Important Information

Warranty
The NI PCIe-1429 is warranted against defects in materials and workmanship for a period of one year from the date of shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace equipment that proves to be defective during the warranty period. This warranty includes parts and labor.

The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECEIVE DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS IS HEREBY LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LIKELY CONTROL. FAILURES CAUSED BY OWNER’S MODIFICATION OF THE NATIONAL INSTRUMENTS MUST BE BROUGHT WITHIN ONE YEAR AFTER THE CAUSE OF ACTION ACCRUES. NATIONAL INSTRUMENTS SHALL NOT BE LIABLE FOR ANY DELAY IN LIABILITY OF NATIONAL INSTRUMENTS WILL APPLY REGARDLESS OF THE FORM OF ACTION, WHETHER IN CONTRACT OR TORT, INCLUDING NEGLIGENCE. ANY ACTION AGAINST NATIONAL INSTRUMENTS MUST BE BROUGHT WITHIN ONE YEAR AFTER THE CAUSE OF ACTION ACCRUES. NATIONAL INSTRUMENTS SHALL NOT BE LIABLE FOR ANY DELAY IN PERFORMANCE DUE TO CAUSES BEYOND ITS REASONABLE CONTROL. THE WARRANTY PROVIDED HEREIN DOES NOT COVER DAMAGES, DEFECTS, MALFUNCTIONS, OR SERVICE FAILURES CAUSED BY OWNER’S FAILURE TO FOLLOW THE NATIONAL INSTRUMENTS INSTALLATION, OPERATION, OR MAINTENANCE INSTRUCTIONS; OWNER’S MODIFICATION OF THE PRODUCT; OWNER’S ABUSE, MISUSE, OR NEGLECTFUL ACTS; AND POWER FAILURE OR SURGES, FIRE, FLOOD, ACCIDENT, ACTIONS OF THIRD PARTIES, OR OTHER EVENTS OUTSIDE REASONABLE CONTROL.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by copyright and other intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to others, you may use NI software only to reproduce materials that you may reproduce in accordance with the terms of any applicable license or other legal restriction.

Trademarks
National Instruments, NI, ni.com, and LabVIEW are trademarks of National Instruments Corporation. Refer to the Terms of Use section on ni.com/legal for more information about National Instruments trademarks.

FireWire® is the registered trademark of Apple Computer, Inc. Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have no agency, partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help > Patents in your software, the patents.txt file on your CD, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

1. NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT HARM TO A HUMAN.

2. IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY, COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE, FITNESS FOR COMPILERS AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE HEREAF TER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE, TO AVOID DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS; BECAUSE EACH END USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS TESTING PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN, PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.
Compliance

Compliance with FCC/Canada Radio Frequency Interference Regulations

Determining FCC Class
The Federal Communications Commission (FCC) has rules to protect wireless communications from interference. The FCC places digital electronics into two classes. These classes are known as Class A (for use in industrial-commercial locations only) or Class B (for use in residential or commercial locations). All National Instruments (NI) products are FCC Class A products. Depending on where it is operated, this Class A product could be subject to restrictions in the FCC rules. (In Canada, the Department of Communications (DOC), of Industry Canada, regulates wireless interference in much the same way.) Digital electronics emit weak signals during normal operation that can affect radio, television, or other wireless products. All Class A products display a simple warning statement of one paragraph in length regarding interference and undesired operation. The FCC rules have restrictions regarding the locations where FCC Class A products can be operated. Consult the FCC Web site at www.fcc.gov for more information.

FCC/DOC Warnings
This equipment generates and uses radio frequency energy and, if not installed and used in strict accordance with the instructions in this manual and the CE marking Declaration of Conformity*, may cause interference to radio and television reception. Classification requirements are the same for the Federal Communications Commission (FCC) and the Canadian Department of Communications (DOC). Changes or modifications not expressly approved by NI could void the user’s authority to operate the equipment under the FCC Rules.

Class A
Federal Communications Commission
This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user is required to correct the interference at their own expense.

Canadian Department of Communications
This Class A digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations. Cet appareil numérique de la classe A respecte toutes les exigences du Règlement sur le matériel brouilleur du Canada.

Compliance with EU Directives
Users in the European Union (EU) should refer to the Declaration of Conformity (DoC) for information* pertaining to the CE marking. Refer to the Declaration of Conformity (DoC) for this product for any additional regulatory compliance information. To obtain the DoC for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

* The CE marking Declaration of Conformity contains important supplementary information and instructions for the user or installer.
The following conventions are used in this manual:

»

The » symbol leads you through nested menu items and dialog box options to a final action. The sequence **File**»**Page Setup**»**Options** directs you to pull down the **File** menu, select the **Page Setup** item, and select **Options** from the last dialog box.

