Getting Started with the NI PCI-1424

The NI PCI-1424 (NI 1424) is a high-quality monochrome and color digital image acquisition device. This document describes how to install and configure the necessary hardware and software components to begin using the NI 1424.

What You Need to Get Started

You need the following items to set up and use the NI 1424:

- NI 1424 image acquisition device
- Video camera or other video source
- D100 series camera cables, depending on your camera
- Computer running Microsoft Windows Vista/XP/2000 with at least one available PCI slot

Note Visit ni.com/info and enter rdvisionvista for more information about National Instruments image acquisition device compatibility with Windows Vista.

- NI Vision Acquisition Software 8.0 or later, which includes the NI-IMAQ driver software
- Optional software for developing applications:
 - NI Vision Builder for Automated Inspection
 - NI Vision Development Module
 - LabVIEW
 - LabWindows™/CVI™
 - Microsoft Visual Basic

Optional Equipment

National Instruments offers a variety of products for use with your NI 1424, including the following:

- D2504 camera cable, a four-pod BNC cable to route trigger signals to a BNC connector block
- Memory modules to increase NI 1424 onboard memory

Refer to the National Instruments catalog, visit ni.com, or call the National Instruments office nearest you for more specific information about these products.

Related Documentation

The following documents contain information that you may find helpful:

- *NI PCI-1424 User Manual*—Contains information about programming options, hardware functionality, and signal connections.
- *NI Vision Acquisition Software Release Notes*—Contains information about new functionality, minimum system requirements, and installation instructions for the NI-IMAQ driver software.

• *NI-IMAQ Help*—Contains fundamental programming concepts for the NI-IMAQ driver software and terminology for using NI image acquisition devices.

Safety Information

Caution The following paragraphs contain important safety information you *must* follow when installing and operating the device.

Do *not* operate the device in a manner not specified in the documentation. Misuse of the device may result in a hazard and may compromise the safety protection built into the device. If the device is damaged, turn it off and do *not* use it until service-trained personnel can check its safety. If necessary, return the device to National Instruments for repair.

Keep away from live circuits. Do *not* remove equipment covers or shields unless you are trained to do so. If signal wires are connected to the device, hazardous voltages can exist even when the equipment is turned off. To avoid a shock hazard, do *not* perform procedures involving cover or shield removal unless you are qualified to do so. Disconnect all field power prior to removing covers or shields.

If the device is rated for use with hazardous voltages (>30 \(V_{rms} \), 42.4 \(V_{pk} \), or 60 \(V_{dc} \)), it may require a safety earth-ground connection wire. Refer to the device specifications for maximum voltage ratings.

Because of the danger of introducing additional hazards, do *not* install unauthorized parts or modify the device. Use the device only with the chassis, modules, accessories, and cables specified in the installation instructions. All covers and filler panels *must* be installed while operating the device.

Do *not* operate the device in an explosive atmosphere or where flammable gases or fumes may be present. Operate the device only at or below the pollution degree stated in the specifications. Pollution consists of any foreign matter—solid, liquid, or gas—that may reduce dielectric strength or surface resistivity. The following is a description of pollution degrees.

- **Pollution Degree 1**—No pollution or only dry, nonconductive pollution occurs. The pollution has no effect.
- **Pollution Degree 2**—Normally only nonconductive pollution occurs. Occasionally, nonconductive pollution becomes conductive because of condensation.
- **Pollution Degree 3**—Conductive pollution or dry, nonconductive pollution occurs. Nonconductive pollution becomes conductive because of condensation.

Clean the device and accessories by brushing off light dust with a soft, nonmetallic brush. Remove other contaminants with a stiff, nonmetallic brush. The unit *must* be completely dry and free from contaminants before returning it to service.

You *must* insulate signal connections for the maximum voltage for which the device is rated. Do *not* exceed the maximum ratings for the device. Remove power from signal lines before connection to or disconnection from the device.

Caution National Instruments measurement products may be classified as either Measurement Category I or II. Operate products at or below the Measurement Category level specified in the hardware specifications.
Measurement Category\(^1\): Measurement circuits are subjected to working voltages\(^2\) and transient stresses (overvoltage) from the circuit to which they are connected during measurement or test. Measurement Category establishes standardized impulse withstand voltage levels that commonly occur in electrical distribution systems. The following is a description of Measurement (Installation\(^3\)) Categories:

- **Measurement Category I** is for measurements performed on circuits not directly connected to the electrical distribution system referred to as MAINS\(^4\) voltage. This category is for measurements of voltages from specially protected secondary circuits. Such voltage measurements include signal levels, special equipment, limited-energy parts of equipment, circuits powered by regulated low-voltage sources, and electronics.

