[24:0]

local_size
local_be[3:0]

local_wdata[31:0]
local_wdata_req

local_write_req
local_ready

ddr_a[13:0]
ddr_ba[2:0]

ddr_cs_n
ctl_addr[27:0]

ctl_ba[5:0]
ctl_cke[1:0]

ctl_cs_n[1:0]
ctl_odt[1:0]

ctl_wdata[31:0]
ctl_wdata_valid[1:0]

ctl_wlat[4:0]
control_dm[3:0]

ctl_dqs_burst[1:0]
control_be[3:0]

Control command [1:0]

Memory command[2:0]

mem_dq[7:0]
mem_dqs

mem_dqsn
mem_addr[13:0]

mem_ba[2:0]
mem_cke
mem_clk

mem_clk_n
mem_cs_n

mem_odt
mem_dm

0000 0001 0010 0020
000 004 040 080

6 0 1 5 6
1BFFFFF 0000000 0400101 1401010 1802020

1 2 4
2D9F54E6 C90A5291 8F14A43F

00000000 3BFF 0000 03EC 0000 0000
1 0 1 0 1 0 0 1

00000000000000 EFFFBFF 0000000 0FB03EC 0000000 0000000
09 00 09 00 09 00 00 09

33 1 3 1 3 1 3 3 1
0 3 0 3 0

2D9F54E6
3 0 3 0 0 3 0

E
2 3 2 0 2 3 2 2 3 2 0

1
33 0 3 0 3 3 0

WR NOP PCH NOP ACT NOP WR NOP NOP WR NOP

00 00 00 E654 9F 2D 0

03F4 0000 3BFF 0000 03EC 0000 0000
1 0 1 0 1 0 0

Local Interface

Controller - AFI

AFI Memory Interface

[1] [2][3]

[6]

[4] [5

Chapter 9: Timing Diagrams 9–11
DDR and DDR2 High-Performance Controllers
The following sequence corresponds with the numbered items in Figure 9–6:

1. The user logic requests write by asserting the local_write_req signal.

2. The local_ready signal is asserted, indicating that the controller has accepted
the request.

3. The data written to the memory for the write command.

4. The controller requests the user logic for the write data and byte-enables for the
write by asserting the local_wdata_req signal, (only for native interface).

5. The valid write data on the ctl_wdata signal.

6. The valid data on the mem_dq signal goes to the controller.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

9–12
Chapter 9:

Tim
ing Diagram

s
DDR and DDR2 High-Perform

ance Controllers

DDR and DDR2 SDRAM
 High-Perform

ance Controllers and ALTM
EM

PHY IP User Guide
©

 February 2010
Altera Corporation

FFFF0000

ARF WRF ARF RD

002C 0400 0028 001C 0014 0400 0014

FF 00 FF 00 00

ARF WRF ARF RD

[4]

[5]
Initialization Timing

Figure 9–7. Initialization Timing for HPC

global_reset_n
phy_clk

local_rdata[31:0]
local_rdata_valid

local_ready
mem_local_addr[24:0]

mem_local_col_addr[9:0]
local_col_addr[9:0]

mem_local_write_req
local_write_req

mem_local_wdata[31:0]
local_wdata[31:0]

mem_local_size
local_size

mem_local_be[3:0]
local_be[3:0]

mem_command[2:0]
mem_addr[13:0]

mem_ba[2:0]
mem_cke
mem_clk

mem_clk_n
mem_cs_n

mem_dm
mem_dq[7:0]

mem_dqs
mem_dqsn

mem_odt

pll_locked
pll_ref_clk

seq_pll_select[3:0]
seq_pll_start_reconfig

seq_pll_inc_dec_n
phs_shft_busy

pll_measure_clk_index[3:0]
ctl_cal_fail
ctl_cal_req

ctl_cal_success
local_init_done

ctl_cal_byte_lane_sel_n
pnf

pnf_per_byte[3:0]
test_complete

0000000000000000

00000000000000

000000

000000

1F150B011F150B01

1F150B011F150B01

NOP ARF LMR ARF WR

00000000 0400 0A62 0044 0018

00 0 1

0000 00 00

00

command[2:0] NOP ARF LMR ARF WR

[1] [2]