This icon denotes a note, which alerts you to important information.

bold

Bold text denotes items that you must select or click in the software, such as menu items and dialog box options. Bold text also denotes parameter names.

italic

Italic text denotes variables, emphasis, a cross-reference, or an introduction to a key concept. Italic text also denotes text that is a placeholder for a word or value that you must supply.

monospace

Text in this font denotes text or characters that you should enter from the keyboard, sections of code, programming examples, and syntax examples. This font is also used for the proper names of disk drives, paths, directories, programs, subprograms, subroutines, device names, functions, operations, variables, filenames, and extensions.
Contents

Chapter 1
Introduction
Camera Link .. 1-2
Overview .. 1-2
Software Overview .. 1-3
NI-IMAQ Driver Software .. 1-3
National Instruments Application Software ... 1-4
Vision Builder for Automated Inspection ... 1-4
Vision Development Module .. 1-4
Integration with DAQ and Motion Control ... 1-5

Chapter 2
Hardware Overview
Functional Overview ... 2-1
Camera Link and the NI 1429 ... 2-2
Hardware Binarization .. 2-3
Multiple-Tap Data Formatter .. 2-4
Trigger Control and Mapping Circuitry .. 2-4
Noise Filtering .. 2-4
Quadrature Encoder Support .. 2-4
Noise Filtering .. 2-5
High-Speed Timing .. 2-5
Acquisition and Region of Interest (ROI) ... 2-5
Acquisition Window Control .. 2-5
DMA Controllers .. 2-6
PCIe Interface .. 2-6
Start Conditions .. 2-6
Serial Interface .. 2-7

Chapter 3
Signal Connections
Connectors ... 3-1
MDR 26-Pin Connector .. 3-2
SMB Connector .. 3-2
Cabling ... 3-2
Ordering Information .. 3-3
Appendix A
Technical Support and Professional Services

Glossary

Index
Introduction

The NI PCIe-1429 is a highly flexible image acquisition device that supports Base, Medium, and Full configuration Camera Link-compatible cameras. The NI 1429 acquires digital images in real time and transfers them directly to system memory. Featuring a high-speed data path, the NI 1429 is ideal for both industrial and scientific environments.

The NI 1429 is easy to install and configure. It ships with NI-IMAQ, the National Instruments driver software that is used to directly control the NI 1429 and other National Instruments image acquisition devices. With NI-IMAQ, you can start your applications without having to program the device at the register level. Refer to Getting Started with the NI PCIe-1429 and NI PCIe-1430 for information about installing the NI 1429.

Camera files configure the NI 1429 with information about the output format of your camera. Camera files validated by National Instruments are installed with the NI-IMAQ driver software. Additional camera files are available for download from the National Instruments Industrial Camera Advisor Web site at ni.com/camera.

The MDR 26-pin connectors on the NI 1429 provide the connection to Camera Link-compatible cameras. For further configuration information, refer to the Camera Link and the NI 1429 section of Chapter 2, Hardware Overview.

The NI 1429 has one I/O line on its front panel. Additional I/O lines for advanced triggering, pulse-train outputs, and isolated DIO are available with the NI Camera Link I/O Extension Board. The I/O Extension Board also can be used for interfacing to a quadrature encoder. Refer to the NI Camera Link I/O Extension Board User Guide for information about the I/O Extension Board.

For more advanced digital or analog system triggering or digital I/O lines, you can use the NI 1429 and NI-IMAQ with the National Instruments Data Acquisition (DAQ) or Motion Control product lines.

Synchronizing several functions to a common trigger or timing event can be a challenge with image acquisition devices. The NI 1429 uses the Real-Time System Integration (RTSI) bus to synchronize multiple devices,
such as data acquisition and motion control devices. The RTSI bus uses the National Instrument RTSI bus interface and ribbon cable to route additional timing and trigger signals between the NI 1429 and up to four National Instruments DAQ, Motion Control, or Vision devices. The RTSI bus also can synchronize multiple image acquisition devices to perform simultaneous captures.

Refer to the Specifications section of Getting Started with the NI PCIe-1429 and NI PCIe-1430 for detailed specifications of the NI 1429.

Camera Link

This section provides a brief overview of the Camera Link standard. Refer to the Specifications of the Camera Link Interface Standard for Digital Cameras and Frame Grabbers manual for more detailed information about Camera Link specifications. This manual is available on several Web sites, including the Automated Imaging Association site at www.machinevisiononline.org.

