Freescale Semiconductor, Inc.

DIGITAL SIGNAL PROCESSING
DEVELOPMENT SOFTWARE

Use the bookmarks to link to specific
sections in this manual. Links in the
Table of Contents do not function
correctly.

DSP
ASSEMBLER REFERENCE MANUAL

© Freescale Semiconductor, Inc., 2004. All rights reserved.

> frees,caltew

semicon ductor

For More Information On This Product,
Go to: www.freescale.com

rxzb30
copywithline

Freescale Semiconductor, Inc.

Specification and information herein are subject to change without notice. Motorola re-
serves the right to make changes without further notice to any products described in this
document to improve reliability, function, or design. Motorola does not assume any liability
arising out of the application or use of any product or circuit described herein, neither does
it convey any license under its patent rights or the rights of others. Motorola is a registered
trademark of Motorola, Inc. Motorola, Inc. is an Equal Employment/Affirmative Action Em-
ployer.

This manual documents the assembler as of version 6.0 of the software.

© Copyright Motorola, Inc. 1996. All rights reserved.

ASM56000, SIM56000, ASM96000, SIM96000, ASM56100, SIM56100, ASM56300,
SIM56300, ASM56800 and SIM56800 are trademarks of Motorola.

MS-DOS and Windows are trademarks of Microsoft Corporation.
Sun-4 and SunOS are trademarks of Sun Microsystems, Inc.

Macintosh and MPW are trademarks of Apple Computer.

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc. ‘

MOTOROLA DSP ASSEMBLER

WRITING ASSEMBLY LANGUAGE PROGRAMS
EXPRESSIONS

SOFTWARE PROJECT MANAGEMENT
MACROS AND CONDITIONAL ASSEMBLY
ASSEMBLER CHARACTERS AND DIRECTIVES [
STRUCTURED CONTROL STATEMENTS

ASCII CHARACTER CODES

DIRECTIVE SUMMARY [IENIR

ASSEMBLER MESSAGES

ASSEMBLER LISTING FILE FORMAT [
MOTOROLA DSP OBJECT FILE FORMAT (COFF)
DEVICE-DEPENDENT INFORMATION

HOST-DEPENDENT INFORMATION

inoeEX [T
For More Information On This Product,

Go to: www.freescale.com ‘

‘ Freescale Semiconductor, Inc.

MOTOROLA DSP ASSEMBLER

WRITING ASSEMBLY LANGUAGE PROGRAMS
EXPRESSIONS

SOFTWARE PROJECT MANAGEMENT
MACROS AND CONDITIONAL ASSEMBLY
S ~ASSEMBLER CHARACTERS AND DIRECTIVES
STRUCTURED CONTROL STATEMENTS
ASCII CHARACTER CODES

N DRECTIVE SUMMARY

ASSEMBLER MESSAGES

B ASSEMBLER LISTING FILE FORMAT

MOTOROLA DSP OBJECT FILE FORMAT (COFF)
DEVICE-DEPENDENT INFORMATION

HOST-DEPENDENT INFORMATION

BN oEx
For More Information On This Product,

‘ Go to: www.freescale.com

Freescale Semiconductor, Inc.

PREFACE

Notation

The notational conventions used in this manual are:

DIRECTIVE

{}

[]

All assembler mnemonics and directives are shown in bold upper case to highlight
them. However, the assembler will recognize both upper and lower case for mne-
monics and directives.

Contains a list of elements or directives, one of which must be selected. Each
choice will be separated by a vertical bar. For example, {R I L} indicates that either
R or L must be selected.

Contains one or more optional elements. If more than one optional element is
shown, the required element separators are indicated. All elements outside of the
angle brackets (< >) must be specified as they appear. For example, the syntacti-
cal element [<number>,] requires the comma to be specified if the optional element
<number> is selected.

DSP ASSEMBLER REFERENCE MANUAL i
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Preface
<>

The element names are printed in lower case and contained in angle brackets.
Some common elements used to describe directives are:

<comment> A statement comment

<label> A statement label

<expr> or An assembler expression

<expression>

<number> A numeric constant

<string> A string of ASCII characters enclosed in quotes
<delimiter> A delimiter character

<option> An assembler option

<sym> or An assembler symbol

<symbol>

Supporting Publications
DSP56000 Family Manual. Motorola, Inc. 1992.

DSP96002 User’'s Manual. Motorola, Inc. 1989.

DSP56100 Family Manual. Motorola, Inc. 1993.

DSP56300 Family Manual. Motorola, Inc. 1995.

DSP56800 Family Manual. Motorola, Inc. 1996.

Motorola DSP Simulator Reference Manual. Motorola, Inc. 1996.

Motorola DSP Linker/Librarian Reference Manual. Motorola, Inc. 1996.

i DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

TABLE OF CONTENTS

Use bookmarks to link to sections in this book. Content page links do not
work correctly.

Chapter 1
MOTOROLA DSP ASSEMBLER

11 INTRODUCTION e e e 1-1
1.2 ASSEMBLY LANGUAGE e 1-1
1.3 INSTALLING THE ASSEMBLER 1-1
14 RUNNING THE ASSEMBLER i i 1-1
15 ASSEMBLER OPTIONS e 1-3
1.6 ASSEMBLER PROCESSING e 1-9
1.7 DEFINITION OF TERMS i e 1-9
1.8 ASSEMBLER SUPPORT FOR DIGITAL SIGNAL PROCESSING 1-10

Chapter 2

WRITING ASSEMBLY LANGUAGE PROGRAMS

2.1 INPUT FILE FORMAT e e 2-1
2.2 SYMBOL NAMES e e 2-1
2.3 STRINGS .. 2-2
2.4 SOURCE STATEMENT FORMAT e 2-2
241 Label Field 2-3
2.4.2 Operation Field 2-4
2.4.3 Operand Field. 2-5
24.4 Operation 2 Field 2-5
2.4.5 Operand 2 Field 2-5
2.4.6 Data Transfer Fields 2-5
2.4.7 Comment Field 2-6
2.5 ASSEMBLER OUTPUT e 2-6

Chapter 3

EXPRESSIONS

3.1 INTRODUCTION . . .o e 3-1
DSP ASSEMBLER REFERENCE MANUAL iii

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Table of Contents

Use bookmarks to link to sections in this book. Content page links do not work correctly.

3.2 ABSOLUTE AND RELATIVE EXPRESSIONS 3-1
3.3 EXPRESSION MEMORY SPACE ATTRIBUTE 3-1
3.4 INTERNAL EXPRESSION REPRESENTATION 3-3
3.5 CONSTANT S . 3-3
3.5.1 Numeric CoNsStants 3-3
3.5.2 String Constants 3-4
3.6 OPERATORS . . . 3-4
3.6.1 Unary Operators.t e 3-4
3.6.2 Arithmetic operators. 3-5
3.6.3 Shiftoperators 3-5
3.6.4 Relational operators. 3-6
3.6.5 BitWiSe Operatorsot 3-6
3.6.6 Logical Operators.ottt 3-7
3.7 OPERATOR PRECEDENCE e 3-7
3.8 FUNCTIONS .. e 3-7
3.8.1 Mathematical Functions. 3-8
3.8.2 Conversion FUNCLiONS 3-9
3.8.3 String FUNCLIONS. 3-9
3.8.4 MacCro FUNCLIONSo e 3-9
3.8.5 Assembler Mode Functions. i 3-10
Chapter 4
SOFTWARE PROJECT MANAGEMENT

4.1 INTRODUCTION . .. e e e s 4-1
4.2 SECTIONS . . 4-1
4.3 SECTIONS AND DATAHIDING e 4-2
43.1 Sectionsand Symbols. 4-2
4.3.2 Sections and MacCroSottt 4-4
4.3.3 Nested and Fragmented Sections. 4-4
4.4 SECTIONS AND RELOCATION 4-5
4.5 ADDRESS ASSIGNMENT 4-6
451 The ORG DireCtive e 4-7
452 OVErIaYS. . . o 4-9
453 Address Assignment Examples. L 4-10
454 Circular Buffers 4-11
4.6 EXAMPLE 1: MULTI-PROGRAMMER ENVIRONMENT 4-13
46.1 Absolute Mode Implementation. 4-14
v DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Table of Contents

Use bookmarks to link to sections in this book. Content page links do not work correctly.

4.6.2 Relative Mode Implementation., 4-15
4.7 EXAMPLE 2: OVERLAYS e 4-16
4.7.1 Absolute Mode Implementation 4-17
4.7.2 Relative Mode Implementation., 4-18
4.8 EXAMPLE 3: BOOTSTRAP OVERLAY 4-20
48.1 Absolute Mode Implementation 4-21
4.8.2 Relative Mode Implementation. 4-21
Chapter 5
MACRO OPERATIONS AND CONDITIONAL ASSEMBLY
5.1 MACRO OPERATIONS e 5-1
5.2 MACRO LIBRARIES e 5-2
5.3 MACRO DEFINITION . .. e 5-2
5.4 MACRO CALLS . . . e 5-4
5.5 DUMMY ARGUMENT OPERATORS 5-5
5.5.1 Dummy argument concatenation operator -\ 5-5
5.5.2 Return value operator - 2 5-6
5.5.3 Return hex value operator- % 5-7
554 Dummy argument string operator - ". S-7
5.5.5 Macro local label override operator -~ 5-8
5.6 DUP, DUPA, DUPC, DUPF DIRECTIVES 5-9
5.7 CONDITIONAL ASSEMBLY e 5-9
Chapter 6
ASSEMBLER SIGNIFICANT CHARACTERS AND DIRECTIVES

6.1 INTRODUCTION . . .o e e 6-1
6.2 ASSEMBLER SIGNIFICANT CHARACTERS 6-1
6.3 ASSEMBLER DIRECTIVES e 6-2
6.3.1 Assembly Control 6-2
6.3.2 Symbol Definition 6-3
6.3.3 Data Definition/Storage Allocation 6-3
6.3.4 Listing Control and Options.o 6-3
6.3.5 Object File Control 6-4
6.3.6 Macros and Conditional Assembly 6-4
6.3.7 Structured Programming.ot 6-4

DSP ASSEMBLER REFERENCE MANUAL Vv

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Table of Contents

Use bookmarks to link to sections in this book. Content page links do not work correctly.

Chapter 7
STRUCTURED CONTROL STATEMENTS
7.1 INTRODUCTION . .. e e 7-1
7.2 STRUCTURED CONTROL DIRECTIVES 7-1
7.3 SYNT AX 7-2
7.3.1 BREAK Statement 7-2
7.3.2 .CONTINUE Statement 7-3
7.3.3 FOR Statement. 7-4
7.3.4 AF Statement. 7-5
7.3.5 LOOP Statement 7-6
7.3.6 REPEAT Statement 7-7
7.3.7 WHILE Statement. 7-7
7.4 SIMPLE AND COMPOUND EXPRESSIONS 7-8
7.4.1 Simple EXPressions. 7-8
7.4.1.1 Condition Code EXpressions 7-8
7.4.1.2 Operand Comparison EXpressionsuueeee.... 7-9
7.4.2 Compound EXPressions. 7-10
7.5 STATEMENT FORMATTING e 7-10
7.5.1 Expression Formatting., 7-10
7.5.2 FOR/.LOOP Formatting, 7-11
7.5.3 Assembly Listing Format. 7-11
7.6 EFFECTS ON THE PROGRAMMER’S ENVIRONMENT 7-11
Appendix A
ASCII CHARACTER CODES
Appendix B
DIRECTIVE SUMMARY

B.1 ASSEMBLY CONTROL e B-1
B.2 SYMBOL DEFINITION e B-2
B.3 DATA DEFINITION/STORAGE ALLOCATION. B-2
B.4 LISTING CONTROLAND OPTIONS B-2
B.5 OBJECT FILE CONTROL. . . . B-3
B.6 MACROS AND CONDITIONAL ASSEMBLY B-3
B.7 STRUCTURED PROGRAMMING B-3
vi DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Table of Contents

Use bookmarks to link to sections in this book. Content page links do not work correctly.

Appendix C
ASSEMBLER MESSAGES
Cl1l INTRODUCTION . . . e C-1
C.2 COMMAND LINE ERRORS. e C-2
C.3 WARNINGS . .. C-4
C4 ERRORS . . C-13
C5 FATALERRORS e C-44
Appendix D
ASSEMBLER LISTING FILE FORMAT
D.1 INTRODUCTION . . .o e e D-1
D.2 LISTING FILE COMMENTARY e D-1
D.3 CROSS-REFERENCE FORMAT D-3
D.4 MEMORY UTILIZATION REPORT FORMAT D-3
D.5 ASSEMBLER LISTING FORMAT e D-5
Appendix E
MOTOROLA DSP OBJECT FILE FORMAT (COFF)

E.1l INTRODUCTION . . .o e E-1
E.2 OBJECT FILESTRUCTURE e E-1
E.3 OBJECT FILE COMPONENTS s E-3
E.3.1 File Header E-3
E.3.2 Optional Header e E-4
E.3.3 SECHONS . .. E-6
E.3.3.1 SectionHeaders i E-7
E.3.3.2 Relocation Information. E-9
E.3.3.3 Line Numbers E-10
E.3.4 Symbol Table E-11
E.3.4.1 Symbol Name E-13
E.3.4.2 SymbolValue E-13
E.3.4.3 Section Number. E-14
E.3.4.4 Symbol Type E-14
E.3.4.5 Symbol Storage Class. E-16
E.3.4.6 Auxiliary Entries.o E-20
E.3.46.1 Filenames E-21
E.3.4.6.2 SECHONS .. E-21
E.3.4.6.3 Tag Names E-23

DSP ASSEMBLER REFERENCE MANUAL Vii

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Table of Contents

Use bookmarks to link to sections in this book. Content page links do not work correctly.