[3]

Chapter 9: Timing Diagrams 9–13
DDR and DDR2 High-Performance Controllers
The following sequence corresponds with the numbered items in Figure 9–7:

1. The pll_locked signal goes high.

2. The mem_cke signal is asserted.

3. The first sequence of the initialization commands: PCH, LMR, PCH, ARF, LMR.

4. Write training data.

5. The first read command to read back training pattern.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

9–14
Chapter 9:

Tim
ing Diagram

s
DDR and DDR2 High-Perform

ance Controllers

DDR and DDR2 SDRAM
 High-Perform

ance Controllers and ALTM
EM

PHY IP User Guide
©

 February 2010
Altera Corporation

0FF

0000100

000 000 000 000

000 000 000 000

C79A7D20

C79A7D20

CH

0 0A62 0000
231 0

0 00 00 00 00

CH NOP NOP 1LMR

LMR NOP NOP

[10]

[11]

[12]

[13]
Calibration Timing

Figure 9–8. Calibration Timing for HPC

local_rdata[31:0]
local_rdata_valid

local_ready
mem_local_addr[24:0]

mem_local_col_addr[9:0]
local_col_addr[9:0]

mem_local_write_req
local_write_req

mem_local_wdata[31:0]
local_wdata[31:0]

mem_local_size
local_size

mem_local_be[3:0]
local_be[3:0]

mem_command[2:0]
mem_addr[13:0]

mem_ba[2:0]
mem_cke
mem_clk

mem_clk_n
mem_cs_n

mem_dm
mem_dq[7:0]

mem_dqs
mem_dqsn

mem_odt

pll_locked
pll_ref_clk

seq_pll_select[3:0]

seq_pll_start_reconfig
seq_pll_inc_dec_n

phs_shft_busy
pll_measure_clk_index[3:0]

ctl_cal_fail
ctl_cal_req

ctl_cal_success
local_init_done

ctl_cal_byte_lane_sel_n
pnf

FFFFFFFF 00FF00FF 00FF0

RD PCH ARF RD PCH PCH ARF RD P

0400 0400 0400 040

00 00 00 0

55

command[2:0] RD PCH ARF PCH RD PCH ARF RD P

RD

RD

[7]

[6] [8]

[9]

[9]

Chapter 9: Timing Diagrams 9–15
DDR and DDR2 High-Performance Controllers
The following sequence corresponds with the numbered items in Figure 9–8:

1. The first read calibration at zero degrees.

2. The PPL phase.

3. The second read calibration after the PLL phase.

4. The final read calibration and final PLL phase.

5. The burst of the PLL phase to center the clock.

6. The second initialization sequence (LMR) to load the settings.

7. The ctl_cal_success signal goes high.

8. The functional memory stage.
© February 2010 Altera Corporation DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

9–16 Chapter 9: Timing Diagrams
DDR and DDR2 High-Performance Controllers II
DDR and DDR2 High-Performance Controllers II
This section discusses the following timing diagrams for HPC II:

■ “Half-Rate Read”

■ “Half-Rate Write”

■ “Full-Rate Read”

■ “Full-Rate Write”
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 9:
Tim

ing Diagram
s

9–17
DDR and DDR2 High-Perform

ance Controllers II

©
 February 2010

Altera Corporation
DDR and DDR2 SDRAM

 High-Perform
ance Controllers and ALTM

EM
PHY IP User Guide

DD EEFF0011 AABBCCDD EEFF0011 AABBCCDD EEFF0011

0000000

3

F

DD EEFF0011 AABBCCDD EEFF0011 AABBCCDD EEFF0011

[6]

[7]
Half-Rate Read

Figure 9–9. Half-Rate Read Operation for HPC II

phy_clk

Local Interface
local_address[25:0]

local_size[4:0]
local_ready

local_burstbegin
local_read_req

local_rdata[31:0]
local_rdata_valid

local_be[3:0]

afi_addr[27:0]