Overview

Developed by a consortium of camera and image acquisition device manufacturers, Camera Link is a standard for interfacing digital cameras with image acquisition devices. Camera Link simplifies connectivity between the image acquisition device and the camera by defining a single standard connector for both. This standard ensures physical compatibility of devices bearing the Camera Link logo.

The basis for the Camera Link standard is the National Semiconductor Channel Link chipset, a data transmission method consisting of a general-purpose transmitter/receiver pair. The Channel Link driver takes 28 bits of parallel digital data and a clock and serializes the stream to four LVDS (EIA-644) data streams and an LVDS clock, providing high-speed data transmission across 10 wires and over distances of up to 10 m.
Software Overview

Programming the NI 1429 requires the NI-IMAQ driver software to control the hardware. National Instruments also offers the following application software packages for analyzing and processing your acquired images.

- **NI Vision Builder for Automated Inspection**—Allows you to configure solutions to common inspection tasks.
- **NI Vision Development Module**—Provides customized control over hardware and algorithms.

The following sections provide an overview of the driver and application software. For detailed information about individual software packages, refer to the documentation specific to each software package.

NI-IMAQ Driver Software

The NI 1429 ships with NI Vision Acquisition Software, which includes the NI-IMAQ driver software. NI-IMAQ has an extensive library of functions—such as routines for video configuration, continuous and single shot image acquisition, memory buffer allocation, trigger control, and device configuration—you can call from the application development environment (ADE). NI-IMAQ handles many of the complex issues between the computer and the image acquisition device, such as programming interrupts and camera control.

NI-IMAQ performs all functions required for acquiring and saving images but does not perform image analysis. Refer to the *National Instruments Application Software* section for image analysis functionality.

NI-IMAQ also provides the interface between the NI 1429 and LabVIEW, LabWindows™/CVI™, or a text-based programming environment. The NI-IMAQ software kit includes a series of libraries for image acquisition for LabVIEW, LabWindows/CVI, and Measurement Studio, which contains libraries for Microsoft Visual Basic.

NI-IMAQ features both high-level and low-level functions. Examples of high-level functions include the sequences to acquire images in multi-buffer, single-shot, or continuous mode. An example of a low-level function is configuring an image sequence, since it requires advanced understanding of image acquisition.
National Instruments Application Software

This section describes the National Instruments application software packages you can use to analyze and process the images you acquire with the NI 1429.

Vision Builder for Automated Inspection

NI Vision Builder for Automated Inspection (Vision Builder AI) is configurable machine vision software that you can use to prototype, benchmark, and deploy applications. Vision Builder AI does not require programming, but is scalable to powerful programming environments.

Vision Builder AI allows you to easily configure and benchmark a sequence of visual inspection steps, as well as deploy the visual inspection system for automated inspection. With Vision Builder AI, you can perform powerful visual inspection tasks and make decisions based on the results of individual tasks. You also can migrate the configured inspection to LabVIEW, extending the capabilities of the applications if necessary.

Vision Development Module

NI Vision Development Module, which consists of NI Vision and NI Vision Assistant, is an image acquisition, processing, and analysis library of more than 270 functions for the following common machine vision tasks:

- Pattern matching
- Particle analysis
- Gauging
- Taking measurements
- Grayscale, color, and binary image display

You can use the Vision Development Module functions individually or in combination. With the Vision Development Module, you can acquire, display, and store images, as well as perform image analysis and processing. Using the Vision Development Module, imaging novices and experts can program the most basic or complicated image applications without knowledge of particular algorithm implementations.

As a part of the Vision Development Module, NI Vision Assistant is an interactive prototyping tool for machine vision and scientific imaging developers. With Vision Assistant, you can prototype vision applications quickly and test how various image processing functions work.
Vision Assistant generates a Builder file, which is a text description containing a recipe of the machine vision and image processing functions. This Builder file provides a guide you can use for developing applications in any ADE, such as LabWindows/CVI or Visual Basic, using the Vision Assistant machine vision and image processing libraries. Using the LabVIEW VI creation wizard, Vision Assistant can create LabVIEW VIs that perform the prototype you created in Vision Assistant. You can then use LabVIEW to add functionality to the generated VI.

Integration with DAQ and Motion Control

Platforms that support NI-IMAQ also support NI-DAQ and a variety of National Instruments data acquisition (DAQ) devices. This allows for integration between image acquisition and DAQ devices.