E.3.46.4 End of Structures E-23
E.3.4.6.5 Functions E-24
E.3.4.6.6 ATTAYS . E-25
E.3.4.6.7 End of Blocks and Functions E-25
E.3.4.6.8 Beginning of Blocks and Functions E-26
E.3.4.6.9 Structure, Union, and Enumeration Names E-26
E.3.4.7 Object FileComments i, E-27
E.3.5 String Table E-27
E.4 DIFFERENCES IN DSP OBJECT FORMAT AND STANDARD COFF .. E-27
E4.1 Multiple MemMOry Spaces E-28
E4.2 Object File Transportability E-29
E.4.3 Structure Size Fields E-30
E4.4 Relocation Information. E-30
E.4.5 Block Data SEeCtioNS.ot E-31
E.4.6 Other EXtENSIONS E-31
E.5 OBJECT FILE DATA EXPRESSION FORMAT E-31
E.5.1 Data Expression Generationt E-32
E.5.2 Data Expression Interpretation E-32
E5.2.1 User Expression - { ...} ... E-33
E.5.2.2 Relocatable Expression - [...]. ... E-33
E.5.2.3 Memory Space Operator - @ouuiiiininnnnn.. E-33
E5.24 Bit Size Operator - #. E-33
E.5.25 Memory Attribute Operator - &, E-34
E.5.2.6 Line Number Operator - ! E-34
E.5.2.7 BFxxx Instruction Mask Function - @FBF() E-35
E.5.2.8 Local Relocatable Reference Function - @LRF() E-35
E.5.29 Alternate Encoding Function- @ENC() E-35

Appendix F
DEVICE-DEPENDENT INFORMATION

F.1 INTRODUCTION. . . . e e e F-1
F.2 DSP56000 INFORMATION.o e F-2
F.2.1 Instruction Set Summary F-2
F.2.11 Arithmetic Instructions F-3
F.2.1.2 Logical Instructions F-4
F.2.1.3 Bit Manipulation Instructions F-4
F.2.14 Loop INStructions F-4
viii DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Table of Contents

Use bookmarks to link to sections in this book. Content page links do not work correctly.

F.2.1.5 Move INStrUCtioNS e F-4
F.2.1.6 Program Control Instructions F-5
F.2.2 Register Namesand Usage e, F-6
F.2.3 Condition Code MNEMONICSo e e F-7
F.3 DSP96000 INFORMATION e F-8
F.3.1 Instruction Set Summary. F-8
F.3.1.1 Arithmetic Instructions F-8
F.3.1.2 Logical INStructions F-10
F.3.1.3 Bit Manipulation Instructions L F-10
F.3.1.4 Loop INStructions F-10
F.3.1.5 Move INStructionst F-11
F.3.1.6 Program Control Instructions F-12
F.3.2 Register Namesand Usage F-13
F.3.3 Condition Code MNEMONICSot e F-14
F.4 DSP56100 INFORMATION e F-15
F.4.1 Instruction Set Summary. F-15
F4.1.1 Arithmetic Instructions F-15
F.4.1.2 Logical INStructions F-16
F.4.1.3 Bit Manipulation Instructions L F-17
F.4.1.4 Loop INStructions F-17
F.4.1.5 Move INStruCtionS e F-17
F.4.1.6 Program Control Instructions F-18
F.4.2 Register Namesand Usage F-18
F.4.3 Condition Code MNEMONICSo e F-19
F.5 DSP56300 INFORMATION e F-20
F.5.1 Instruction Set Summary. F-20
F511 Arithmetic Instructions F-21
F.5.1.2 Logical INStructions F-22
F.5.1.3 Bit Manipulation Instructions F-22
F.514 Loop INStructions F-23
F.5.15 Move INStruCtionS e F-23
F.5.1.6 Program Control Instructions F-24
F.5.2 Register Namesand Usage F-25
F.5.3 Condition Code MNEMONICSo e F-26
F.6 DSP56800 INFORMATION e F-27
F.6.1 Instruction Set Summary. F-27

DSP ASSEMBLER REFERENCE MANUAL iX

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Table of Contents

Use bookmarks to link to sections in this book. Content page links do not work correctly.

F.6.1.1 Arithmetic Instructions F-28
F.6.1.2 Logical Instructions F-29
F.6.1.3 Bit Manipulation Instructions F-29
F.6.1.4 Loop Instructions F-29
F.6.1.5 Move INStruCtionSo F-30
F.6.1.6 Program Control Instructions F-30
F.6.2 MacCro INStruCtions F-31
F.6.3 Register Namesand Usage., F-32
F.6.4 Condition Code MNEMONICS.ottt F-32
Appendix G
HOST-DEPENDENT INFORMATION

G.1 INTRODUCTION. . . . e e G-1
G.2 DOS/386 ENVIRONMENT G-1
G.21 Hardware Requirementst G-1
G.2.2 Installation G-2
G.2.3 Source File Text. G-2
G24 Invoking the Assembler G-2
G.3 SUNOS ENVIRONMENT e e G-3
G.3.1 Hardware Requirementst G-3
G.3.2 Installation G-3
G.3.3 Source File Text.o G-4
G.34 Invoking the Assembler G-4
G4 HP 700 ENVIRONMENT. e G-4
G4.1 Hardware Requirements i G-4
G4.2 Installation G-5
G4.3 Source File Text.o G-5
G4.4 Invoking the Assembler G-5
G.5 MACINTOSH ENVIRONMENT G-6
G5.1 Hardware Requirementst G-6
G.5.2 Installation G-6
G.5.3 Source File Text.o G-6
G54 Invoking the Assembler G-7
X DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Chapter 1
MOTOROLA DSP ASSEMBLER

11 INTRODUCTION

The Motorola DSP Assemblers are programs that process assembly language source
statements written for Motorola’s family of digital signal processors. The Assembler trans-
lates these source statements into object programs compatible with other Motorola DSP
software and hardware products.

1.2 ASSEMBLY LANGUAGE

The assembly language provides mnemonic operation codes for all machine instructions
in the digital signal processor instruction set. In addition, the assembly language contains
mnemonic directives which specify auxiliary actions to be performed by the Assembler.
These directives are not always translated into machine language. The assembly lan-
guage enables the programmer to define and use macro instructions which replace a sin-
gle statement with a predefined sequence of statements found in the macro definition.
Conditional assembly also is supported.

13 INSTALLING THE ASSEMBLER

The Assembler is distributed on various media and in different formats depending on the
host environment. See Appendix G, Host-dependent Information, for details on installing
and operating the Assembler on your particular machine.
14 RUNNING THE ASSEMBLER
The general format of the command line to invoke the Assembler is:
DSPASM [options] <filenames>
where:
DSPASM

The name of the Motorola DSP Assembler program appropriate for the tar-
get processor (see Appendix F, Device-dependent Information). For exam-

DSP ASSEMBLER REFERENCE MANUAL 1-1
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Motorola DSP Assembler

Running The Assembler

[options]

ple, for the Motorola DSP56000 processor the name of the Assembler
executable is ASM56000.

Any of the following command line options. These can be in any order, but
must precede the list of source filenames. Some options can be given more
than once; the individual descriptions indicate which options may be speci-
fied multiple times. Option letters can be in either upper or lower case.

Command options that are used regularly may be placed in the environment
variable DSPASMOPT. If the variable is found in the environment the As-
sembler adds the associated text to the existing command line prior to pro-
cessing any options. See your host documentation for instructions on how
to define environment variables.

Option arguments may immediately follow the option letter or may be sepa-
rated from the option letter by blanks or tabs. However, an ambiguity arises
if an option takes an optional argument. Consider the following command
line:

ASM56000 -B MAIN 10

In this example it is not clear whether the file MAIN is a source file or is
meant to be an argument to the -B option. If the ambiguity is not resolved
the Assembler will assume that MAIN is a source file and attempt to open it
for reading. This may not be what the programmer intended.

There are several ways to avoid this ambiguity. If MAIN is supposed to be
an argument to the -B option it can be placed immediately after the option
letter:

ASM56000 -BMAIN 10

If there are other options on the command line besides those that take op-
tional arguments the other options can be placed between the ambiguous
option and the list of source file names:

ASM56000 -B MAIN -V 10

An alternative is to use two successive hyphens to indicate the end of the
option list:

ASM56000 -B -- MAIN 10

In this latter case the Assembler interprets MAIN as a source file name and
uses the default naming conventions for the -B option.

1-2

DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Motorola DSP Assembler

Assembler Options

15 ASSEMBLER OPTIONS

-A

-B[<objfil>]

Indicates that the Assembler should run in absolute mode, generating an
absolute object file when the -B command line option is given. By default the
Assembler produces a relocatable object file that is subsequently pro-
cessed by the Motorola DSP linker. See Chapter 4, Software Project Man-
agement, for more information on Assembler modes.

This option specifies that an object file is to be created for Assembler output.
<objfil> can be any legal operating system filename, including an optional
pathname. A hyphen also may be used as an argument to indicate that the
object file should be sent to the standard output.

The type of object file produced depends on the Assembler operation mode.
If the -A option is supplied on the command line, the Assembler operates in
absolute mode and generates an absolute object (.CLD) file. If there is no
-A option on the command line, the Assembler operates in relative mode
and creates a relocatable object (.CLN) file.

If a pathname is not specified, the file will be created in the current directory.
If no filename is specified, the Assembler will use the basename (filename
without extension) of the first flename encountered in the source input file
list and append the appropriate file type (.CLN or .CLD) to the basename. If
the -B option is not specified, then the Assembler will not generate an object
file. The -B option should be specified only once. If the file named in the
-B option already exists, it will be overwritten.

Example: ASM56000 -Bfilter main.asm fft.asm fio.asm

In this example, the files MAIN.ASM, FFT.ASM, and FIO.ASM are
assembled together to produce the relocatable object file
FILTER.CLN.

-D<symbol> <string>

This is equivalent to a source statement of the form:
DEFINE <symbol> <string>

<string> must be preceded by a blank and should be enclosed in single
quotes if it contains any embedded blanks. Note that if single quotes are
used they must be passed to the Assembler intact, e.g. some host com-
mand interpreters will strip single quotes from around arguments. The

DSP ASSEMBLER REFERENCE MANUAL 1-3
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Motorola DSP Assembler

Assembler Options

-EA <errfil>
-EW <errfil>

-F<argfil>

-D<symbol> <string> sequence can be repeated as often as desired. See
the DEFINE directive (Chapter 6) for more information.

Example: ASM96000 -D POINTS 16 prog.asm

All occurrences of the symbol POINTS in the program PROG.ASM
will be replaced by the string ‘16'.

These options allow the standard error output file to be reassigned on hosts
that do not support error output redirection from the command line. <errfil>
must be present as an argument, but can be any legal operating system file-
name, including an optional pathname.

The -EA option causes the standard error stream to be written to <errfil>; if
<errfil> exists, the output stream is appended to the end of the file. The -EW
option also writes the standard error stream to <errfil>; if <errfil> exists it is
rewound (truncated to zero), and the output stream is written from the be-
ginning of the file. Note that there must be white space separating either
option from the filename argument.

Example: ASM96000 -EWerrors prog.asm

Redirect the standard error output to the fle ERRORS. If the file al-
ready exists, it will be overwritten.

Indicates that the Assembler should read command line input from <argfil>.
<argfil> can be any legal operating system filename, including an optional
pathname. <ardfil> is a text file containing further options, arguments, and
filenames to be passed to the Assembler. The arguments in the file need be
separated only by some form of white space (blank, tab, newline). A semi-
colon (;) on a line following white space makes the rest of the line a com-
ment.

The -F option was introduced to circumvent the problem of limited line
lengths in some host system command interpreters. It may be used as often
as desired, including within the argument file itself. Command options may
also be supplied using the DSPASMOPT environment variable. See the dis-
cussion of DSPASMOPT under [options] at the beginning of this section.

Example: ASM96000 -Fopts.cmd

Invoke the Assembler and take command line options and source
filenames from the command file OPTS.CMD.

1-4

DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Motorola DSP Assembler

Assembler Options

Send source file line number information to the object file. This option is val-
id only in conjunction with the -B command line option. The generated line
number information can be used by debuggers to provide source-level de-

bugging.
Example: ASM56000 -B -G myprog.asm

Assemble the file MYPROG.ASM and send source file line number
information to the resulting object file MYPROG.CLN.

-I<pathname>

-L<Istfil>

When the Assembler encounters INCLUDE files, the current directory (or
the directory specified in the INCLUDE directive) is first searched for the file.
If it is not found and the -l option is specified, the Assembler prefixes the file-
name (and optional pathname) specified in the INCLUDE directive with
<pathname> and searches the newly formed directory pathname for the file.

The pathname must be a legal operating system pathname. The -l option
may be repeated as many times as desired. The directories will be
searched in the order specified on the command line.

Example: ASM56000 -I\project\ testprog

This example uses IBM PC pathname conventions, and would cause
the Assembler to prefix any INCLUDE files not found in the current
directory with the \project\ pathname.

This option specifies that a listing file is to be created for Assembler output.
<Istfil> can be any legal operating system filename, including an optional
pathname. A hyphen also may be used as an argument to indicate that the
listing file should be sent to the standard output, although the listing file is
routed to standard output by default.

If a pathname is not specified, the file will be created in the current directory.
If no filename is specified, the Assembler will use the basename (filename
without extension) of the first flename encountered in the source input file
list and append .LST to the basename. If the -L option is not specified, then
the Assembler will route listing output to the standard output (usually the
console or terminal screen) by default. The -L option should be specified

DSP ASSEMBLER REFERENCE MANUAL 1-5
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Motorola DSP Assembler
Assembler Options

only once. If the file named in the -L option already exists, it will be
overwritten.

Example: ASM96000 -L filter.asm gauss.asm

In this example, the files FILTER.ASM and GAUSS.ASM are assem-
bled together to produce a listing file. Because no filename was giv-
en with the -L option, the output file will be named using the
basename of the first source file, in this case FILTER. The listing file
will be called FILTER.LST.

-M<pathname>
This is equivalent to a source statement of the form:
MACLIB <pathname>

The pathname must be a legal operating system pathname. The -M option
may be repeated as many times as desired. The directories will be searched
in the order specified on the command line. See the MACLIB directive
(Chapter 6) for more information.

Example: ASM56000 -M fftlib/ trans.asm

This example uses UNIX pathname conventions, and would cause
the Assembler to look in the fftlib subdirectory of the current directory
for a file with the name of the currently invoked macro found in the
source file.

-O<opt>[,<opt>,...,<opt>]
This is equivalent to a source statement of the form:
OPT <opt>[,<opt>,...,<opt>]

<opt> can be any of the options that are available with the OPT directive
(see Chapter 6). If multiple options are specified, they must be separated by
commas. The -O<opt> sequence can be repeated for as many options as
desired.

Example: ASM96000 -OS,CRE myprog.asm

This will activate the symbol table and cross reference listing options.

-P<proc>
Run the Assembler with the specified processor revision level enhance-
ments. This is for backward compatibility so that the Assembler will flag new
constructions as illegal. <proc> can be any of the processor identifiers given
1-6 DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Motorola DSP Assembler

-R<rev>

Assembler Options

below. Note that if this option is not used the Assembler runs with all latest
revision level enhancements on by default.