Controller - AFI

afi_ba[5:0]
afi_cs_n[3:0]

AFI Command[2:0]
afi_dm[3:0]

afi_dqs_burst[0]
afi_dqs_burst[1]

afi_doing_rd[1:0]
afi_rdata[31:0]

afi_rdata_valid[1:0]

mem_cke[1:0]

AFI Memory Interface

mem_clk
mem_ba[2:0]

mem_addr[13:0]
mem_cs_n[0]

Mem Command[2:0]
mem_dqs
mem_dm

mem_dq[7:0]
mem_odt[1:0]

00000020000000
2

0000004 0000000

AABBCC

0000000 0000000 0000008 0000000
0

0000010

B F B F B
RD NOP RD NOPRD

F

3
AABBCC

0000 0000 0008 0000
0

0010

RD NOPNOP NOPRD NOP RD

DDCCBB AA 11 00 FF EE DDCCBB AA 11 00 FF EE DDCCBB AA 11 00 FF EE

[5]

[1] [2] [3] [4]

9–18 Chapter 9: Timing Diagrams
DDR and DDR2 High-Performance Controllers II
The following sequence corresponds with the numbered items in Figure 9–9:

1. The user logic requests the first read by asserting the local_read_req signal,
and the size and address for this read. In this example, the request is a burst of
length of 2 to the local address 0×000000. This local address is mapped to the
following memory address in half-rate mode:

mem_row_address = 0×000000

mem_col_address = 0×0000

mem_bank_address = 0×00

2. The user logic initiates a second read to a different memory column within the
same row. The request for the second write is a burst length of 2. In this example,
the user logic continues to accept commands until the command queue is full.
When the command queue is full, the controller deasserts the local_ready
signal. The starting local address 0x000002 is mapped to the following memory
address in half-rate mode:

mem_row_address = 0×0000

mem_col_address = 0×0002<<2 = 0×0008

mem_bank_address = 0×00

3. The controller issues the first read memory command and address signals to the
ALTMEMPHY megafunction for it to send to the memory device.

4. The controller asserts the afi_doing_rd signal to indicate to the ALTMEMPHY
megafunction the number of clock cycles of read data it must expect for the first
read. The ALTMEMPHY megafunction uses the afi_doing_rd signal to enable
its capture registers for the expected duration of memory burst.

5. The ALTMEMPHY megafunction issues the first read command to the memory
and captures the read data from the memory.

6. The ALTMEMPHY megafunction returns the first data read to the controller after
resynchronizing the data to the phy_clk domain, by asserting the
afi_rdata_valid signal when there is valid read data on the afi_rdata bus.

7. The controller returns the first read data to the user by asserting the
local_rdata_valid signal when there is valid read data on the local_rdata
bus. If the ECC logic is disabled, there is no delay between the afi_rdata and the
local_rdata buses. If there is ECC logic in the controller, there is one or three
clock cycles of delay between the afi_rdata and local_rdata buses.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 9:
Tim

ing Diagram
s

9–19
DDR and DDR2 High-Perform

ance Controllers II

©
 February 2010

Altera Corporation
DDR and DDR2 SDRAM

 High-Perform
ance Controllers and ALTM

EM
PHY IP User Guide

0000000

[4] [5] [6]

BCCDD AABBCCDDEEFF0011 EEFF0011

0000000

F

F

NOP

0

3

0000 0010

NOP NOPWR

DD CC BB AA 11 00 FF EE DD CC BB AA 11 00 FF EEDD CC BB AA 11 00 FF EE
Half-Rate Write

Figure 9–10. Half-Rate Write Operation for HPC II

Local Interface

local_address[25:0]

local_size[4:0]

local_ready

local_burstbegin

local_be[3:0]

local_write_req

local_wdata[31:0]

afi_addr[27:0]

Controller - AFI

afi_ba[5:0]

afi_cs_n[3:0]