Use National Instruments high-performance stepper and servo motion control products with pattern matching software in inspection and guidance applications, such as locating alignment markers on semiconductor wafers, guiding robotic arms, inspecting the quality of manufactured parts, and locating cells.
Hardware Overview

This chapter provides an overview of NI 1429 hardware functionality and explains the operations of the functional units on the device.

Functional Overview

The NI 1429 features a flexible, high-speed data path optimized for receiving and formatting video data from Camera Link cameras.

The following block diagram illustrates the key functional components of the NI 1429.

Figure 2-1. NI 1429 Block Diagram
Camera Link and the NI 1429

The NI 1429 supports Camera Link Base, Medium, and Full configurations.

The Camera Link specifications include up to 64 data bits, enable signals, and asynchronous serial transmission, as well as four digital camera control lines for controlling exposure time, frame rates, and other camera control signals. The four control lines are configured in the camera file to generate precise timing signals for controlling digital camera acquisition.

The Camera Link standard defines physical connections between image acquisition devices and Camera Link cameras, and it allows for flexibility of image format and data transfer protocols. The camera manufacturer defines image parameters, such as image resolution and the number of bits per pixel, and camera control parameters, such as frame-on-demand and exposure control signals.

These variable parameters are defined on a per-camera basis in a camera file (`camera_model.icd`) supplied by National Instruments. NI-IMAQ uses the information in this camera file to program the NI 1429 to acquire images from a specific camera. Without this camera file, the driver does not have the information necessary to configure the NI 1429 to recognize the image format of the particular camera you are using.

The three Camera Link configurations have the following bit allocations and number of taps:

Table 2-1. Camera Link Bit Allocations and Taps

<table>
<thead>
<tr>
<th>Bit Allocation and Taps</th>
<th>Base Configuration</th>
<th>Medium Configuration</th>
<th>Full Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit Allocation and Taps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-bit × 1, 2, or 3 taps (pixels)</td>
<td>8-bit × 4 taps</td>
<td>8-bit × 8 taps</td>
<td></td>
</tr>
<tr>
<td>10-bit × 1 or 2 taps</td>
<td>10-bit × 3 or 4 taps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-bit × 1 or 2 taps</td>
<td>12-bit × 3 or 4 taps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-bit × 1 tap</td>
<td>30-bit RGB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-bit × 1 tap</td>
<td>36-bit RGB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-bit RGB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Medium and Full configurations require using both connectors. These configurations allow for more data throughput by offering multiple synchronized data channels between the camera and the NI 1429.

Hardware Binarization

The NI 1429 supports binarization and inverse binarization. Binarization and inverse binarization segment an image into two regions: a particle region and a background region. Use binarization and inverse binarization to isolate objects of interest in an image.

To separate objects under consideration from the background, select a pixel value range. This pixel value range is known as the gray-level interval, or the threshold interval. Binarization works by setting all image pixels that fall within the threshold interval to the image white value and setting all other image pixels to 0. Pixels inside the threshold interval are considered part of the particle region. Pixels outside the threshold interval are considered part of the background region.

Inverse binarization flips the assigned bit numbers of the particle region and the background region. Thus, all pixels that belong in the threshold interval, or the particle region, are set to 0, and all pixels outside the threshold interval, or the background region, are set to the image white value.

The following figure illustrates binarization and inverse binarization.

![Binarization and Inverse Binarization](image-url)
Multiple-Tap Data Formatter

Many digital cameras transfer multiple taps, or pixels, of data simultaneously to increase the frame rate of the camera. However, the data in each tap may not be transferred in the traditional top-left to bottom-right direction. Also, the taps may not transfer data in the same direction.

The multiple-tap data formatting circuitry on the NI 1429 can reorder the data from multiple taps. The data from each tap can be independently scanned either from left-to-right or right-to-left and top-to-bottom or bottom-to-top.

Note Data reformatting instructions for cameras have been preprogrammed into the camera files.

Trigger Control and Mapping Circuitry

The trigger control and mapping circuitry routes, monitors, and drives the external and RTSI bus trigger lines. You can configure each trigger line to start an acquisition on a rising edge or a falling edge. You also can drive each line asserted or unasserted as a digital I/O line. You can map pulses from the high-speed timing circuitry or the NI 1429 status signals to these trigger lines. Seven RTSI bus triggers and one external trigger—all of which are programmable for polarity and direction—are available for simultaneous use. Additional I/O is available with the NI Camera Link I/O Extension Board.

Noise Filtering

Noise filtering is available for all TTL inputs and RTSI inputs. Refer to the NI-IMAQ Function Reference Help for more information about noise filtering.