Processor Identifier
DSP56001 Rev. C 56001c
DSP56002 56002
DSP56004 56004
DSP56166 56166
DSP96001 Rev. B 96001b
DSP96002 96002

Example: ASM56000 -P56001c myprog.asm

Assemble MYPROG.ASM with the DSP56000 Revision C enhance-
ments.

On some hosts the Assembler displays a banner on the console when in-
voked. This option inhibits the banner display. It has no effect on hosts
where the signon banner is not displayed by default.

Example: ASM56000 -Q myprog.asm

Assemble the file MYPROG.ASM but do not display the signon ban-
ner on the console.

Run the Assembler without the specified processor revision level enhance-
ments. This is for backward compatibility so that the Assembler will flag new
constructions as illegal. <rev> can be any of the revision specifiers given be-
low, but must be appropriate for the target processor.

This option is superseded by the -P option.

Processor Revision
DSP56001 Rev. C C
DSP56002 2
DSP56004 4
DSP56166 6
DSP96000 Rev. B B
DSP96001 1

Example: ASM56000 -RC myprog.asm

Assemble MYPROG.ASM without the DSP56000 Revision C en-
hancements.

DSP ASSEMBLER REFERENCE MANUAL 1-7
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Motorola DSP Assembler
Assembler Options

-V

This option causes the Assembler to report assembly progress (beginning
of passes, opening and closing of input files) to the standard error output
stream. This is useful to insure that assembly is proceeding normally.

Example: ASM56000 -V myprog.asm

Assemble the file MYPROG.ASM and send progress lines to the
standard error output.

This option causes the Assembler to strip symbol information from the ab-
solute load file. Normally symbol information is retained in the object file for
symbolic reference purposes. Note that this option is valid only when the
Assembler is in absolute mode via the -A command line option and when an
object file is created (-B option).

Example: ASM56000 -A -B -Z myprog.asm

Assemble the file MYPROG.ASM in absolute mode and strip symbol
information from the load file created as output.

<filenames>

A list of operating system compatible filenames (including optional path-
names). If no extension is supplied for a given file, the Assembler first will
attempt to open the file using the filename as supplied. If that is not success-
ful the Assembler appends .ASM to the filename and attempts to open the
file again. If no pathname is specified for a given file, the Assembler will look
for that file in the current directory. The list of files will be processed sequen-
tially in the order given and all files will be used to generate the object file
and listing.

The Assembler will redirect the output listing to the standard output if the output listing is
not suppressed with the IL option, or if it is not redirected via the -L command line option
described above. The standard output generally goes to the console or terminal screen
by default, but can be diverted to a file or to a printer by using the 1/O redirection facilities
of the host operating system, if available. Error messages will always appear on the stan-
dard output, regardless of any option settings. Note that some options (-B, -L) allow a
hyphen as an optional argument which indicates that the corresponding output should be
sent to the standard output stream. Unpredictable results may occur if, for example, the
object file is explicitly routed to standard output while the listing file is allowed to default to
the same output stream.

For more details on Assembler operation in a particular machine environment see Appen-
dix G, Host-dependent Information.

1-8 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Motorola DSP Assembler
Assembler Processing

1.6 ASSEMBLER PROCESSING

The Motorola DSP Assembler is a two-pass Assembler. During the first pass the source
program is read to build the symbol and macro tables. During the second pass the object
file is generated (assembled) with reference to the tables created during pass one. It is
also during the second pass that the source program listing is produced.

Each source statement is processed completely before the next source statement is read.
As each line is read in, any translations specified by the DEFINE directive are applied.
Each statement is then processed, and the Assembler examines the label, operation
code, operand, and data transfer fields. The macro definition table is scanned for a match
with the operation code. If there is no match, the operation code and directive tables are
scanned for a match with a known opcode.

Any errors detected by the Assembler are displayed before the actual line containing the
error is printed. Errors and warnings are accumulated, and a total number of errors and
warnings is printed at the end of the source listing. If no source listing is produced, error
messages are still displayed to indicate that the assembly process did not proceed nor-
mally. The number of errors is returned as an exit status when the Assembler returns con-
trol to the host operating system.

1.7 DEFINITION OF TERMS

Since the Motorola DSP architectures are different from normal microprocessors, the pro-
grammer may not be familiar with some of the terms used in this document. The following
discussion serves to clarify some of the concepts discussed later in this manual.

The Motorola DSP architecture can have as many as five separate memory spaces re-
ferred to as the X, Y, L, P (Program), and E (EMI - Extended Memory Interface) memory
spaces. L memory space is a concatenation of X and Y data memory and is considered
by the Assembler as a superset of the X and Y memory spaces. E memory is specific to
the DSP56004 processor, and provides for different data representations for various
memory hardware configurations. The Assembler will generate object code for each
memory space, but object code can only be generated for one memory space at a time.

The memory space and address location into which the object code generated by the As-
sembler will be loaded are referred to as the load memory space and load address , re-
spectively. Because the DSP architecture allows data transfers between memory spaces,
sometimes object code is loaded into an address of one memory space but will later be
transferred to a different memory space and address before the program is run. One ex-
ample of this might be a program located in an external EPROM that will be transferred
into external program RAM before it is run. The transfer of code/data from one memory
space/address to a different memory space/address is called an overlay .

When the object code for a part of the program is generated that later will be used as an
overlay, the load memory space and load address do not correspond to the memory
space and address where the program will be run. The memory space and address loca-
tion where the code/data will be located when the program is run are referred to as the

DSP ASSEMBLER REFERENCE MANUAL 1-9
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Motorola DSP Assembler
Assembler Support For Digital Signal Processing

runtime memory space and runtime address , respectively. If the Assembler only used
the load address to assign values to labels, then the program would not contain the cor-
rect label references when it was transferred to the runtime memory space and the run-
time address.

During the assembly process, the Assembler uses location counters to record the ad-
dresses associated with the object code. In order to facilitate the generation of object code
for overlays, the Assembler maintains two different location counters, the load location
counter , which determines the address into which the object code will be loaded and the
runtime location counter , which determines the address assigned to labels. In addition,
the Assembler keeps track of the load memory space , which is the memory space into
which the object code will be loaded, and the runtime memory space , which is the mem-
ory space to which an overlay will be transferred and the memory space attribute that will
be assigned to labels. See Chapter 4, Software Project Management, for a practical dis-
cussion of the use of memory spaces and location counters.

The Motorola digital signal processors are capable of performing operations on modulo
and reverse-carry buffers , two data structures useful in digital signal processing applica-
tions. The DSP Assembler provides directives for establishing buffer base addresses, al-
locating buffer space, and initializing buffer contents. For a buffer to be located properly
in memory the lower bits of the starting address which encompass one less than the buffer
size must be zero. For example, the lowest address greater than zero at which a buffer of
size 32 may be located is 32 (20 hexadecimal). More generally, the buffer base address

must be a multiple of 2% where 2Xis greater than or equal to the size of the buffer. Buffers
can be allocated manually or by using the Assembler buffer directives (see Chapter 6).

The Assembler operates in either absolute or relative mode, depending on the presence
of the command line -A option. In relative mode the Assembler creates relocatable object
files. These files can be combined and relocated using the Motorola DSP linker. In ab-
solute mode the Assembler generates absolute object files. Absolute files cannot be re-
located but can be loaded directly for execution. By default the Assembler runs in relative
mode.

1.8 ASSEMBLER SUPPORT FOR DIGITAL SIGNAL PROCESSING

As mentioned previously, the Assembler offers facilities commonly found in other macro
Assemblers, such as nested macro capabilities, include files, and conditional assembly.
The Assembler must also provide extensions in support of the unconventional architec-
ture of the Motorola digital signal processors, as well as aids for programming DSP-spe-
cific applications. Some of these features are discussed briefly below; see the
appropriate chapters later in this manual for more information.

The Assembler supports the use of arbitrary algebraic expressions as arguments to vari-
ous directives and as immediate operands in certain instructions. Terms of these expres-
sions may consist of the Assembler's own built-in functions, which perform data
conversion, comparison, and computational operations. In the digital signal processing
domain transcendental functions for computing sine, cosine, and natural logarithm are

1-10 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Motorola DSP Assembler
Assembler Support For Digital Signal Processing

useful for initializing data values in memory, such as sine/cosine tables for FFT algo-
rithms. Also, there are functions for easily converting values expressed in decimal floating
point to their binary or fractional equivalents. This conversion is done automatically for im-
mediate instruction operands and arguments to the DC directive (see Chapter 6). See
Chapter 3 for more information on Assembler expressions, operators, and built-in func-
tions.

The register set of the Motorola digital signal processors allows for efficient use of modulo
and reverse-carry buffers for FFT applications. The Assembler supports this architecture
by providing several special-purpose directives for allocating circular buffers. The
BADDR, BUFFER, DSM, and DSR directives automatically advance the program counter
to the next appropriate base address given the buffer size, and perform various boundary
and magnitude checks to insure that the buffer is valid. The BSM and BSR provide for
automatic alignment and block initialization of DSP buffers. Since a buffer allocated in this
fashion can cause alignment gaps in memory, the MU option (see the OPT directive,
Chapter 6) may be used to generate a full memory utilization report. See Chapter 6 for
more information on Assembler directives and options.

DSP ASSEMBLER REFERENCE MANUAL 1-11
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Chapter 2
WRITING ASSEMBLY LANGUAGE PROGRAMS

2.1 INPUT FILE FORMAT

Programs written in assembly language consist of a sequence of source statements. Any
source statement can be extended to one or more lines by including the line continuation
character (\) as the last character on the line to be continued. A source statement (first line
and any continuation lines) can be a maximum of 512 characters long. Upper and lower
case letters are considered equivalent for Assembler mnemonics and directives, but are
considered distinct for labels, symbols, directive arguments, and literal strings.

If the source file contains horizontal tabs (ASCII $09), the Assembler will expand these to
the next fixed tab stop located at eight character intervals (column 1, 9, 17...), unless reset
using the TAB directive (see Chapter 6). This is only significant if tab characters are em-
bedded within literal strings.

For more information on source input file format, see Appendix G, Host-dependent Infor-
mation.

2.2 SYMBOL NAMES

Symbol names can be from one to 512 characters long. The first character of a symbol
must be alphabetic (upper or lower case); any remaining characters can be either alpha-
numeric (A-Z, a-z, 0-9) or the underscore character (). Upper and lower case letters in
symbols are considered distinct unless the IC option is in effect (see the OPT directive,
Chapter 6).

Valid: loop_1 Invalid: 1 loop
ENTRY loop.e
aBc

Certain identifiers are reserved by the Assembler and cannot be used. These identifiers
are the upper or lower case name of any Motorola DSP processor register. See Appendix
F for a list of the register names of the appropriate target processor.

DSP ASSEMBLER REFERENCE MANUAL 2-1
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Writing Assembly Language Programs
Strings

2.3 STRINGS

One or more ASCII characters enclosed by single quotes (') constitute a literal ASCII
string. In order to specify an apostrophe within a literal string, two consecutive apostro-
phes must appear where the single apostrophe is intended. Strings are used as operands
for some Assembler directives and also can be used to a limited extent in expressions.

A string may also be enclosed in double quotes (") in which case any DEFINE directive
symbols contained in the string would be expanded. The double quote should be used
with care inside macros since it is used as a dummy argument string operator (see Chap-
ter 5). In that case the macro concatenation operator can be used to escape the double-
guoted string if desired.

Two strings separated by the string concatenation operator (++) will be recognized by the
Assembler as equivalent to the concatenation of the two strings. For example, these two
strings are equivalent:

'‘ABC'++'DEF' = 'ABCDEF'

The Assembler has a substring extraction capability using the square brackets ([]). Here
is an example:

[DSP56000',3,5] = '56000'

Substrings may be used wherever strings are valid and can be nested. There are also
functions for determining the length of a string and the position of one string within anoth-
er. See Chapter 3 for more information on string functions.

2.4 SOURCE STATEMENT FORMAT

Each source statement may include up to six fields (eight for the DSP96000) separated
by one or more spaces or tabs: a label field, an operation field, an operand field, an addi-
tional opcode and operand field for the DSP96000, up to two data transfer fields, and a
comment field. Only fields preceding the comment field are considered significant to the

2-2 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Writing Assembly Language Programs
Source Statement Format

Assembler; the comment field is ignored. For example, the following source statement
shows all eight possible fields for the DSP96000:

ENT EMPY D8.D6.D2 FADD.S D3.D0 X:(R0),.D4.S D2.S.Y:(R5)+ ;TEXT

L |Comment
field

field
Operand 2
Opcode 2

Operand
Opcode

Label

In general, the contents of each field other than the comment field cannot contain embed-
ded whitespace characters, since these characters are used as field delimiters. Two ex-
ceptions are blanks and tabs in quoted strings and the syntax of structured control
statements (see Chapter 7).

24.1 Label Field

The label field occurs as the first field of a source statement, and can take one of the fol-
lowing forms:

1. A space or tab as the first character on a line ordinarily indicates that the label
field is empty, and that the line has no label.

2. An alphabetic character as the first character indicates that the line contains a
symbol called a label .

3. Anunderscore () as the first character indicates that the label is a local label .

Labels may be indented if the label symbol is immediately followed by a colon (:). If the
first non-blank field on a line complies with either forms 2 or 3 above and the field ends
with a colon, the Assembler regards this as the label field, even if it does not start with the
first character on the line. However, all characters preceding the label on the source line
must be whitespace characters (spaces or tab characters). There should be no interven-
ing blanks or tabs between the end of the label symbol and the appended colon character.

Local labels are any normal symbol name preceded (with no intervening blanks) by an
underscore (_). Except for the special case of macros (described below), local labels
have a limited scope bounded by any two non-local labels. The local label can be referred
to or defined only in source statements that are between two source lines containing non-
local labels. Local labels are useful in defining program locations where a unique label
name is required but is not considered useful in documenting the source file (for example,

DSP ASSEMBLER REFERENCE MANUAL 2-3
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Writing Assembly Language Programs
Source Statement Format

the terminating address of a DO loop). Note that the maximum length of a local label in-
cludes the leading underscore (_) character.

Use of local labels in macros represents a special case. All local labels within a macro are
considered distinct for the currently active level of macro expansion (unless the macro lo-
cal label override operator is used; see Chapter 5). These local labels are valid for the en-
tire macro expansion and are not considered bounded by non-local labels. Therefore, all
local labels within a macro must be unique. This mechanism allows the programmer to
freely use local labels within a macro definition without regard to the number of times that
the macro is expanded. Non-local labels within a macro expansion are considered to be
normal labels and therefore cannot occur more than once unless used with the SET di-
rective (see Chapter 6).