AFI Command[2:0]

afi_dm[3:0]

afi_wlat[4:0]

afi_dqs_burst[0]

afi_dqs_burst[1]

afi_wdata[31:0]

afi_wdata_valid[1:0]

mem_cke[1:0]
AFI Memory Interface

mem_clk

mem_ba[2:0]

mem_addr[13:0]

mem_cs_n[0]

Mem Command[2:0]

mem_dqs

mem_dm

mem_dq[7:0]

mem_odt[1:0]

phy_clk

00000020000000 0000004
2

[1] [2] [3]

AABBCCDD AABBCCDD AABBCCDDEEFF0011 EEFF0011 EEFF0011

AABBCCDD AABEEFF0011

0000000 0000000 0000000 0000000 0000008 0000000 0000010

B F B F B F B F B

ACT NOP WR NOP WR NOP WR NOP WR

0 FF

2

3 0

0000 0000 0000 0000 0008

NOP ACT NOP WR NOP NOPWR WR

00 00

9–20 Chapter 9: Timing Diagrams
DDR and DDR2 High-Performance Controllers II
The following sequence corresponds with the numbered items in Figure 9–10:

1. The user logic asserts the first write request to row 0 so that row 0 is open before
the next transaction.

2. The user logic asserts a second local_write_req signal with size of 2 and
address of 0 (col = 0, row = 0, bank = 0, chip = 0). The local_ready signal is
asserted along with the local_write_req signal, which indicates that the
controller has accepted this request, and the user logic can request another read or
write in the following clock cycle. If the local_ready signal was not asserted, the
user logic must keep the write request, size, and address signals asserted until the
local_ready signal is registered high.

3. The controller issues the necessary memory command and address signals to the
ALTMEMPHY megafunction for it to send to the memory device.

4. The controller asserts the afi_wdata_valid signal to indicate to the
ALTMEMPHY megafunction that valid write data and write data masks are
present on the inputs to the ALTMEMPHY megafunction.

5. The controller asserts the afi_dqs_burst signals to control the timing of the
DQS signal that the ALTMEMPHY megafunction issues to the memory.

6. The ALTMEMPHY megafunction issues the write command, and sends the write
data and write DQS to the memory.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 9:
Tim

ing Diagram
s

9–21
DDR and DDR2 High-Perform

ance Controllers II

©
 February 2010

Altera Corporation
DDR and DDR2 SDRAM

 High-Perform
ance Controllers and ALTM

EM
PHY IP User Guide

ABCD EF01 ABCD EF01

ABCD EF01 ABCD EF01

[6]

[5]
Full-Rate Read

Figure 9–11. Full-Rate Read Operation for HPC II

phy_clk

local_address[23:0]
local_size[2:0]

local_ready
local_burstbegin

local_read_req
local_rdata_valid
local_rdata[15:0]

local_be[1:0]

afi_addr[12:0]
afi_ba[1:0]

afi_cs_n
AFI Command[2:0]

afi_dm[1:0]
afi_dqs_burst
afi_doing_rd

afi_rdata[15:0]
afi_rdata_valid

mem_cke
mem_clk

mem_ba[1:0]
mem_addr[12:0]

mem_cs_n
Mem Command[2:0]

mem_dqs
mem_dm

mem_dq[7:0]
mem_odt

000000000000 000002

2

FFFFFFFF

3

0000

0

NOP NOP NOP

NOP NOP NOP

RD RD

RDRD

000000 000004

3

FFFFFFFF

0

00000000 0004

0000 00CD AB 01 EF CD AB 01 EF

AFI Memory Interface

Local Interface

Controller - AFI

[1] [2] [3]

[4]

9–22 Chapter 9: Timing Diagrams
DDR and DDR2 High-Performance Controllers II
The following sequence corresponds with the numbered items in Figure 9–11:

1. The user logic requests the first read by asserting local_read_req signal, and
the size and address for this read. In this example, the request is a burst length of 2
to a local address 0x000000. This local address is mapped to the following
memory address in full-rate mode:

mem_row_address = 0×0000

mem_col_address = 0×0000<<2 = 0×0000

mem_bank_address = 0×00

2. The controller issues the first read memory command and address signals to the
ALTMEMPHY megafunction for it to send to the memory device.