Quadrature Encoder Support

The NI 1429 supports RS-422 and singled-ended phase signal decoding from a quadrature encoder. The Phase A and Phase B outputs from the quadrature encoder can be interfaced with the NI 1429 through the NI Camera Link I/O Extension Board.

Refer to the Connecting to a Quadrature Encoder section of the NI Camera Link I/O Extension Board User Guide for more information on connecting to and using onboard quadrature counters.
The NI 1429 provides a 64-bit counter to maintain a precise record of an absolute position determined by the encoder inputs. To generate a pulse train that is based on positional ticks, you can set a unique divide down factor. This pulse train is commonly used as a trigger for a line scan camera when performing a web inspection. The NI 1429 also supports querying the absolute position counter value.

Noise Filtering

Noise filtering is available for the Phase A and Phase B encoder inputs. Refer to the *NI-IMAQ Function Reference Help* for more information about noise filtering.

High-Speed Timing

Built from high-speed counters, the timing circuitry on the NI 1429 can generate precise real-time control signals for your camera. Map the output of this circuitry to a trigger line to provide accurate pulses and pulse trains. Use these control signals to control exposure time and frame rate.

Note The external control for cameras has been preprogrammed into the camera file. You can use Measurement & Automation Explorer (MAX) to specify the frequency and duration of these signals in easy-to-use units.

Acquisition and Region of Interest (ROI)

The acquisition and ROI circuitry monitors incoming video signals and routes the active pixels to the multiple-tap data formatter. The NI 1429 can perform ROI acquisitions on all video lines and frames. In an ROI acquisition, select an area within the acquisition window to transfer across the host bus to system memory. If the area of the image you need is smaller than the camera output that appears in the acquisition window, selecting an ROI speeds up the transfer and processing times for the image.

Note You can use MAX to set the acquisition and ROI parameters.

Acquisition Window Control

You can configure the following parameters on the NI 1429 to control the video acquisition window:

- **Acquisition window**—The NI 1429 allows you to specify a particular region of active pixels and active lines within the incoming video data. The active pixel region selects the starting pixel and number of pixels to be acquired relative to the assertion edge of the horizontal (or line)
enable signal from the camera. The active line region selects the starting line and number of lines to be acquired relative to the assertion edge of the vertical (or frame) enable signal.

- **Region of interest**—The NI 1429 uses a second level of active pixel and active line regions for selecting a region of interest. Using the region-of-interest circuitry, the device acquires only a selected subset of the acquisition window.

DMA Controllers

The NI 1429 uses onboard direct memory access (DMA) controllers to transfer data between the device and host memory. Each of these controllers supports scatter-gather DMA, which allows the DMA controller to reconfigure at runtime. The NI 1429 can perform continuous image transfers directly to either contiguous or fragmented memory buffers. The NI-IMAQ driver software efficiently programs the DMA engines while providing an easy-to-use high-level interface.

PCIe Interface

The NI 1429 is compliant with PCI Express 1.0a specifications. The NI 1429 is intended for a x4 PCIe slot. It does not fit properly into a x1 PCIe slot. However, the NI 1429 does fit into, and can be used in, a x8 or x16 PCIe slot. Using a smaller width device in a larger width slot is called up-plugging. When up-plugging, some motherboards only support plug-in devices at the x1 data rate. If you plan to use the NI 1429 in an up-plugging configuration, with a camera that produces data faster than 200 MB/s, verify with your computer manufacturer that your motherboard supports a x4 plug-in device at a x4 data rate in the PC expansion slot you plan to use.

Start Conditions

The NI 1429 can start acquisitions in the following ways:

- **Software control**—The NI 1429 supports software control of acquisition start. You can configure the NI 1429 to capture a fixed number of frames. Use this configuration for capturing a single frame or a sequence of frames.

- **Trigger control**—You can start an acquisition by enabling external or RTSI bus trigger lines. Each of these inputs can start a video acquisition on a rising edge or a falling edge.
Serial Interface

The NI 1429 provides serial communication to and from the camera through two LVDS pairs in the Camera Link cable. All Camera Link serial communication uses one start bit, one stop bit, no parity, and no hardware handshaking.

The NI 1429 supports the following baud rates: 115200, 56000, 38400, 19200, 9600, 7200, 4800, 3600, 2400, 2000, 1800, 1200, 600, and 300 bps.

You can use the serial interface interactively with MAX, clsercon.exe, or a manufacturer supplied camera control utility, or programmatically with LabVIEW and C.