A label may occur only once in the label field of an individual source file unless it is used
as a local label, a label local to a section, or is used with the SET directive. If a non-local
label does occur more than once in a label field, each reference to that label after the first
will be flagged as an error.

A line consisting of a label only is a valid line and has the effect of assigning the value of
the location counter to the label. With the exception of some directives, a label is assigned
the value of the location counter of the first word of the instruction or data being assem-
bled.

2.4.2 Operation Field

The operation field appears after the label field, and must be preceded by at least one
space or tab. Entries in the operation field may be one of three types:

Opcode - Mnemonics that correspond directly to DSP machine instructions.

Directive - Special operation codes known to the Assembler which control
the assembly process.

Macro call - Invocation of a previously defined macro which is to be inserted
in place of the macro call.

The Assembler first searches for operation codes in an internal macro definition table. If
no match is found, the table of machine operation codes and Assembler directives is
searched. If neither of the tables holds the specified operation code, an error message is
generated (this sequence can be altered with the MACLIB directive). Macro names can
therefore replace standard machine operation codes and Assembler directives, although
a warning will be issued if such a replacement occurs. The warning can be avoided by use
of the RDIRECT directive. See Chapter 6 for more information on the MACLIB and RDI-
RECT directives.

2-4 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Writing Assembly Language Programs
Source Statement Format

2.4.3 Operand Field

The interpretation of the operand field is dependent on the contents of the operation field.
The operand field, if present, must follow the operation field, and must be preceded by at
least one space or tab. The operand field may contain a symbol, an expression, or a com-
bination of symbols and expressions separated by commas. There should be no inter-
vening whitespace characters separating operand elements.

The operand field of machine instructions is used to specify the addressing mode of the
instruction, as well as the operand of the instruction. The format of the operand field for a
particular instruction is given in Appendix A of the User Manual for the DSP in question
(.e.g. DSP56000/DSP56001 User’'s Manual). The operand fields of Assembler directives
are described in Chapter 6. The operand fields of macros (Chapter 5) depend on the def-
inition of the macro.

2.4.4 Operation 2 Field

DSP96000 only. The second operation field occurs after the first operand field, and only
in conjunction with an FMPY instruction. The field must be preceded by at least one space
or tab. The second operation field may consist only of the instructions FADD, FSUB, and
FADDSUB.

2.4.5 Operand 2 Field

DSP96000 only. The interpretation of the second operand field is dependent on the con-
tents of the second operation field. The second operand field, if present, must follow the
second operation field, and must be preceded by at least one space or tab. The operand
field may contain only those register combinations appropriate to the second operation
field.

The operand field of machine instructions is used to specify the addressing mode of the
instruction, as well as the operand of the instruction. The format of the operand field for
each DSP96000 instruction is described in Appendix A of the DSP96002 User’s Manual .

2.4.6 Data Transfer Fields

Most opcodes can specify one or more data transfers to occur during the execution of the
instruction. These data transfers are indicated by two addressing mode operands sepa-
rated by a comma, with no embedded blanks. If two data transfers are specified, they
must be separated by one or more blanks or tabs. See the appropriate DSP User’s Man-
ual for a complete discussion of addressing modes that are applicable to data transfer
specifications.

DSP ASSEMBLER REFERENCE MANUAL 2-5
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Writing Assembly Language Programs
Assembler Output

2.4.7 Comment Field

Comments are not considered significant to the Assembler, but can be included in the
source file for documentation purposes. A comment field is composed of any characters
(not part of a literal string) that are preceded by a semicolon (;). A comment starting in the
first column of the source file will be aligned with the label field in the listing file. Otherwise,
the comment will be shifted right and aligned with the comment field in the listing file, un-
less the NOPP option is used (see the OPT directive, Chapter 6). Comments preceded
by two consecutive semicolons (;;) will not be reproduced on the Assembler listing and
will not be saved as part of a macro definition.

2.5 ASSEMBLER OUTPUT

The Assembler output consists of an optional listing of the source program and an optional
object file. Appendix D contains the description of the source listing format and Appendix
E contains the description of the object file format.

The assembly source program listing contains the original source statements, formatted
for easier reading, as well as additional information which is generated by the Assembler.
Most lines in the listing correspond directly to a source statement. Lines which do not cor-
respond directly to source statements include page headings, error messages, and ex-
pansions of macro calls or directives such as DC (Define Constant; see Chapter 6).

The assembly listing optionally may contain a symbol table or a cross-reference table of
all non-local symbols appearing in the program. These are always printed after the end of
source input or the END directive (whichever occurs first) if either the symbol table or
cross-reference table options are in effect (see the OPT directive, Chapter 6). The symbol
table contains the name of each symbol, along with its defined value. The cross-reference
table additionally contains the Assembler-maintained source line number of every refer-
ence to every non-local symbol (local symbols may be included in the cross-reference list-
ing by using the LOC option; see the OPT directive, Chapter 6). The format of the cross-
reference table is shown in Appendix D.

If the MU option is enabled (see the OPT directive, Chapter 6), the Assembler generates
a report of load and runtime memory utilization. The report shows beginning and ending
addresses of allocated memory areas, along with their lengths and associated symbol
names, if applicable. A separate report is generated for each memory space where data
has been reserved for use by the program. The format of the report is given in Appendix D.

The Assembler object file is a binary COFF (Common Object File Format) file, with exten-
sions and adaptations to support symbolic debugging and to make DSP object files trans-
portable among host platforms. COFF is a formal definition for the structure of machine
code files. It is derived from AT&T UNIX System V and represents a quasi-de facto stan-
dard for object file formats. Refer to Appendix E for more information on Motorola DSP
COFF structure and layout.

2-6 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Chapter 3
EXPRESSIONS

3.1 INTRODUCTION

An expression represents a value which is used as an operand in an Assembler instruc-
tion or directive. An expression is a combination of symbols, constants, operators, and
parentheses. Expressions may contain user-defined labels and their associated integer
or floating point values, and/or any combination of integers, floating point numbers, or
ASCI! literal strings. In general, white space (a blank or tab) is not allowed between the
terms and operators of an Assembler expression. Expressions otherwise follow the con-
ventional rules of algebra and boolean arithmetic.

3.2 ABSOLUTE AND RELATIVE EXPRESSIONS

An expression may be either relative or absolute . An absolute expression is one which
consists only of absolute terms, or is the result of two relative terms with opposing signs.
A relative expression consists of a relative term by itself or only in combination with abso-
lute terms.

When the Assembler is operating in relative mode all address expressions must adhere
to the above definitions for absolute or relative expressions. This is because only these
types of expressions will retain a meaningful value after program relocation. For example,
when relative terms are paired with opposing signs, the result is the difference between
the two relative terms, which is an absolute value. However, if two positive relative terms
are added together the result is unpredictable based on the computed values of the terms
at relocation time.

3.3 EXPRESSION MEMORY SPACE ATTRIBUTE

A symbol is associated with either an integer or a floating point value which is used in
place of the symbol during the expression evaluation. Each symbol also carries a memory
space attribute of either X, Y, L, Program, EMI, or None. Constants and floating point ex-
pressions always have a memory space attribute of None. The result of an expression will
always have a memory space attribute associated with it. The unary logical negate oper-
ator, relational operators, and some functions return values that have a memory space at-
tribute of N. The result of an expression that has only one operand (and possibly the unary
negate or unary minus operator) always has the memory attribute of that operand. Ex-

DSP ASSEMBLER REFERENCE MANUAL 3-1
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Expressions
Expression Memory Space Attribute

pressions that involve two or more operands and operators other than those mentioned
above derive the memory space attribute of the result by examining the operands on the
left and right side of an operator as shown in the following chart:

Left Operand Memory Space Attribute

X Y L P EN
Right Operand X X * X * *X
Memory Space
Attribute Y * Y Y * *Y
L X Y L * *L
P * * * P *P
E * * * * EE
N X Y L P EN

* = Represents an illegal operation that will result in an error.

Notice that L memory space is regarded as a union of both X and Y space. In expressions
that have one element that has a memory space attribute of L and another element with
a memory space attribute of either X or Y, the result will have the more restrictive memory
space attribute (X or Y).

The memory space attribute is regarded by the Assembler as a type, in the same sense
that high level languages use type for variables. Symbols that are assigned memory
space attributes of X, Y, L, P, or E are assumed to be addresses and therefore can only
have values between zero and the maximum address of the target processor. Only sym-
bols that have a memory space attribute of N can have values greater than the maximum
address of the target machine.

Memory space attributes become important when an expression is used as an address.
Errors will occur when the memory space attribute of the expression result does not match
the explicit or implicit memory space specified in the source code. Memory spaces are
explicit when the address has any of the following forms:

X:<address expression>
Y:<address expression>
L:<address expression>
P:<address expression>
E:<address expression>

The memory space is implicitly P when an address is used as the operand of a DO,
branch, or jump-type instruction.

3-2 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Expressions
Internal Expression Representation

Expressions used for immediate addressing can have any memory space attribute.

3.4 INTERNAL EXPRESSION REPRESENTATION

Expression value representation internal to the Assembler is dependent on the word size
of the target processor. The Assembler supports a word and a double word integer format
internally. The actual storage size of an expression value is dependent upon the magni-
tude of the result, but the Assembler is capable of representing signed integers up to 64
bits in length. These longer integer representations are useful when performing data ini-
tialization in L memory space.

Internal floating point representation is almost entirely dependent upon the host environ-
ment, but in general floating point values are stored in double precision format. This
means that there are ordinarily 64 bits of storage allotted for a floating point number by
the Assembler, with 11 bits of exponent, 53 bits of mantissa, and an implied binary point.

3.5 CONSTANTS

Constants represent quantities of data that do not vary in value during the execution of a
program.

3.5.1 Numeric Constants

Numeric constants can be in one of three bases:

Binary Binary constants consist of a percent sign (%) followed by a string
of binary digits (0,1).

Example: %11010

Hexadecimal = Hexadecimal constants consist of a dollar sign ($) followed by a
string of hexadecimal digits (0-9, A-F, a-f).

Example: $12FF, $12ff

Decimal Decimal constants can be either floating point or integer. Integer
decimal constants consist of a string of decimal (0-9) digits op-
tionally preceded by a grave accent (). Floating point constants
are indicated either by a preceding, following, or included decimal
point or by the presence of an upper or lower case ‘E’ followed by
the exponent.

Example:

12345 (integer)
6E10 (floating point)

DSP ASSEMBLER REFERENCE MANUAL 3-3
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Expressions
Operators

.6 (floating point)
2.7e2 (floating point)

A constant may be written without a leading radix indicator if the input radix is changed
using the RADIX directive. For example, a hexadecimal constant may be written without
the leading dollar sign ($) if the input radix is set to16 (assuming an initial radix of 10). The
default radix is10. See Chapter 6 on the RADIX directive for more information.

3.5.2 String Constants

String constants that are used in expressions are converted to a concatenated sequence
of ASCII bytes (right aligned), as shown below. Strings used in expressions are limited to
the long word size of the target processor; subsequent characters in the string are ig-
nored. Null strings (strings that have no characters) have a value of 0.

String constants greater than the maximum number of characters can be used in expres-
sions, but the Assembler will truncate the value and will use only those characters that will
fitin a DSP long word. In this case, a warning will be printed. This restriction also applies
to string constants using the string concatenation operator. Handling of string constants
by the DC and DCB directives is an exception to this rule; see Chapter 6 for a description.

Examples:
'ABCD' ($41424344)
"79' ($00273739)
‘Al ($00000041)
" ($00000000) - null string
‘abcdef' ($61626364)
‘abc'++'de’ ($61626364)

3.6 OPERATORS

Some of the Assembler operators can be used with both floating point and integer values.
If one of the operands of the operator has a floating point value and the other has an in-
teger value, the integer will be converted to a floating point value before the operator is
applied and the result will be floating point. If both operands of the operator are integers,
the result will be an integer value. Similarly, if both the operands are floating point, the
result will be a floating point value.

3.6.1 Unary operators

plus (+)
minus)
one’s complement (~) - Integer only
logical negate O]
3-4 DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Expressions
Operators

The unary plus operator returns the value of its operand.
The unary minus operator returns the negative of its operand.

The one’s complement operator returns the one’s complement of its operand. It cannot
be used with a floating point operand.

The unary logical negation operator returns an integer 1 (memory space attribute None)
if the value of its operand is 0 and will return a O otherwise. For example, if the symbol
BUF had a value of 0, then !BUF would have a value of 1. If BUF had a value of 1000,
IBUF would have a value of O.

3.6.2 Arithmetic operators

addition (+)
subtraction)
multiplication ™*)
division ()]
mod (%)

The addition operator yields the sum of its operands.
The subtraction operator yields the difference of its operands.
The multiplication operator yields the product of its operands.

The divide operator yields the quotient of the division of the first operand by the second.
For integer operands the divide operation will produce a truncated integer result.

The mod operator applied to integers will yield the remainder from the division of the first
operand by the second. If the mod operator is used with floating point operands, the mod
operator will apply the following rules:

Y%Z=Y ifZ=0
=X ifZ<>0

where X has the same sign as YV, is less than Z, and satisfies the relationship:
Y=i*Z+X

where i is an integer.

3.6.3 Shift operators

shift left (<<) - Integer only
shift right (>>) - Integer only
DSP ASSEMBLER REFERENCE MANUAL 3-5

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Expressions
Operators

The shift left operator causes the left operand to be shifted to the left (and zero-filled) by
the number of bits specified by the right operand.

The shift right operator causes the left operand to be shifted to the right by the number of
bits specified by the right operand. The sign bit will be extended.

Shift operators cannot be applied to floating point operands.

3.6.4 Relational operators

less than (<)
less than or equal (<=)
greater than >)
greater than or equal (>=)
equal (==)
not equal (=)

Relational operators all work the same way. If the indicated condition is true, the result of
the expression is an integer 1. Ifitis false, the result of the expression is an integer 0. In
either case, the memory space attribute of the result is None.

For example, if D has a value of 3 and E has a value of 5, then the result of the expression
D<E is 1, and the result of the expression D>E is 0. Each operand of the conditional op-
erators can be either floating point or integer. Test for equality involving floating point val-
ues should be used with caution, since rounding error could cause unexpected results.
Relational operators are primarily intended for use with the conditional assembly IF direc-
tive, but can be used in any expression.

3.6.5 Bitwise operators

AND (&) - Integer only
OR () - Integer only
exclusive OR () - Integer only

The bitwise AND operator yields the bitwise AND function of its operands.
The bitwise OR operator yields the bitwise OR function of its operands.

The bitwise exclusive OR operator yields the bitwise exclusive OR function of its oper-
ands.