- **Measurement Category II** is for measurements performed on circuits directly connected to the electrical distribution system. This category refers to local-level electrical distribution, such as that provided by a standard wall outlet (e.g., 115 V for U.S. or 230 V for Europe). Examples of Measurement Category II are measurements performed on household appliances, portable tools, and similar products.

- **Measurement Category III** is for measurements performed in the building installation at the distribution level. This category refers to measurements on hard-wired equipment such as equipment in fixed installations, distribution boards, and circuit breakers. Other examples are wiring, including cables, bus-bars, junction boxes, switches, socket-outlets in the fixed installation, and stationary motors with permanent connections to fixed installations.

Unpacking

The NI 1424 ships in an antistatic package to prevent electrostatic discharge from damaging device components. To avoid such damage in handling your device, take the following precautions:

1. Ground yourself using a grounding strap or by touching a grounded object, such as the computer chassis.
2. Touch the antistatic package to a metal part of the computer chassis before removing the device from the package.

Caution Never touch the exposed pins of connectors.

3. Remove the device from the package and inspect it for loose components or any other signs of damage. Notify National Instruments if the device appears damaged in any way. Do not install a damaged device in the computer.

Store the NI 1424 in the antistatic package when not in use.

\(^1\) Measurement Categories as defined in electrical safety standard IEC 61010-1.

\(^2\) Working voltage is the highest rms value of an AC or DC voltage that can occur across any particular insulation.

\(^3\) Measurement Category is also referred to as Installation Category.

\(^4\) MAINS is defined as the (hazardous live) electrical supply system to which equipment is designed to be connected for the purpose of powering the equipment. Suitably rated measuring circuits may be connected to the MAINS for measuring purposes.
Installation

The following instructions are for general installation. Refer to the documentation provided by your computer manufacturer from specific instructions and warnings. Refer to the Specifications section for typical power requirements for the NI 1424.

1. Install the NI Vision Acquisition Software before installing the NI 1424. Refer to the *NI Vision Acquisition Software Release Notes* for specific installation instructions.

2. Power off and unplug your computer.

 Caution To protect both yourself and the computer from electrical hazards, the computer **must** remain unplugged until the installation is complete.

3. Remove the computer cover to expose the expansion slots.

4. Touch the metal part of the computer to discharge any static electricity that might be on your clothes or body. Static electricity can damage the device.

5. Choose an unused PCI slot, and remove the corresponding expansion slot cover on the back panel of the computer.

6. Remove your device from the antistatic package and gently rock the device into the slot. The connection may be tight, but do **not** force the device into place.

 You can install the NI 1424 in any available PCI expansion slot in the computer. However, to achieve the best noise performance, leave as much room as possible between the NI 1424 and other devices or hardware.

 Note Check that the bracket of your device aligns with the hole in the back panel rail of the computer chassis.

7. Secure the device mounting bracket to the back panel rail of the computer.

8. Replace the computer cover.

9. Connect the camera cable to the camera. Refer to your camera manufacturer documentation from specific instructions about how to connect the cable to your camera.

10. Connect the camera cable to the connector on the NI 1424 front panel.

11. Plug in and power on the computer.

 The NI 1424 is now installed and the camera is connected.

Specifications

The following specifications apply to the NI 1424 image acquisition device. These specifications are typical at 25 °C, unless otherwise stated.

External Connections

Number of external trigger I/O lines......................4

Trigger input

- Voltage range ...0 V to 5 V (TTL)
- Input high voltage2.0 V
- Input low voltage0.8 V
- Polarity ...Programmable, active high or active low
Trigger output
- Voltage range ... 0 V to 5 V (TTL)
- Output high voltage 2.4 V at 15 mA source
- Output low voltage................................. 0.55 V at 10 mA sink
- Polarity ... Programmable, active high or active low

Power-on state .. Input (high-impedance) 10 KΩ pull-up to 5 V

RS-422/TTL
- Pixel clock
 - Signaling type .. RS-422 or TTL
 - Polarity ... Rising or falling edge
- Enable
 - Signaling type .. RS-422 or TTL
 - Polarity ... Rising or falling edge
- Control
 - Signaling type .. RS-422 or TTL
 - Polarity ... Active high or active low
 - Minimum control signal pulse width 20 ns

LVDS/TTL
- Pixel clock
 - Signaling type .. LVDS or TTL
 - Polarity ... Rising or falling edge
- Enable
 - Signaling type .. LVDS or TTL
 - Polarity ... Active high or active low
- Control
 - Signaling type .. LVDS or TTL
 - Polarity ... Active high or active low
 - Minimum control signal pulse width 20 ns