Interactively:

- **MAX**—Use MAX with a camera file containing preprogrammed commands. When an acquisition is initiated, the commands are sent to the camera.
- **clsercon.exe**—Use the National Instruments terminal emulator for Camera Link, clsercon.exe, if a camera file with preprogrammed serial commands does not exist for your camera. With clsercon.exe, you can still communicate serially with your camera. From the `<NI-IMAQ>\bin` directory, access clsercon.exe.
- **Manufacturer Supplied Camera Control Utility**—Camera manufacturers who are compliant with the Camera Link 1.1 or later specification provide a camera control utility which sends the appropriate serial commands for configuring your camera through the NI 1429 serial port.

Programmatically:

- **LabVIEW**—Use the serial interface programmatically, through calls to the NI-IMAQ driver using the IMAQ Serial Write and IMAQ Serial Read VIs. Access these files from the `<LabVIEW>\vi.lib\vision\driver\imaqll.11b` directory.
- **C**—Use the serial interface programmatically, through calls to the NI-IMAQ driver using the `imgSessionSerialWrite` and `imgSessionSerialRead` functions.

Note clsercon.exe, IMAQ Serial Write, IMAQ Serial Read, `imgSessionSerialWrite`, and `imgSessionSerialRead` are used for direct manual access of the NI 1429 serial port and are not required for most users.
National Instruments also fully supports the recommended serial API described in the Specifications of the Camera Link Interface Standard for Digital Cameras and Frame Grabbers manual. This manual is available on several Web sites, including the Automated Imaging Association Web site at www.machinevisiononline.org.
Signal Connections

This chapter describes connecting signals to the MDR 26-pin connectors and the SMB trigger connector on the NI 1429. This chapter also describes considerations for using the NI 1429 with the NI Camera Link I/O Extension Board.

Connectors

The following figure shows the connectors on the NI 1429 device.

1 Base Camera Link Connector
2 Medium/Full Camera Link Connector
3 SMB Trigger Connector

Figure 3-1. NI 1429 Connectors
MDR 26-Pin Connector

The MDR 26-pin connectors provide reliable high-frequency transfer rates between the camera and the image acquisition device. To access these connectors, use one MDR 26-pin Camera Link cable for Base configuration cameras, and two MDR 26-pin Camera Link cables of the same length for Medium or Full configuration cameras. Refer to the Cabling section for additional information about Camera Link cables, including ordering information and cable lengths.

SMB Connector

The SMB connector can be used for front panel trigger connectivity. It can be used as a 5V input to trigger acquisitions or as a 5V output to provide status information to your system. For further triggering and DIO needs, use the NI Camera Link I/O Extension Board. The I/O Extension Board provides three differential isolated inputs, three isolated outputs, eight TTL inputs/outputs, and quadrature encoder inputs.

Cabling

Use a standard Camera Link cable to connect your camera to the MDR 26-pin connector on the NI 1429 device. Camera Link cables consist of two MDR-26 male plugs linked with a twin-axial shielded cable and are available in two shell configurations.

Note National Instruments recommends purchasing a Camera Link cable. Building your own cable is not recommended due to the high-speed signaling on the Camera Link interface.

Refer to the Specifications of the Camera Link Interface Standard for Digital Cameras and Frame Grabbers manual for more information about Camera Link cables. This manual is available on several Web sites, including the Automated Imaging Association Web site at www.machinevisiononline.org.
The following figure illustrates a Camera Link cable.

![Figure 3-2. Camera Link Cable](image)

Ordering Information

Two-meter Camera Link cables (part number 187676-02) are available from the National Instruments Web site at ni.com/products. Camera Link cables also are available in 1 to 10 m lengths from the 3M Web site at www.3m.com. Refer to the following figure for 3M part number information.

![Figure 3-3. Camera Link Cable Ordering Information](image)
Technical Support and Professional Services

Visit the following sections of the National Instruments Web site at ni.com for technical support and professional services:

- **Support**—Online technical support resources at ni.com/support include the following:
 - **Self-Help Resources**—For answers and solutions, visit the award-winning National Instruments Web site for software drivers and updates, a searchable KnowledgeBase, product manuals, step-by-step troubleshooting wizards, thousands of example programs, tutorials, application notes, instrument drivers, and so on.
 - **Free Technical Support**—All registered users receive free Basic Service, which includes access to hundreds of Application Engineers worldwide in the NI Developer Exchange at ni.com/exchange. National Instruments Application Engineers make sure every question receives an answer.
 For information about other technical support options in your area, visit ni.com/services or contact your local office at ni.com/contact.

- **Training and Certification**—Visit ni.com/training for self-paced training, eLearning virtual classrooms, interactive CDs, and Certification program information. You also can register for instructor-led, hands-on courses at locations around the world.