Bitwise operators cannot be applied to floating point operands.

3-6 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Expressions
Operator Precedence

3.6.6 Logical operators

Logical AND (&&)
Logical OR an

The logical AND operator returns an integer 1 if both of its operands are nonzero; other-
wise, it returns an integer 0.

The logical OR operator returns an integer 1 if either of its operands is nonzero; otherwise
it returns an integer 0.

The types of the operands may be either integer or floating point; the memory space at-
tribute of the result is None. Logical operators are primarily intended for use with the con-
ditional assembly IF directive, but can be used in any expression.

3.7 OPERATOR PRECEDENCE

Expressions are evaluated with the following operator precedence:

=

parenthetical expression (innermost first)

unary plus, unary minus, one’s complement, logical negation
multiplication, division, mod

addition, subtraction

shift

relational operators: less, less or equal, greater, greater or equal
relational operators: equal, not equal

bitwise AND, OR, EOR

logical AND, OR

© NGO~ WDN

Operators of the same precedence are evaluated left to right. Valid operands include nu-
meric constants, literal ASCII strings, and symbols. The one’s complement, shift, and bit-
wise operators cannot be applied to floating point operands. That is, if the evaluation of
an expression (after operator precedence has been applied) results in a floating point
number on either side of any of these operators, an error will be generated.

3.8 FUNCTIONS

The Assembler has several built-in functions to support data conversion, string compari-
son, and transcendental math computations. Functions may be used as terms in any ar-
bitrary expression. Functions may have zero or more arguments, but must always be
followed by open and closed parentheses. Function arguments which are expressions
must be absolute expressions except where noted. Arguments containing external refer-
ences are not allowed. There must be no intervening spaces between the function name

DSP ASSEMBLER REFERENCE MANUAL 3-7
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Expressions
Functions

and the opening parenthesis, and there must be no spaces between comma-separated
arguments.

Assembler functions can be grouped into five types:

1. Mathematical functions
Conversion functions
String functions

Macro functions
Assembler mode functions

abrwn

381 Mathematical Functions

The mathematical functions comprise transcendental, random value, and min/max func-
tions, among others:

ABS - Absolute value

ACS - Arc cosine

ASN - Arc sine

AT2 - Arc tangent

ATN - Arc tangent

CEL - Celling function

COH - Hyperbolic cosine

COS - Cosine

FLR - Floor function

L10 - Log base 10

LOG - Natural logarithm

MAX - Maximum value

MIN - Minimum value

POW - Raise to a power

RND - Random value

SGN - Return sign

SIN - Sine

SNH - Hyperbolic sine

SQT - Square root

TAN - Tangent

TNH - Hyperbolic tangent

XPN - Exponential function
3-8 DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Expressions
Functions

3.8.2 Conversion Functions

The conversion functions provide conversion between integer, floating point, and fixed
point fractional values:

CVF - Convert integer to floating point

CVI - Convert floating point to integer

CVS - Convert memory space

FLD - Shift and mask operation

FRC - Convert floating point to fractional

LFR - Convert floating point to long fractional
LNG - Concatenate to double word

LUN - Convert long fractional to floating point
RVB - Reverse bits in field

UNF - Convert fractional to floating point

3.8.3 String Functions

String functions compare strings, return the length of a string, and return the position of a
substring within a string:

LEN - Length of string
POS - Position of substring in string
SCP - Compare strings

3.8.4 Macro Functions

Macro functions return information about macros:

ARG - Macro argument function
CNT - Macro argument count
MAC - Macro definition function
MXP - Macro expansion function
DSP ASSEMBLER REFERENCE MANUAL 3-9

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Expressions
Functions

3.8.5 Assembler Mode Functions

Miscellaneous functions having to do with Assembler operation:

CCC - Cumulative cycle count

CHK - Current instruction/data checksum
CTR - Location counter type

DEF - Symbol definition function

EXP - Expression check

INT - Integer check

LCV - Location counter value

LST - LIST directive flag value

MSP - Memory space

REL - Relative mode function

Individual descriptions of each of the Assembler functions follow. They include usage
guidelines, functional descriptions, and examples.

@ABS(<expression>)

Returns the absolute value of <expression> as a floating point value. The memory
space attribute of the result will be None.

Example:

MOVE #@ABS(VAL),D4.S ; load absolute value

@ACS(<expression>)

Returns the arc cosine of <expression> as a floating point value in the range zero
to pi. The result of <expression> must be between -1 and 1. The memory space
attribute of the result will be None.

Example:

ACOS = @ACS(-1.0) ; ACOS = 3.141593

@ARG(<symbol> | <expression>)

Returns integer 1 if the macro argument represented by <symbol> or <expression>
is present, 0 otherwise. If the argument is a symbol it must be single-quoted and
refer to a dummy argument name. If the argument is an expression it refers to the
ordinal position of the argument in the macro dummy argument list. A warning will
be issued if this function is used when no macro expansion is active. The memory
space attribute of the result will be None.

Example:

IF @ARG(TWIDDLE) ; twiddle factor provided?

3-10 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Expressions
Functions

@ASN(<expression>)

Returns the arc sine of <expression> as a floating point value in the range -pi/2 to
pi/2. The result of <expression> must be between -1 and 1. The memory space
attribute of the result will be None.

Example:
ARCSINE SET @ASN(-1.0) ; ARCSINE = -1.570796
@AT2(<exprl,expr2>)

Returns the arc tangent of <exprl>/<expr2> as a floating point value in the range
-pi to pi. Exprl and expr2 must be separated by a comma. The memory space
attribute of the result will be None.

Example:
ATAN EQU @AT2(-1.0,1.0) ; ATAN = -0.7853982
@ATN(<expression>)

Returns the arc tangent of <expression> as a floating point value in the range -pi/
2 to pi/2. The memory space attribute of the result will be None.

Example:

MOVE #@ATN(1.0),D0.S ; load arc tangent

@CCC()

Returns the cumulative cycle count as an integer. Useful in conjunction with the
CC, NOCC, and CONTCC Assembler options (see the OPT directive). The mem-
ory space attribute of the result will be None.

Example:
IF @CCC() > 200 ; cycle count > 2007?
@CEL(<expression>)

Returns a floating point value which represents the smallest integer greater than or
equal to <expression>. The memory space attribute of the result will be None.

Example:

CEIL SET @CEL(-1.05) ; CEIL = -1.0

DSP ASSEMBLER REFERENCE MANUAL 3-11
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Expressions
Functions

@CHK()

Returns the current instruction/data checksum value as an integer. Useful in con-
junction with the CK, NOCK, and CONTCK Assembler options (see the OPT direc-
tive). Note that assignment of the checksum value with directives other than SET
could cause phasing errors due to different generated instruction values between
passes. The memory space attribute of the result will be None.

Example:

CHKSUM SET @CHK() ; reserve checksum value

@CNT()

Returns the count of the current macro expansion arguments as an integer. A
warning will be issued if this function is used when no macro expansion is active.
The memory space attribute of the result will be None.

Example:
ARGCNT SET @CNT() ; squirrel away arg count
@COH(<expression>)

Returns the hyperbolic cosine of <expression> as a floating point value. The mem-
ory space attribute of the result will be None.

Example:
HYCOS EQU @COH(VAL) ; compute hyperbolic cosine
@COS(<expression>)

Returns the cosine of <expression> as a floating point value. The memory space
attribute of the result will be None.

Example:
DC -@COS(@CVF(COUNT)*FREQ) ; compute cosine value
@CTR({L | R})

If L is specified as the argument, returns the counter number of the load location
counter. If R is specified, returns the counter number of the runtime location
counter. The counter number is returned as an integer value with memory space

of None.
Example:
CNUM = @CTR(R) ; runtime counter number
3-12 DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Expressions
Functions

@CVF(<expression>)

Converts the result of <expression> to a floating point value. The memory space
attribute of the result will be None.

Example:
FLOAT SET @CVF(5) ; FLOAT = 5.0
@CVI(<expression>)

Converts the result of <expression> to an integer value. This function should be
used with caution since the conversions can be inexact (e.qg., floating point values
are truncated). The memory space attribute of the result will be None.

Example:
INT SET @CVI(-1.05) ;INT = -1
@CVS({X|Y|L|P|E|N}<expression>)

Converts the memory space attribute of <expression> to that specified by the first
argument; returns <expression>. See section 3.3 for more information on memory
space attributes. The <expression> may be relative or absolute.

Example:

LOADDR EQU @CVS(X,TARGET) ; set LOADDR to X:TARGET

@DEF(<symbol>)

Returns an integer 1 (memory space attribute N) if <symbol> has been defined, 0
otherwise. <symbol> may be any label not associated with a MACRO or SECTION
directive. If <symbol>is quoted it is looked up as a DEFINE symbol; if it is not quot-
ed it is looked up as an ordinary label.

Example:
IF @DEF(ANGLE) ; assemble if ANGLE defined
@EXP(<expression>)

Returns an integer 1 (memory space attribute N) if the evaluation of <expression>
would not result in errors. Returns O if the evaluation of <expression> would cause
an error. No error will be output by the Assembler if <expression> contains an er-
ror. No test is made by the Assembler for warnings. The <expression> may be
relative or absolute.

Example:

IF I@QEXP(@FRC(VAL)) ; skip on error

DSP ASSEMBLER REFERENCE MANUAL 3-13
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Expressions
Functions

@FLD(<base>,<value>,<width>[,<start>])

Shift and mask <value> into <base> for <width> bits beginning at bit <start>. If
<start> is omitted, zero (least significant bit) is assumed. All arguments must be
positive integers and none may be greater than the target word size. Returns the
shifted and masked value with a memory space attribute of None.

Example:
SWITCH EQU @FLD(TOG,1,1,7) ; turn eighth bit on
@FLR(<expression>)

Returns a floating point value which represents the largest integer less than or
equal to <expression>. The memory space attribute of the result will be None.

Example:
FLOOR SET @FLR(2.5) ; FLOOR = 2.0
@FRC(<expression>)

For binary fractional DSPs (DSP56000) this functions performs scaling and con-
vergent rounding to obtain the fractional representation of the floating point <ex-
pression> as an integer. For floating point DSPs (DSP96000) this function simply
returns the binary representation of <expression> as an integer. The memory
space attribute of the result will be None.

Example:
FRAC EQU @FRC(FLT)+1 ; compute saturation
@INT(<expression>)

Returns an integer 1 (memory space attribute N) if <expression> has an integer re-
sult, O otherwise. The <expression> may be relative or absolute.

Example:
IF @INT(TERM) ; Insure integer value
@L10(<expression>)

Returns the base 10 logarithm of <expression> as a floating point value. <expres-
sion> must be greater than zero. The memory space attribute of the result will be
None.

Example:

LOG EQU @L10(100.0) . LOG = 2

3-14 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Expressions
Functions

@LCV({L | R}.{L | H | <expression>}])

If L is specified as the first argument, returns the memory space attribute and value
of the load location counter. If R is specified, returns the memory space attribute
and value of the runtime location counter. The optional second argument indicates
the Low, High, or numbered counter and must be separated from the first argument
by a comma. If no second argument is present the default counter (counter 0) is
assumed.

The @LCV function will not work correctly if used to specify the runtime counter
value of a relocatable overlay. This is because the resulting value is an overlay ex-
pression, and overlay expressions may not be used to set the runtime counter for
a subsequent overlay. See the ORG directive (Chapter 6) for more information.

Also, @LCV(L,...) will not work inside a relocatable overlay. In order to obtain the
load counter value for an overlay block, origin to the load space and counter imme-
diately before the overlay and use @LCV(L) to get the beginning load counter val-
ue for the overlay.

Example:
ADDR = @LCV(R) ; save runtime address
@LEN(<string>)

Returns the length of <string> as an integer. The memory space attribute of the
result will be None.

Example:
SLEN SET @LEN('string’") ; SLEN = 6
@LFR(<expression>)

For binary fractional DSPs (DSP56000) this functions performs scaling and con-
vergent rounding to obtain the fractional representation of the floating point <ex-
pression> as a long integer. For floating point DSPs (DSP96000) this function
simply returns the binary representation of <expression> as a long integer. The
memory space attribute of the result will be None.

Example:

LFRAC EQU @LFR(LFLT) ; store binary form

DSP ASSEMBLER REFERENCE MANUAL 3-15
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Expressions

Functions

@LNG(<exprl><expr2>)

Concatenates the single word <exprl> and <expr2> into a double word value such
that <exprl> is the high word and <expr2> is the low word. The memory space
attribute of the result will be None.

Example:

LWORD DC @LNG(HI,LO) ; build long word

@LOG(<expression>)

Returns the natural logarithm of <expression> as a floating point value. <expres-
sion> must be greater than zero. The memory space attribute of the result will be
None.

Example:

LOG EQU @LOG(100.0) - LOG = 4.605170

@LST()

Returns the value of the LIST directive flag as an integer, with a memory space at-
tribute of None. Whenever a LIST directive is encountered in the Assembler
source, the flag is incremented; when a NOLIST directive is encountered, the flag
is decremented.

Example:

DUP @CVI(@ABS(@LST())) ; list unconditionally

@LUN(<expression>)

Converts the double-word <expression> to a floating point value. For fractional
DSPs (DSP56000) <expression> should represent a binary fraction. For floating
point DSPs (DSP96000) <expression> should represent a binary floating point
number. The memory space attribute of the result will be None.

Example:

DBLFRC EQU @LUN($3FE0O000000000000) ;DBLFRC = 0.5

@MAC(<symbol>)

Returns an integer 1 (memory space attribute N) if <symbol> has been defined as
a macro name, 0 otherwise.

Example:

IF @MAC(DOMUL) ; expand macro

3-16

DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Expressions
Functions

@MAX(<expr1>[,...,<exprN>])

Returns the greatest of <exprl>,...,<exprN> as a floating point value. The memory
space attribute of the result will be None.

Example:
MAX DC @MAX(1.0,5.5,-3.25) ; MAX = 55
@MIN(<exprl>[,...,<exprN>])

Returns the least of <exprl>,...,<exprN> as a floating point value. The memory
space attribute of the result will be None.

Example:
MIN DC @MIN(1.0,5.5,-3.25) ; MIN = -3.25
@MSP (<expression>)
Returns the memory space attribute of <expression> as an integer value:

None =0
X space =
Y space =
L space =
P space =
E space =

The <expression> may be relative or absolute.
Example:
MEM SET @MSP(ORIGIN) ; Save memory space
@MXP()

Returns an integer 1 (memory space attribute N) if the Assembler is expanding a
macro, 0 otherwise.