3. The controller asserts the afi_doing_rd signal to indicate to the ALTMEMPHY
megafunction the number of clock cycles of read data it must expect for the first
read. The ALTMEMPHY megafunction uses the afi_doing_rd signal to enable
its capture registers for the expected duration of memory burst.

4. The ALTMEMPHY megafunction issues the first read command to the memory
and captures the read data from the memory.

5. The ALTMEMPHY megafunction returns the first data read to the controller after
resynchronizing the data to the phy_clk domain, by asserting the
afi_rdata_valid signal when there is valid read data on the afi_rdata bus.

6. The controller returns the first read data to the user by asserting the
local_rdata_valid signal when there is valid read data on the local_rdata
bus. If the ECC logic is disabled, there is no delay between the afi_rdata and the
local_rdata buses. If there is ECC logic in the controller, there is one or three
clock cycles of delay between the afi_rdata and local_rdata buses.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

Chapter 9:
Tim

ing Diagram
s

9–23
DDR and DDR2 High-Perform

ance Controllers II

©
 February 2010

Altera Corporation
DDR and DDR2 SDRAM

 High-Perform
ance Controllers and ALTM

EM
PHY IP User Guide

000000

0000

0000

NOP

0 3

EF01 ABCD EF01 ABCD EF01

0000 0010 0000

NOP WR NOP

CD AB 01 EF CD AB 01 EF CD AB 01 EF

[5]

[4]
Full-Rate Write

Figure 9–12. Full-Rate Write Operation for HPC II

phy_clk

local_address[23:0]
local_size[2:0]

local_ready
local_burstbegin

local_be[1:0]
local_write_req

local_rdata[15:0]
local_wdata[15:0]

afi_addr[12:0]
afi_ba[1:0][1:0]

afi_cs_n
AFI Command[2:0]

afi_dm[1:0]
afi_wlat[4:0]

afi_dqs_burst
afi_wdata[15:0]
afi_wdata_valid

mem_cke
mem_clk

mem_ba[1:0]
mem_addr[12:0]

mem_cs_n
Mem Command[2:0]

mem_dqs
mem_dm

mem_dq[7:0]
mem_odt

000000 000004 000008

2

3

FFFF

0000 ABCD EF01 ABCD EF01 ABCD EF01

0000 0008 0000 0010

0

NOP ACT NOP WR NOP WR NOP WR NOP WR

3 0 3

04

0000 ABCD

0

0000 0008

NOP ACT NOP WR NOP WR NOP WR

00

Local Interface

Controller - AFI

AFI Memory Interface

[3][2][1]

[6]

9–24 Chapter 9: Timing Diagrams
DDR and DDR2 High-Performance Controllers II
The following sequence corresponds with the numbered items in Figure 9–12:

1. The user logic asserts the first write request to row 0 so that row 0 is open before
the next transaction.

2. The user logic asserts a second local_write_req signal with a size of 2 and
address of 0 (col = 0, row = 0, bank = 0, chip = 0). The local_ready signal is
asserted along with the local_write_req signal, which indicates that the
controller has accepted this request, and the user logic can request another read or
write in the following clock cycle. If the local_ready signal was not asserted, the
user logic must keep the write request, size, and address signals asserted until the
local_ready signal is registered high.

3. The controller issues the necessary memory command and address signals to the
ALTMEMPHY megafunction for it to send to the memory device.

4. The controller asserts the afi_wdata_valid signal to indicate to the
ALTMEMPHY megafunction that valid write data and write data masks are
present on the inputs to the ALTMEMPHY megafunction.

5. The controller asserts the afi_dqs_burst signals to control the timing of the
DQS signal that the ALTMEMPHY megafunction issues to the memory.

6. The ALTMEMPHY megafunction issues the write command, and sends the write
data and write DQS to the memory.
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

© February 2010 Altera Corporation
Additional Information
How to Contact Altera
For the most up-to-date information about Altera® products, see the following table.

Typographic Conventions
The following table shows the typographic conventions that this document uses.