- **System Integration**—If you have time constraints, limited in-house technical resources, or other project challenges, National Instruments Alliance Partner members can help. To learn more, call your local NI office or visit ni.com/alliance.

- **Declaration of Conformity (DoC)**—A DoC is our claim of compliance with the Council of the European Communities using the manufacturer’s declaration of conformity. This system affords the user protection for electronic compatibility (EMC) and product safety. You can obtain the DoC for your product by visiting ni.com/certification.
• **Calibration Certificate**—If your product supports calibration, you can obtain the calibration certificate for your product at ni.com/calibration.

If you searched ni.com and could not find the answers you need, contact your local office or NI corporate headquarters. Phone numbers for our worldwide offices are listed at the front of this manual. You also can visit the Worldwide Offices section of ni.com/niglobal to access the branch office Web sites, which provide up-to-date contact information, support phone numbers, email addresses, and current events.
Glossary

A

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>acquisition window</td>
<td>The image size specific to a video standard or camera resolution.</td>
</tr>
<tr>
<td>active line region</td>
<td>The region of lines actively being stored. Defined by a line start (relative to the vertical synchronization signal) and a line count.</td>
</tr>
<tr>
<td>active pixel region</td>
<td>The region of pixels actively being stored. Defined by a pixel start (relative to the horizontal synchronization signal) and a pixel count.</td>
</tr>
<tr>
<td>API</td>
<td>Application programming interface.</td>
</tr>
<tr>
<td>area</td>
<td>A rectangular portion of an acquisition window or frame that is controlled and defined by software.</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>buffer</td>
<td>Temporary storage for acquired data.</td>
</tr>
<tr>
<td>bus</td>
<td>A group of conductors that interconnect individual circuitry in a computer, such as the PCI bus; typically the expansion vehicle to which I/O or other devices are connected.</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera Link</td>
<td>Interface standard for digital video data and camera control based on the Channel Link chipset.</td>
</tr>
<tr>
<td>Channel Link</td>
<td>National Semiconductor chipset for high-speed data serialization and deserialization for transmission across cables up to 10 m.</td>
</tr>
</tbody>
</table>
Glossary

D

DAQ
Data acquisition. (1) Collecting and measuring electrical signals from sensors, transducers, and test probes or fixtures and inputting them to a computer for processing. (2) Collecting and measuring the same kinds of electrical signals with A/D or DIO boards plugged into a computer, and possibly generating control signals with D/A and/or DIO boards in the same computer.

DMA
Direct memory access. A method by which data can be transferred to and from computer memory from and to a device or memory on the bus while the processor does something else; DMA is the fastest method of transferring data to/from computer memory.

F

frame grabber
A device that digitizes an image and stores it in a computer's memory.

H

handshaking
A type of protocol that makes it possible for two devices to synchronize operations.

L

LVDS
Low Voltage Differential Signaling (EIA-644).

N

NI-IMAQ
Driver software for National Instruments frame grabbers.

NI Vision Acquisition Software
A collection of driver software and utilities that acquire, display, save, and monitor images from any NI frame grabber or IEEE 1394 (FireWire®) camera.
P

parity Method of error checking. Ensures that there is always either an even number or an odd number of asserted bits in a byte, character, or word, according to the logic of the system. If a bit should be lost in data transmission, its loss can be detected by checking the parity.

PCI Peripheral Component Interconnect. A high-performance expansion bus architecture originally developed by Intel to replace ISA and EISA. PCI offers a theoretical maximum transfer rate of 133 Mbytes/s.

PCIe PCI express. A high-performance expansion bus architecture originally developed by Intel to replace PCI. PCIe offers a theoretical maximum transfer rate that is dependent upon lane width. A x1 link theoretically provides 250 MB/s in each direction to and from the device. Once overhead is accounted for, a x1 link can provide up to 200 MB/s of input capability and 200 MB/s of output capability. Increasing the number of lanes in a link increases maximum throughput by approximately the same factor.

pixel Picture element. The smallest division that makes up the video scan line; for display on a computer monitor, a pixel’s optimum dimension is square (aspect ratio of 1:1, or the width equal to the height).

divides the incoming horizontal video line into pixels.

protocol The exact sequence of bits, characters, and control codes used to transfer data between computers and peripherals through a communications channel.

Q

quadrature encoder A device that converts angular rotation into two pulse trains, A and B. The phase difference between A and B transmits information about the direction of rotation and the number of transitions indicates the amount of rotation.