Example:
IF @MXP() ; macro expansion active?
@POS(<strl>,<str2>[,<start>])

Returns the position of string <str2> in <strl> as an integer, starting at position
<start>. If <start>is not given the search begins at the beginning of <str1>. If the

DSP ASSEMBLER REFERENCE MANUAL 3-17
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Expressions
Functions

<start> argument is specified it must be a positive integer and cannot exceed the
length of the source string. The memory space attribute of the result will be None.

Example:
ID EQU @POS(DSP96000','96") ;ID =3
@POW(<exprl><expr2>)

Returns <exprl> raised to the power <expr2> as a floating point value. <exprl>
and <expr2> must be separated by a comma. The memory space attribute of the
result will be None.

Example:
BUF EQU @CVI(@POW(2.0,3.0)) ; BUF = 8
@REL()

Returns an integer 1 (memory space attribute N) if the Assembler is operating in
relative mode, O otherwise.

Example:

IF @REL() ; in relative mode?

@RND()

Returns a random value in the range 0.0 to 1.0. The memory space attribute of the
result will be None.

Example:
SEED DC @RND() ; save initial seed value
@RVB(<exprl>[,<expr2>])

Reverse the bits in <exprl> delimited by the number of bits in <expr2>. If <expr2>
is omitted the field is bounded by the target word size. Both expressions must be
single word integer values.

Example:

REV EQU @RVB(VAL) ; reverse all bits in value

3-18 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Expressions
Functions

@SCP(<strl><str2>)

Returns an integer 1 (memory space attribute N) if the two strings compare, 0 oth-
erwise. The two strings must be separated by a comma.

Example:
IF @SCP(STR,'MAIN’) ; does STR equal MAIN?
@SGN(<expression>)

Returns the sign of <expression> as an integer: -1 if the argument is negative, O if
zero, 1 if positive. The memory space attribute of the result will be None. The <ex-
pression> may be relative or absolute.

Example:
IF @SGN(INPUT) ; IS sign positive?
@SIN(<expression>)

Returns the sine of <expression> as a floating point value. The memory space at-
tribute of the result will be None.

Example:
DC @SIN(@CVF(COUNT)*FREQ) ; compute sine value
@SNH(<expression>)

Returns the hyperbolic sine of <expression> as a floating point value. The memory
space attribute of the result will be None.

Example:
HSINE EQU @SNH(VAL) ; hyperbolic sine
@SQT(<expression>)

Returns the square root of <expression> as a floating point value. <expression>
must be positive. The memory space attribute of the result will be None.

Example:

SQRT EQU @SQT(3.5) - SQRT = 1.870829

DSP ASSEMBLER REFERENCE MANUAL 3-19
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Expressions
Functions

@TAN(<expression>)

Returns the tangent of <expression> as a floating point value. The memory space
attribute of the result will be None.

Example:
MOVE #@TAN(1.0),D1.S ; load tangent
@TNH(<expression>)

Returns the hyperbolic tangent of <expression> as a floating point value. The
memory space attribute of the result will be None.

Example:
HTAN = @TNH(VAL) ; hyperbolic tangent
@UNF(<expression>)

Converts <expression> to a floating point value. For fractional DSPs (DSP56000)
<expression> should represent a binary fraction. For floating point DSPs
(DSP96000) <expression> should represent a binary floating point number. The
memory space attribute of the result will be None.

Example:
FRC EQU @UNF($400000) ;FRC = 0.5
@XPN(<expression>)

Returns the exponential function (base e raised to the power of <expression>) as
a floating point value. The memory space attribute of the result will be None.

Example:

EXP EQU @XPN(1.0) EXP = 2.718282

3-20 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Chapter 4
SOFTWARE PROJECT MANAGEMENT

4.1 INTRODUCTION

The Motorola DSP Assemblers provide several directives designed to assist in the devel-
opment of large software projects. Complex software projects often are divided into small-
er program units. These subprograms may be written by a team of programmers in
parallel, or they may be programs written for a previous development effort that are going
to be reused. The Assembler provides directives to encapsulate program units and permit
the free use of symbol names within subprograms without regard to symbol names used
in other programs. These encapsulated program units are called sections . Sections are
also the basis for relocating blocks of code and data, so that concerns about memory
placement are postponed until after the assembly process.

4.2 SECTIONS
A section is bounded by a SECTION directive and an ENDSEC directive. For example:
SECTION <section name> [GLOBAL | STATIC | LOCAL]

Section source statements

ENDSEC

All symbols that are defined within a section have the <section name> associated with
them. This serves to protect them from like-named symbols elsewhere in the program. By
default, a symbol defined inside any given section is private to that section unless the
GLOBAL or LOCAL qualifiers accompany the SECTION directive. More information on
the GLOBAL and LOCAL qualifiers can be found in Sections And Data Hiding, below.

Any code or data inside a section is considered an indivisible block with respect to relo-
cation. Code or data associated with a section is independently relocatable within the
memory space to which it is bound, unless the STATIC qualifier follows the SECTION di-
rective on the instruction line. More information on the STATIC qualifier is available in
Sections And Relocation, below.

DSP ASSEMBLER REFERENCE MANUAL 4-1
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Software Project Management
Sections And Data Hiding

4.3 SECTIONS AND DATA HIDING

Symbols within a section are generally distinct from other symbols used elsewhere in the
source program, even if the symbol name is the same. This is true as long as the section
name associated with each symbol is unique, the symbol is not declared public (XDEF or
GLOBAL), and the GLOBAL or LOCAL qualifiers are not used in the section declaration
(see below). Symbols that are defined outside of a section are considered global symbols
and have no explicit section name associated with them. Global symbols may be refer-
enced freely from inside or outside of any section, as long as the global symbol name does
not conflict with another symbol by the same name in a given section. Consider the fol-
lowing example:

SYM1 EQU 1
SYM2 EQU 2

SECTION EXAMPLE

SYM1 EQU 3
MOVE #SYM1,RO
MOVE #SYM2,R1
ENDSEC
MOVE #SYM1,R2

SYM1 and SYM2 are global symbols, initially defined outside of any section. Then in sec-
tion EXAMPLE another instance of SYML1 is defined with a different value. Because
SYM1 was redefined inside the section, the value moved to RO will be 3. Since SYM2 is
a global symbol the value moved to R1 will be 2. The last move to R2 is outside of any
section and thus the global instance of SYM1 is used; the value moved to R2 is 1.

4.3.1 Sections and Symbols

Symbols may be shared among sections through use of the XDEF and XREF directives.
The XDEF directive instructs the Assembler that certain symbol definitions that occur
within the current section are to be accessible by other sections:

XDEF <symbol>,<symbol>,...,<symbol>

The XREF directive instructs the Assembler that all references to <symbol> within the cur-
rent section are references to a symbol that was declared public within another section
with the XDEF directive:

XREF <symbol>,<symbol>,...,<symbol>

4-2 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Software Project Management
Sections And Data Hiding

XDEFed symbols by default are recognized only in other sections which XREF them.
They can be made fully global (recognizable by sections which do not XREF them) by use
of the XR option (see the OPT directive, Chapter 6). Alternatively the GLOBAL directive
(see Chapter 6) may be used within a section to make the named symbols visible outside
of the section. Both the XDEF and XREF directives must be used before the symbols to
which they refer are defined or used in the section. Here is another example:

SYM1 EQU 1
SECTION SECT1
XDEF SYM2

SYM1 EQU 2

SYM2 EQU 3
ENDSEC
SECTION SECT2
XREF SYM2
MOVE #SYM1,RO
MOVE #SYM2,R1
ENDSEC
MOVE #SYM2,R2

SYM1 is first defined outside of any section. Then in section SECT1 SYM2 is declared
public with an XDEF directive. SYML1 is also defined locally to section SECT1. In section
SECT2 SYM2 is declared external via the XREF directive, followed by a move of SYM1
to RO. Since SYM1 was defined locally to section SECT1, the Assembler uses the global
value and moves a 1 to RO. Because SYM2 was declared external in section SECT1 the
value moved to R1 is 3. If SYM2 had not been XREFed in section SECT2 the value
moved to R1 would have been unknown at this point. In the last instruction it is not known
what value will be moved to R2 since SYM2 was not defined outside of any section or was
not declared GLOBAL within a section.

If the GLOBAL qualifier follows the <section name> in the SECTION directive, then all
symbols defined in the section until the next ENDSEC directive are considered global.
The effect is as if every symbol in the section were declared with the GLOBAL directive.
This is useful when a section needs to be independently relocatable, but data hiding is not
required.

If the LOCAL qualifier follows the <section name> in the SECTION directive, then all sym-
bols defined in the section until the next ENDSEC directive are visible to the immediately
enclosing section. The effect is as if every symbol in the section were defined within the
parent section. This is useful when a section needs to be independently relocatable, but
data hiding within an enclosing section is not required.

Symbols that are defined with the SET directive can be made visible with XDEF only in
absolute mode, and the section name associated with the symbol will be the section name
of the section where the symbol was first defined. This will be true even if the symbol value
is changed in another section.

DSP ASSEMBLER REFERENCE MANUAL 4-3
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Software Project Management
Sections And Data Hiding

4.3.2 Sections and Macros

The division of a program into sections controls not only labels and symbols, but also mac-
ros and DEFINE directive symbols. Macros defined within a section are private to that
section and are distinct from macros defined in other sections even if they have the same
macro name. Macros defined outside of sections are considered global and may be used
within any section. Similarly, DEFINE directive symbols defined within a section are pri-
vate to that section and DEFINE directive symbols defined outside of any section are glo-
bally applied. There are no directives that correspond to XDEF for macros or DEFINE
symbols, therefore macros and DEFINE symbols defined in a section can never be ac-
cessed globally. If global accessibility is desired, the macros and DEFINE symbols should
be defined outside of any section. Here is an example:

DEFINE DEFVAL 1
SECTION SECT1

DEFINE DEFVAL 2'
MOVE #DEFVAL,RO
ENDSEC

MOVE #DEFVAL,R1

The second definition of DEFVAL is visible only inside SECT1, so the value moved to RO
will be 2. However, the second move instruction is outside the scope of SECT1 and will
therefore use the initial definition of DEFVAL. This means that the value 1 will be moved
to R1.

4.3.3 Nested and Fragmented Sections

Sections can be nested to any level. When the Assembler encounters a nested section,
the current section is stacked and the new section is used. When the ENDSEC directive
of the nested section is encountered, the Assembler restores the old section and uses it.
The ENDSEC directive always applies to the most recent SECTION directive. Nesting
sections provides a measure of scoping for symbol names, in that symbols defined within
a given section are visible to other sections nested within it. For example, if section B is
nested inside section A, then a symbol defined in section A can be used in section B with-
out XDEFing in section A or XREFing in section B. This scoping behavior can be turned
off and on with the NONS and NS options respectively (see the OPT directive, Chapter 6).

Sections may also be split into separate parts. That is, <section name> can be used mul-
tiple times with SECTION and ENDSEC directive pairs. If this occurs, then these separate
(but identically named) sections can access each others symbols freely without the use of
the XREF and XDEF directives. If the XDEF and XREF directives are used within one
section, they apply to all sections with the same section name. The reuse of the section
name is allowed to permit the program source to be arranged in an arbitrary manner (for
example, all statements that reserve X space storage locations grouped together), but re-
tain the privacy of the symbols for each section.

4-4 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Software Project Management
Sections And Relocation

4.4 SECTIONS AND RELOCATION

When the Assembler operates in relative mode (the default), sections act as the basic
grouping for relocation of code and data blocks. For every section defined in the source
a set of location counters is allocated for each DSP memory space. These counters are
used to maintain offsets of data and instructions relative to the beginning of the section.
At link time sections can be relocated to an absolute address, loaded in a particular order,
or linked contiguously as specified by the programmer. Sections which are split into parts
or among files are logically recombined so that each section can be relocated as a unit.

Sections may be relocatable or absolute. In the Assembler absolute mode (command line
-A option) all sections are considered absolute. In relative mode, all sections are initially
relocatable. However, a section or a part of a section may be made absolute either im-
plicitly by using the ORG directive, or explicitly through use of the MODE directive.

If the Assembler encounters an ORG directive with an absolute runtime address specifi-
cation it switches to absolute mode and begins generating absolute addresses within the
enclosing section. Note that the mode change is effective only if the Assembler was start-
ed in relative mode; if the -A command line option is used the Assembler always gener-
ates absolute addresses. The Assembler continues to generate absolute code until an
ENDSEC directive is encountered, or the mode is explicitly changed via the MODE direc-
tive.

The MODE directive allows for arbitrary switching between absolute and relocatable code
generation:

MODE <ABS[OLUTE] | REL[ATIVE]>

The MODE directive may be issued at any time in the assembly source to alter the set of
location counters used for section addressing. Code generated while in absolute mode
will be placed in memory at the location determined during assembly. Relocatable code
and data within a section are combined at link time, even if absolute blocks are inter-

DSP ASSEMBLER REFERENCE MANUAL 4-5
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Software Project Management
Address Assignment

spersed among relocatable blocks. The MODE directive has no effect when the com-
mand line -A option is active. The following is an example:

SECTION EXAMPLE ; relocatable section
; code/data generated here is relocatable
MODE ABSOLUTE

; code/data generated here is absolute; it will be
; placed in memory at the location specified during
; assembly

MODE REL

; back to relocatable; code/data generated here
; will be combined with the previous relocatable block,
; as long as memory space and mappings are compatible

ORG P:$200

; code/data generated here will be absolute
; until ENDSEC directive is found

ENDSEC

More information on the ORG and MODE directives can be found in Address Assignment
and under the individual directive descriptions in Chapter 6.

If the STATIC qualifier follows the <section name> in the SECTION directive, then all code
and data defined in the section until the next ENDSEC directive are relocated in terms of
the immediately enclosing section. The effect with respect to relocation is as if all code
and data in the section were defined within the parent section. This is useful when a sec-
tion needs data hiding, but independent relocation is not required.

4.5 ADDRESS ASSIGNMENT

The Motorola DSP Assembler can support absolute address assignment at assembly
time or generation of relocatable program addresses which are resolved during the linking
phase. The ORG directive is used to specify memory space changes, mappings to phys-
ical memory, and absolute address assignment.

Various memory layouts require special handling for data generation or location counter
updating. In the case of L memory, two words of code or data are produced for each in-

4-6 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Software Project Management
Address Assignment

crement of the location counter. There are many kinds of E memory depending on the
characteristics of the RAM devices used. In most cases E memory implies splitting the
generated word into 8-bit triplets or 8 and 16-bit pairs on output, and adjusting the location
counter appropriately.