Contact (Note 1)
Contact
Method Address

Technical support Website www.altera.com/support

Technical training Website www.altera.com/training

Email custrain@altera.com

Altera literature services Email literature@altera.com

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note:

(1) You can also contact your local Altera sales office or sales representative.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicates command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box. For GUI elements, capitalization matches
the GUI.

bold type Indicates directory names, project names, disk drive names, file names, file name
extensions, dialog box options, software utility names, and other GUI labels. For
example, \qdesigns directory, d: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicates document titles. For example, AN 519: Stratix IV Design Guidelines.

Italic type Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicates keyboard keys and menu names. For example, Delete key and the Options
menu.

“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. Active-low signals are denoted by suffix n. For example,
resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
mailto:literature@altera.com
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info–2 Additional Information
Typographic Conventions
1., 2., 3., and
a., b., c., and so on.

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

r The angled arrow instructs you to press Enter.

f The feet direct you to more information about a particular topic.

Visual Cue Meaning
DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide © February 2010 Altera Corporation

	Section I. DDR and DDR2 SDRAM High-Performance Controllers and ALTMEMPHY IP User Guide
	Contents
	About This Section
	Revision History

	1. About This IP
	Release Information
	Device Family Support
	Features
	Unsupported Features
	MegaCore Verification
	Resource Utilization
	ALTMEMPHY Megafunction
	High-Performance Controller (HPC)
	High-Performance Controller II (HPC II)

	System Requirements
	Installation and Licensing
	Free Evaluation
	OpenCore Plus Time-Out Behavior

	2. Getting Started
	Design Flow
	SOPC Builder Flow
	Specify Parameters
	Complete the SOPC Builder System

	MegaWizard Plug-In Manager Flow
	Specify Parameters

	Generated Files

	3. Parameter Settings
	ALTMEMPHY Parameter Settings
	Memory Settings
	PHY Settings
	Board Settings
	Controller Interface Settings

	DDR or DDR2 SDRAM High-Performance Controller Parameter Settings
	Controller Settings

	4. Compile and Simulate
	Compile the Design
	Simulate the Design
	Simulating Using NativeLink
	IP Functional Simulations

	5. Functional Description—ALTMEMPHY
	Block Description
	Calibration
	Address and Command Datapath
	Clock and Reset Management
	Read Datapath
	Write Datapath

	ALTMEMPHY Signals
	PHY-to-Controller Interfaces
	Using a Custom Controller

	6. Functional Description— High-Performance Controller
	Block Description
	Command FIFO Buffer
	Write Data FIFO Buffer
	Write Data Tracking Logic
	Main State Machine
	Bank Management Logic
	Timer Logic
	Initialization State Machine
	Address and Command Decode
	PHY Interface Logic
	ODT Generation Logic
	Low-Power Mode Logic
	Control Logic
	Error Correction Coding (ECC)

	Example Top-Level File
	Example Driver

	Top-level Signals Description

	7. Functional Description— High-Performance Controller II
	Upgrading from HPC to HPC II
	Block Description
	Avalon-MM Data Slave Interface
	Write Data FIFO Buffer
	Command Queue
	Bank Management Logic
	Timer Logic
	Command-Issuing State Machine
	Address and Command Decode Logic
	Write and Read Datapath, and Write Data Timing Logic
	ODT Generation Logic
	User-Controlled Side-Band Signals
	Configuration and Status Register (CSR) Interface
	Error Correction Coding (ECC)

	Example Top-Level File
	Example Driver

	Top-level Signals Description
	Register Maps Description

	8. Latency
	9. Timing Diagrams
	DDR and DDR2 High-Performance Controllers
	Auto-Precharge
	User Refresh
	Full-Rate Read
	Half-Rate Read
	Full-Rate Write
	Half Rate Write
	Initialization Timing
	Calibration Timing

	DDR and DDR2 High-Performance Controllers II
	Half-Rate Read
	Half-Rate Write
	Full-Rate Read
	Full-Rate Write

	Additional Information
	How to Contact Altera
	Typographic Conventions