Video data signal type .. RS-422 or TTL

Memory
- Onboard memory ... 16 MB SDRAM
- LUTs .. Four 8-bit; two 10-bit to 16-bit

Note SO-DIMM memory upgrades are available in 64 MB and 128 MB densities.
Clocks
Pixel clock frequency range 20 KHz to 50 MHz

PCI Interface
Theoretical max PCI bandwidth 133 MB/s

Serial Interface
Signaling standard .. RS-232
Baud rates supported 300, 600, 1200, 1800, 2000, 2400, 3600, 4800, 7200, or 9600 bps; 19.2, 38.4, or 56 kbps
Data bits ... 5, 6, 7, or 8 bits
Parity ... Odd, even, or disabled
Stop bit ... Enabled or disabled
Data transmit ready polarity Active high or active low
Ready-to-send polarity Active high or active low

Power Requirements
Voltage .. +5 V (2.135 A)
+12 V (250 mA)
–12 V (100 mA)

Physical
Dimensions .. 106.68 cm x 312 cm (4.2 in. x 12.283 in.)
Weight .. 1.1 kg (0.5 lb)

Environment
The NI 1424 device is intended for indoor use only.
Operating temperature 0 °C to 55 °C
Storage temperature −20 °C to 70 °C
Relative humidity 5% to 90%, noncondensing
Pollution Degree .. 2
Approved at altitudes up to 2,000 m.

Safety
This product is designed to meet the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:
• IEC 61010-1, EN-61010-1
• UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label or visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.
Electromagnetic Compatibility

This product is designed to meet the requirements of the following standards of EMC for electrical equipment for measurement, control, and laboratory use:

- EN 61326 EMC requirements; Minimum Immunity
- EN 55011 Emissions; Group 1, Class A
- CE, C-Tick, ICES, and FCC Part 15 Emissions; Class A

Note For EMC compliance, operate this device to product documentation.

CE Compliance

This product meets the essential requirements of applicable European Directives, as amended for CE marking, as follows:

- 73/23/EEC; Low-Voltage Directive (safety)
- 89/336/EEC; Electromagnetic Compatibility Directive (EMC)

Note Refer to the Declaration of Conformity (DoC) for this product for any additional regulatory compliance information. To obtain the DoC for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of their life cycle, all products must be sent to a WEEE recycling center. For more information about WEEE recycling centers and National Instruments WEEE initiatives, visit ni.com/environment/weee.htm.
Where to Go for Support

The National Instruments Web site is your complete resource for technical support. At ni.com/support you have access to everything from troubleshooting and application development self-help resources to email and phone assistance from NI Application Engineers.

A Declaration of Conformity (DoC) is our claim of compliance with the Council of the European Communities using the manufacturer’s declaration of conformity. This system affords the user protection for electronic compatibility (EMC) and product safety. You can obtain the DoC for your product by visiting ni.com/certification. If your product supports calibration, you can obtain the calibration certificate for your product at ni.com/calibration.

National Instruments corporate headquarters is located at 11500 North Mopac Expressway, Austin, Texas, 78759-3504. National Instruments also has offices located around the world to help address your support needs. For telephone support in the United States, create your service request at ni.com/support and follow the calling instructions or dial 512 795 8248. For telephone support outside the United States, contact your local branch office:

Australia 1800 300 800, Austria 43 0 662 45 79 90 0, Belgium 32 0 2 757 00 20, Brazil 55 11 3262 3599, Canada 800 433 3488, China 86 21 6555 7838, Czech Republic 420 224 235 774, Denmark 45 45 76 26 00, Finland 385 0 9 725 725 11, France 33 0 1 48 14 24 24, Germany 49 0 89 741 31 30, India 91 80 41190000, Israel 972 0 3 6393737, Italy 39 02 413091, Japan 81 3 5472 2970, Korea 82 02 3451 3400, Lebanon 961 0 1 33 28 28, Malaysia 1800 887710, Mexico 01 800 010 0793, Netherlands 31 0 348 433 466, New Zealand 0800 553 322, Norway 47 0 66 90 76 60, Poland 48 22 3390150, Portugal 351 210 311 210, Russia 7 495 783 68 51, Singapore 1800 226 5886, Slovenia 386 3 425 42 00, South Africa 27 0 11 805 8197, Spain 34 91 640 0085, Sweden 46 0 8 587 895 00, Switzerland 41 56 200 51 51, Taiwan 886 02 2377 2222, Thailand 662 278 6777, Turkey 90 212 279 3031, United Kingdom 44 0 1635 523545