R

real time A property of an event or system in which data is processed as it is acquired instead of being accumulated and processed at a later time.
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>resolution</td>
<td>The smallest signal increment that can be detected by a measurement system. Resolution can be expressed in bits, in proportions, or in percent of full scale. For example, a system has 12-bit resolution, one part in 4,096 resolution, and 0.0244 percent of full scale.</td>
</tr>
<tr>
<td>RGB</td>
<td>Color encoding scheme using red, green, and blue (RGB) color information where each pixel in the color image is encoded using 32 bits: eight bits for red, eight bits for green, eight bits for blue, and eight bits for the alpha value (unused).</td>
</tr>
<tr>
<td>ROI</td>
<td>Region of interest. A hardware-programmable rectangular portion of the acquisition window.</td>
</tr>
<tr>
<td>RS-422</td>
<td>A robust, serial digital data interchange standard utilizing individual differential signal pairs for data transmission in each direction. Depending on data transmission rates, RS-422 can be used at distances to 4,000 ft (1,275 m).</td>
</tr>
<tr>
<td>RTSI bus</td>
<td>Real-Time System Integration Bus. The National Instruments timing bus that connects Vision and DAQ devices directly, by means of connectors on the devices, for precise synchronization of functions.</td>
</tr>
<tr>
<td>S</td>
<td>scatter-gather DMA</td>
</tr>
<tr>
<td>T</td>
<td>tap</td>
</tr>
<tr>
<td></td>
<td>transfer rate</td>
</tr>
<tr>
<td></td>
<td>trigger</td>
</tr>
</tbody>
</table>
trigger control and mapping circuitry Circuitry that routes, monitors, and drives external and RTSI bus trigger lines. You can configure each of these lines to start or stop acquisition on a rising or falling edge.

TTL Transistor-transistor logic.

Virtual Instrument. (1) A combination of hardware and/or software elements, typically used with a PC, that has the functionality of a classic stand-alone instrument. (2) A LabVIEW software module (VI), which consists of a front panel user interface and a block diagram program.
Index

A
 acquisition and region of interest, 2-5
 acquisition window control, 2-5

C
calibration certificate (NI resources), A-2
Camera Link
 bit allocations (table), 2-2
 cabling
 description, 3-2
 ordering information, 3-3
 overview, 1-2
 connectors, 3-1
 conventions used in the manual, v

D
Declaration of Conformity (NI resources), A-1
diagnostic tools (NI resources), A-1
DMA controllers, 2-6
documentation
 conventions used in the manual, v
 NI resources, A-1
 drivers (NI resources), A-1

E
examples (NI resources), A-1

H
hardware
 binarization, 2-3
 overview, 2-1
 help, technical support, A-1
 high-speed timing, 2-5

I
instrument drivers (NI resources), A-1
integration with DAQ and motion control, 1-5

K
KnowledgeBase, A-1

M
MDR 26-pin connector, 3-2
multiple-tap data formatter, 2-4

N
National Instruments support and services, A-1
NI 1429
 acquisition and region of interest, 2-5
 acquisition window control, 2-5
 Camera Link, 1-2
 Camera Link configuration, 2-2
 connectors, 3-1
 DMA controllers, 2-6
 functional overview, 2-1
 hardware binarization, 2-3
 hardware overview, 2-1
 high-speed timing, 2-5
 MDR 26-pin connector, 3-2
 multiple-tap data formatter, 2-4
 PCI Express interface, 2-6
 quadrature encoder support, 2-4
 serial interface, 2-7
 signal connections, 3-1
 SMB connector, 3-2
 software overview, 1-3
software programming choices, 1-4
integration with DAQ, 1-5
NI Vision Builder for Automated Inspection, 1-4
NI Vision Development Module, 1-4
NI-IMAQ driver software, 1-3
start conditions, 2-6
trigger control and mapping circuitry, 2-4
NI support and services, A-1
NI Vision Acquisition Software, 1-3
NI-IMAQ driver software, 1-3

P
PCI Express interface, 2-6
programming examples (NI resources), A-1

Q
quadrature encoder support, 2-4

S
serial interface, 2-7
signal connections, 3-1
SMB connector, 3-2

software
NI resources, A-1
overview, 1-3
software programming choices, 1-4
integration with DAQ, 1-5
NI Vision Builder for Automated Inspection, 1-4
NI Vision Development Module, 1-4
NI-IMAQ driver software, 1-3
start conditions, 2-6
support, technical, A-1

T
technical support, A-1
training and certification (NI resources), A-1
trigger control and mapping circuitry, 2-4
troubleshooting (NI resources), A-1

W
Web resources, A-1