The Assembler allows for two sets of program counters per memory space, a set of load
counters and a set of runtime counters. The distinction between load and runtime
counters is maintained so that the Assembler can support overlays , or runtime transfers
of code/data from one memory space to another. In these cases code or data might be
loaded in one memory space at a given address, but then copied to a different memory
space and address for execution. The Assembler can produce output for either absolute
or relocatable overlays.

Motorola DSPs are capable of performing special-purpose addressing on data structures
suited to digital signal processing applications. Two such data structures are the modulo
buffer and the reverse-carry buffer, collectively referred to as circular buffers . Due to the
way they are accessed and manipulated, these buffers generally are constrained to a par-
ticular size or starting address. The Assembler provides directives for aligning buffer base
addresses, allocating buffer space, and initializing buffer contents.

45.1 The ORG Directive

The ORG directive specifies which memory space will be the runtime memory space and
which counter (the H, L, default, or numbered runtime counter associated with that mem-
ory space and section) will be the runtime location counter. At the same time, the ORG
directive indicates which memory space will be the load memory space and which counter
(the H, L, default, or numbered load counter associated with that memory space and sec-
tion) will be used as the load location counter. In addition, the ORG directive can be used
to specify a physical mapping to DSP memory and to assign initial values to the runtime
and load location counters.

The names of the counters (High, Low, and default) are symbolic only, and the Assembler
performs no checks to insure that the value assigned to the High counter is greater than
the Low. Moreover, there is no inherent relationship among numbered counters, except
that counters O, 1, and 2 correspond to the default, Low, and High counters, respectively.
Counters are useful for providing mnemonic links between runtime and load memory
spaces or among individual memory blocks. Separate counters can be used to obtain
blocks within a common section which are accessed from one memory space but mapped
to separate physical memories. Also counters are necessary for handling relocatable
overlays at link time, as the DSP linker does not support the notion of separate load and
runtime counters. See the examples below for more information on location counter us-
age.

The ORG directive is organized as follows:

ORG <rms>[<rlc>][<rmp>]:[<expl>][,<Ims>[<llc>][<Imp>]:[<exp2>]]

DSP ASSEMBLER REFERENCE MANUAL 4-7
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Software Project Management

Address Assignment

or alternatively:

<rms>

<rlc>

<rmp>

<rce>

<expl>

<Ims>

ORG <rms>[<rmp>][(<rce>)]:[<expl>][,<Ims>[<Imp>][(<ice>)]:[<exp2>]]

Which memory space (X, Y, L, P, or E) will be used as the runtime memory
space. If the memory space is L, any allocated datum with a value greater
than the target word size will be extended to two words; otherwise, it is trun-
cated. If the memory space is E, then depending on the memory space qual-
ifier, any generated words will be split into bytes, one byte per word, or a 16/
8-bit combination.

Which runtime counter H, L, or default (if neither H or L is specified), that is
associated with the <rms> will be used as the runtime location counter.

Indicates the runtime physical mapping to DSP memory: | - internal, E - ex-
ternal, R - ROM, A - port A, B - port B. If not present, no explicit mapping is
done.

Non-negative absolute integer expression representing the counter number
to be used as the runtime location counter. Must be enclosed in parenthe-
ses. Should not exceed the value 65535.

Initial value to assign to the runtime counter used as the <rlc>. If <expl> is
a relative expression the Assembler uses the relative location counter. If
<expl> is an absolute expression the Assembler uses the absolute loca-
tion counter. If <expl> is not specified, then the last value and mode that
the counter had will be used.

Which memory space (X, Y, L, P, or E) will be used as the load memory
space. If the memory space is L, any allocated datum with a value greater
than the target word size will be extended to two words; otherwise, it is trun-
cated. If the memory space is E, then depending on the memory space qual-
ifier, any generated words will be split into bytes, one byte per word, or a 16/
8-bit combination.

4-8

DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Software Project Management
Address Assignment

<llc>
Which load counter, H, L, or default (if neither H or L is specified), that is as-
sociated with the <Ims> will be used as the load location counter.

<Imp>
Indicates the load physical mapping to DSP memory: | - internal, E - exter-
nal, R - ROM, A - port A, B - port B. If not present, no explicit mapping is
done.

<lce>
Non-negative absolute integer expression representing the counter number
to be used as the load location counter. Must be enclosed in parentheses.
Should not exceed the value 65535.

<exp2>

Initial value to assign to the load counter used as the <lic>. If <exp2> is a
relative expression the Assembler uses the relative location counter. If
<exp2> is an absolute expression the Assembler uses the absolute loca-
tion counter. If <exp2> is not specified, then the last value and mode that
the counter had will be used.

The ORG directive is useful in multi-programmer projects because it provides a means for
the individual programmer to specify in which memory space and which segment of that
memory space the code being written will be located without specifying an absolute ad-
dress. Absolute address assignment can be deferred until the various components of the
program are brought together. The utility of the ORG directive is not limited to multi-pro-
grammer projects. Even in single programmer projects, the ORG directive supports ma-
nipulation of overlays and the intermixing of label definition and code generation in
multiple memory spaces without having to reinitialize a location counter every time the
load memory space is changed.

45.2 Overlays

If the last half of the operand field in an ORG directive dealing with the load memory space
and counter is not specified, then the Assembler will assume that the load memory space
and load location counter are the same as the runtime memory space and runtime loca-
tion counter. In this case, object code is being assembled to be loaded into the address
and memory space where it will be when the program is run, and is not an overlay.

If the load memory space and counter are given in the operand field, then the Assembler
always generates code for an overlay. Whether the overlay is absolute or relocatable de-
pends upon the current operating mode of the Assembler and whether the load counter
value is an absolute or relative expression. If the Assembler is running in absolute mode,
or if the load counter expression is absolute, then the overlay is absolute. If the Assembler

DSP ASSEMBLER REFERENCE MANUAL 4-9
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Software Project Management
Address Assignment

is in relative mode and the load counter expression is relative, the overlay is relocatable.
Runtime relocatable overlay code is addressed relative to the location given in the runtime
location counter expression. This expression, if relative, may not refer to another overlay
block. See section 1.7 for more information on location counters and overlays.

The values and memory space attributes of both the load and runtime location counters
can be accessed with the @LCV function (see Section 3.8). This is particularly useful
when assigning the load location counter value to a label as a reference point for the over-
lay manager part of the program. The High, Low, default, or numbered counter assign-
ment can be determined by using the @CTR function (Section 3.8).

4.5.3 Address Assignment Examples
Some examples of the ORG directive are as follows:
ORG P:$1000

Sets the runtime memory space to P. Selects the default runtime counter (counter
0) associated with P space to use as the runtime location counter and initializes it
to $1000. The load memory space is implied to be P, and the load location counter
is assumed to be the same as the runtime location counter.

ORG PHE:

Sets the runtime memory space to P. Selects the H load counter (counter 2) as-
sociated with P space to use as the runtime location counter. The H counter will
not be initialized, and its last value will be used. Code generated hereafter will be
mapped to external (E) memory. The load memory space is implied to be P, and
the load location counter is assumed to be the same as the runtime location
counter.

ORG PI:OVLL)Y:

Indicates code will be generated for an overlay. The runtime memory space is P,
and the default counter is used as the runtime location counter. It will be reset to
the value of OVL1. If the Assembler is in absolute mode via the -A command line
option then OVL1 must be an absolute expression. If OVL1 is an absolute expres-
sion the Assembler uses the absolute runtime location counter. If OVL1 is a relo-
catable value the Assembler uses the relative runtime location counter. In this case
OVL1 must not itself be an overlay symbol (e.g. defined within an overlay block).
The load memory space is Y. Since neither H, L, nor any counter expression was
specified as the load counter, the default load counter (counter 0) will be used as
the load location counter. The counter value and mode will be whatever it was the
last time it was referenced.

4-10 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Software Project Management
Address Assignment

ORG XL:,ES:

Sets the runtime memory space to X. Selects the L counter (counter 1) associated
with X space to use as the runtime location counter. The L counter will not be ini-
tialized, and its last value will be used. The load memory space is set to E, and the
gualifier 8 indicates a bytewise RAM configuration. Instructions and data will be
generated eight bits per output word with byte-oriented load addresses. The de-
fault load counter will be used and there is no explicit load origin.

ORG P(5):,Y:$8000

Indicates code will be generated for an absolute overlay. The runtime memory
space is P, and the counter used as the runtime location counter is counter 5. It
will not be initialized, and the last previous value of counter 5 will be used. The load
memory space is Y. Since neither H, L, nor any counter expression was specified
as the load counter, the default load counter (counter 0) will be used as the load
location counter. The default load counter will be initialized to $8000.

If the last example shown was used in the following code sequence (assume the runtime
counter associated with P space had a previous value of $0010),

ORG P(5):,Y:$8000

RLMUL MOVE X:(R0),D4.S Y:(R4),D7.S
FMPY.S D4,D7,D0
MOVE DO.S,X:(R1)

then the label RLMUL would have a value of $0010 and a memory space attribute of P
space; the code generated would load into Y memory starting at $8000; and the runtime
address associated with the code would start at $0010.

45.4 Circular Buffers

To take advantage of the special DSP addressing capabilities a circular buffer must be
aligned on an appropriate address boundary with respect to its size. For a buffer to be
located properly in memory the lower bits of the starting address which encompass one
less than the buffer size must be zero. For example, the lowest address greater than zero
at which a buffer of size 32 may be located is 32 (20 hexadecimal). More generally, the

buffer base address must be modulo the buffer size, or a multiple of 2¢, where 2K is greater
than or equal to the size of the buffer.

Buffers may be allocated manually or by using one of the Assembler’s special buffer di-
rectives:

ORG X:$100
BUF1 DS 24
BUF2 DSM 32
DSP ASSEMBLER REFERENCE MANUAL 4-11

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Software Project Management
Address Assignment

The ORG statement sets the origin to hexadecimal 100 in X memory. The first buffer
BUF1 is manually allocated with a size of 24. Since the starting address is hex 100 the
buffer is already suitably aligned. The label BUF1 is assigned the runtime counter value
at the beginning of the buffer. The second buffer is allocated using the DSM directive,
which automatically sets the buffer starting address before reserving space. In this case,
the first buffer ended at location 117 hexadecimal, so the Assembler advances the pro-
gram counter to location 120 hex before assigning a value to the buffer label BUF2.

Buffers are special-purpose data structures, but they are named and accessed with labels
like any other data block. They therefore adhere to the same rules governing data hiding
in sections that any other segment of code or data would follow. A buffer allocated when
the Assembler is in absolute mode (either via -A or an absolute ORG or MODE directive)
is placed in memory according to the absolute value of the runtime location counter at as-
sembly time. A buffer allocated in relative mode (a relocatable buffer) is suitably aligned
within its relocation section at assembly time. During the link phase a section enclosing
any relocatable buffers is located based on the largest relocatable buffer it contains, un-
less the buffers inside the section are auto-aligned. This insures that any smaller buffers
within the section are properly aligned. If any buffers in the section are auto-aligned, they
will be relocated independent of any other code or data in the section. Note that reposi-
tioning of any buffer, whether relocatable or absolute, may result in alignment gaps in
memory depending on the layout of data surrounding the buffer blocks.

4-12 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Software Project Management
Example 1: Multi-programmer Environment

4.6 EXAMPLE 1: MULTI-PROGRAMMER ENVIRONMENT

Typical multi-programmer projects are often split into tasks representing functional units.
For discussion purposes, suppose a project has been divided into three tasks - 1/0,
FILTER, and MAIN. Each task will be written by a separate programmer as a separate
section. For example, when the 1/O task has been written, there will be a file called
IO.ASM. This file will have the following form:

SECTION |_O
XREF |_PORT,0_PORT
ORG XL:

<storage location definitions>
ORG P:
<lO section source statements>

ENDSEC

In this example, because the X space storage locations were defined within the section
|_O, they will be private storage locations that are accessible only by the I_O handler, and
cannot be referenced by other sections. If global memory resource management is de-
sired, then the |_O section would not have defined any storage locations, and these would
have been defined as XREF. The X space data will be addressed through the Low
runtime counter. The P memory code is also private to the I_O section and uses the de-
fault runtime location counter for address generation.

In the discussion below, assume that the programmers responsible for the FILTER and
MAIN sections have similar program structures located in files named FILTER.ASM and
MAIN.ASM respectively. The program units can be combined either by invoking a final
assembly step to assign absolute addresses, or by assembling the modules separately
and then linking.

DSP ASSEMBLER REFERENCE MANUAL 4-13
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Software Project Management
Example 1: Multi-programmer Environment

4.6.1 Absolute Mode Implementation

To assemble the entire project source code, a new file called PROJECT.ASM would be
created and would have the form:

ORG XLE:$0000
.<global low memory X storage declarations (if any)>
bRG YLE:$0000
.<global low memory Y storage declarations (if any)>
bRG YH:$FFCO
.<global high memory Y storage declarations (if any)>
bRG XH:$FFCO
.<global high memory X storage declarations (if any)>

; initialize internal low Program memory location counter
ORG PL:$1000

; initialize external high Program memory location counter
ORG PHE:$F000

INCLUDE 'MAIN.ASM'

INCLUDE 'I0.ASM'

INCLUDE 'FILTER.ASM'

END ENTRY

This file provides the project manager with a mechanism to organize memory utilization
to suit the application. For example, the external high P memory initialization statement
might correspond to the memory location of an external EPROM.

After the location counters corresponding to the X, Y, and P(rogram) memory spaces are
initialized, the Assembler is directed to take input from the MAIN.ASM file with the IN-
CLUDE directive. Within the MAIN.ASM file, the source statements are assembled and
object code is generated. The X, Y, L, and P(rogram) location counters (High, Low) are
advanced corresponding to the number of words generated for each memory space and
location counter in use.

When the end of the MAIN.ASM file is encountered, the Assembler returns to the next se-
guential statement in the PROJECT.ASM file. This directs the Assembler to start taking
input from the 10.ASM file. Within this file, the ORG PL: statement directs the Assembler

4-14 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Software Project Management
Example 1: Multi-programmer Environment

to set the current memory space to P(rogram) and restore the last used P(rogram) L(ow)
location counter. The <IO source program statements> shown previously will be assem-
bled at the next available Low Program memory space. When the end of the I0.ASM file
is encountered, the X, Y, and P(rogram) location counters (High and Low) will have been
advanced corresponding to the number of words generated for each memory space.

In a similar manner, the file FILTER.ASM will be assembled. The last statement of the
PROJECT.ASM file informs the Assembler that this is the last logical source statement,
and the starting address for the object module will be a label called ENTRY. In the exam-
ple above, ENTRY would have been a label defined in the section MAIN and declared as
global with the XDEF directive.

4.6.2 Relative Mode Implementation

Using the Assembler default relative mode, each of the source files is assembled sepa-
rately. For each section defined in the input files a separate set of location counters is
maintained such that all memory spaces for each section begin at relative address zero.
The linker is invoked to combine the files and establish base addresses:

DSPLNK -B -M -OXLI:0 -OYLI:0 -OYH:FFCO -OXH:FFCO \
-OPL:1000 -OPHE:A000 MAIN IO FILTER

The linker reads the command input and sets up base values for all counters specified on
the command line. In this example, the X and Y low memory counters are initialized to ze-
ro, whereas the X and Y high memory counters are set to FFCO hexadecimal. The pro-
gram low and high memory counters are initialized similarly. When the linker creates the
executable file it reads the input files and sets the starting address for all sections relative
to the values obtained from the command line. As the MAIN object file is read the linker
increments the section counters for all appropriate memory spaces.

After the MAIN object file is processed, the 10 object file is read. The section named |_O
contained an ORG directive indicating a switch to the low X data memory counter. Recall
that the Assembler generated relocatable code for the |_O section source such that the
low X data memory counter begins at zero. The linker adjusts the low X memory counter
associated with section I_O to reflect any previous data generation performed in low X
memory (e.g. in MAIN). The FILTER module is linked in a similar fashion.

Another way for specifying base addresses, instead of lengthy command line options, is
through a memory control file . The memory control file allows the programmer to indi-
cate memory space starting addresses analogously to the command line approach. In ad-
dition, the memory control file offers finer control over placement of sections in memory.
See the Motorola DSP Linker/Librarian Reference Manual for more information on the
memory control file.

The preceding examples described two methods for organizing a software project. Refer
to the descriptions of the ORG and SECTION directives in Chapter 6 for a more detailed
discussion. See also the Motorola DSP Linker/Librarian Reference Manual for more in-

DSP ASSEMBLER REFERENCE MANUAL 4-15
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Software Project Management
Example 2: Overlays

formation on relocation and linking. One other Assembler directive that should be men-
tioned (although not shown in the previous example) is the MACLIB directive which allows
sections to share a common macro library. The MACLIB directive is discussed more fully
in Chapter 5.

4.7 EXAMPLE 2: OVERLAYS

An overlay is a transfer of code or data from one memory space or address to another
memory space or address at runtime. Often the transfer involves copying different blocks
of code or data over a common storage area as runtime circumstances dictate; hence the
name overlay . Overlays are useful for moving code into internal program memory from
an external memory source such as EPROM. They are also effective when implementing
large programs with multiple segments which do not need to be accessed concurrently.
Consider the following program fragment contained in a file called OVER1.ASM:

SECTION OVERLAY1

XREF OVLBASE
XDEF OVL1,01SIZE
ORG X:
OovL1l
ORG P:OVLBASE,X:
START
<overlay source statements>
END
O1SIZE EQU END-START

ENDSEC

This is a sample of overlay code bounded by a SECTION directive. The overlay base, or
the place to which this block of code will be moved for execution, is declared external at
OVLBASE (OVLBASE is actually defined elsewhere). The label OVL1 is XDEFed to pro-
vide a handle for moving the block at runtime, and O1SIZE is also XDEFed so that the
overlay management code knows how many words to move. Note that the OVL1 label is
placed before the ORG for the overlay so that it remains a valid address in X memory dur-
ing execution. The overlay ORG directive insures that subsequent addresses will be
based from OVLBASE at runtime. The size of the overlay block (O1SIZE) is computed by
subtracting the START label value from the END label address. Assume for purposes of
discussion that there are other files containing similar overlay code with names
OVER2.ASM and OVER3.ASM.

4-16 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Software Project Management
Example 2: Overlays

4.7.1 Absolute Mode Implementation

In order to avoid binding addresses within the individual overlay modules, the programmer
could devise a preamble file called OVLPROJ.ASM which sets the appropriate counters
and establishes the overlay base address. Note that the following code assumes a
DSP96000, but similar instructions would apply for other target processors:

SECTION OVLPROJECT

XDEF OVLBASE

XREF OVL1,01SIZE

XREF OVL2,02SIZE

XREF OVL3,03SIZE

ORG XE:$100 ; set absolute base for overlay sections

ORG P1:$200 ; set absolute base address for overlay
OVLBASE DS $400 ; reserve space for overlay area
MOVEOV1 ; code to move first overlay segment

MOVE #0OVL1,R0; load overlay code address

MOVE #OVLBASE,R1; load overlay base address

MOVE #0O1SIZE,D1.M; load overlay code size

DO D1.M, ENDLOOP; loop to move data words into P memory

MOVE X:(R0)+,D0.M; get word of overlay from data memory

MOVE D0.M,P:(R1)+; store word of overlay into P memory
_ENDLOOP

ENDSEC

The overlay base address OVLBASE is made global with the XDEF statement. The over-
lay segments and their sizes are made visible to the project section by using the XREF
directive. The first ORG establishes where the overlay segments will be placed in mem-
ory contiguously at load time. The second ORG sets up the absolute base address for
the overlay area common to all of the overlay segments. Uninitialized space is allocated
for the overlay area, immediately followed by code to move the overlay segments into the
common area at runtime. The following Assembler command line will process the header
file and all overlay segments:

ASM96000 -A -B -L OVLPROJ OVER1 OVER2 OVER3 START

The Assembiler is invoked in absolute mode (-A option), and generates an executable and
listing file. All files on the command line are processed as a single assembly run and all
are used to produce the output. OVLPROJ.ASM is read first and sets up the appropriate
absolute addresses for later sections. Then each overlay file is read and loaded one after
the other at external X memory address 100 hexadecimal. However, since each overlay

DSP ASSEMBLER REFERENCE MANUAL 4-17
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Software Project Management
Example 2: Overlays

module was intended to run starting at OVLBASE in P memory, all labels and jumps to
those labels within the overlay code will be relative to the overlay base address. This
means that the code in each of the overlay modules, when loaded by the overlay manage-
ment code in the OVLPROJECT section, will start executing at internal P memory address
200 hexadecimal. The file START.ASM contains an END directive which indicates the
program start address after loading.

4.7.2 Relative Mode Implementation

In relative mode each of the overlay files is assembled separately to create individual ob-
ject files. The object files are combined to build a single executable file. A preamble file
OVLPROJ.ASM containing overlay management code might appear as follows. Note that
this code assumes a DSP96000, but similar instructions would apply for other target pro-
cessors:

SECTION OVLPROJECT
XDEF OVLBASE

XREF OVL1,01SIZE
XREF OVL2,02SIZE
XREF OVL3,03SIZE

ORG Pl ; set base address for overlay
MOVEOV1 ; code to move first overlay seg-
ment
MOVE #0OVL1,R0O ; load overlay code address
MOVE #OVLBASE,R1 ; load overlay base address
MOVE #0O1SIZE,D1.M ; load overlay code size
DO D1.M, ENDLOOP ; loop to move data words into P
memory
MOVE X:(R0O)+,DO.M ; get word of overlay from data
memory
MOVE DO0.M,P:(R1)+ ; store one word of overlay into P
memory
_ENDLOOP
OVLBASE DS $400 ; reserve space for overlay area
ENDSEC
4-18 DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Software Project Management
Example 2: Overlays

Note that the ORG to P space does not specify an absolute address. In order to obtain
the same result from these files as in an absolute mode implementation the following link-
er command line would be used:

DSPLNK -B -M -OXE:100 -OPI:200 OVLPROJ OVER1 OVER2 OVER3

The linker scans the command line and sets the base addresses for X and P memory.
Here the X default counter is set to hex 100 and mapped to external memory; likewise the
P default counter is set to hex 200 and mapped to internal memory. Base addresses can
also be established with the linker memory control file.

The linker reads each input object file, placing the header file in internal P memory and
combining the overlay modules into a contiguous block loaded into external X memory at
location 100 hexadecimal. Any labels or jumps within the overlay blocks are resolved to
addresses relative to the relocatable symbol OVLBASE. Since OVLBASE is the first load
P memory address it is assigned the value 200 hexadecimal. The linker does not guaran-
tee that a given symbol or section will begin at a particular location unless that information
is explicitly specified in the linker memory control file. For more information on specific
linker operations see the Motorola DSP Linker/Librarian Reference Manual

DSP ASSEMBLER REFERENCE MANUAL 4-19
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Software Project Management
Example 3: Bootstrap Overlay

4.8 EXAMPLE 3: BOOTSTRAP OVERLAY

Many Motorola DSP processors, specifically those with RAM-based program memory,
support a bootstrap mode of operation. This involves mapping a built-in ROM-based boot-
strap program into P memory, executing the program to move user-supplied code from
another location (usually EPROM) into program RAM, then transferring control to the user
program. Because the user program is loaded in one location (e.g. EPROM) but moved
to another for execution, it is a natural application for assembly language overlay seman-
tics. Another wrinkle in bootstrap mode is that user instruction words are loaded in byte-
wise fashion, such that the load location counter must be incremented by bytes rather
than words. Consider the following section fragments contained in two files called
SECT1.ASM and SECT2.ASM respectively:

SECTION SECT1

ORG PI(1):;,PE(2)
START1
<source statements>
END1
ENDSEC
SECTION SECT2
ORG PI(1):;,PE(2)
START2
<source statements>
END2
ENDSEC
4-20 DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Software Project Management
Example 3: Bootstrap Overlay

4.8.1 Absolute Mode Implementation

In order to avoid binding addresses within the individual modules, the programmer could
devise a preamble file called BOOTPROJ.ASM which sets the appropriate options and
establishes load and runtime base addresses:

OPT LB ; increment load counter by

bytes
ORG PI(1):$100,PE(2):$C000 ; set runtime RAM address,
; bytewide load ROM ad-

dress

The OPT directive with the LB option indicates that the Assembler should increment the
load counter by the number of bytes in the target processor word. This guarantees that
the EPROM addresses will be correct for bytewide loading during bootstrap processing.
In the ORG directive, the runtime location counter, tagged as 1 and mapped to internal
memory, is set to hex 100. The load counter is tagged as 2, mapped to external memory,
and set to hex C000, where the built-in bootstrap program will begin loading bytes after
processor reset. The files are assembled using the command below:

ASM56100 -A -B -L BOOTPROJ SECT1 SECT2

The Assembiler is invoked in absolute mode (-A option), and generates an executable and
listing file. All files on the command line are processed as a single assembly run and all
are used to produce the output. BOOTPROJ.ASM is read first and sets up the appropriate
absolute addresses for later sections. Since no explicit base address was given in the sec-
tion files, both load and runtime addresses will continue from one section to the other, e.g.
they will be contiguous. For example, if only two words of instruction were between each
of the START and END labels, the runtime value for END1 and START2 would be hex
102. However, the load address of the code associated with these labels, assuming a 16
bit target word size, would be C004 hexadecimal. Similarly, the runtime value for END2
would be 104 hex and the corresponding load address would be C008 hexadecimal.

4.8.2 Relative Mode Implementation

In relative mode each of the source files is assembled separately to create individual ob-
ject files. The object files are combined to build a single executable file. A preamble file is
not necessary to handle bootstrap files in relative mode because the addresses are es-
tablished at link time. In order to generate bytewide load addresses the LB option can be
specified on the Assembler command line using the -O command line option:

ASM56100 -B -L -OLB SECT1

This command assembles the file SECT1.ASM and creates a relocatable object file called
SECT1.CLN. The listing file shows that the starting address of the section is zero; howev-
er, because of the LB option on the command line the load counter will increment at twice
the rate of the runtime counter (assuming a 16 bit DSP56100 family target processor). A

DSP ASSEMBLER REFERENCE MANUAL 4-21
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Software Project Management
Example 3: Bootstrap Overlay

similar command is used to assemble the SECT2 module. The two files are linked as fol-
lows:

DSPLNK -BBOOTPROJ.CLD "-OPI(1):100" "-OPE(2):C000" SECT1 SECT2

The linker scans the command line and sets the base addresses for P internal and exter-
nal memory. The quotes around the -O options are necessary to avoid interpretation of
parentheses by some host command interpreters. Here the P counter number 1 is set to
hex 100 and mapped to internal memory; likewise the P counter number 2 is set to hex
C000 and mapped to external memory. Base addresses can also be established with the
linker memory control file. Since no explicit overlay base addresses were encountered in
the source files, both load and runtime addresses for the sections will be adjacent and
non-overlapping. Assuming a code size of 2 for each section and a 16 bit word size, the
value for label START1 will be hex 100 and the value for START2 will be hex 102; the
corresponding load addresses will be CO00 hex and C004 hex, respectively. The execut-
able output will be written to the file BOOTPROJ.CLD.

4-22 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Chapter 5
MACRO OPERATIONS AND CONDITIONAL ASSEMBLY

5.1 MACRO OPERATIONS

Programming applications frequently involve the coding of a repeated pattern or group of
instructions. Some patterns contain variable entries which change for each repetition of
the pattern. Others are subject to conditional assembly for a given occurrence of the in-
struction group. In either case, macros provide a shorthand notation for handling these
instruction patterns. Having determined the iterated pattern, the programmer can, within
the macro, designate selected fields of any statement as variable. Thereafter by invoking
a macro the programmer can use the entire pattern as many times as needed, substituting
different parameters for the designated variable portions of the statements.

When the pattern is defined it is given a name. This name becomes the mnemonic by
which the macro is subsequently invoked (called). If the name of the macro is the same
as an existing Assembler directive or mnemonic opcode, the macro will replace the direc-
tive or mnemonic opcode, and a warning will be issued. The warning can be avoided by
the use of the RDIRECT directive, which is used to remove entries from the Assembler’s
directive and mnemonic tables. If directives or mnemonics are removed from the Assem-
bler’'s tables, then no warning will be issued when the Assembler processes macros
whose names are the same as the removed directive or mnemonic entries. However, if
a macro is defined through the MACLIB directive which has the same name as an existing
directive or opcode, it will not automatically replace that directive or opcode as previously
described. In this case, the RDIRECT directive must be used to force the replacement.
See the description of the MACLIB directive below.

The macro call causes source statements to be generated. The generated statements
may contain substitutable arguments. The statements produced by a macro call are rel-
atively unrestricted as to type. They can be any processor instruction, almost any Assem-
bler directive, or any previously-defined macro. Source statements resulting from a
macro call are subject to the same conditions and restrictions that are applied to state-
ments written by the programmer.

To invoke a macro, the macro name must appear in the operation code field of a source
statement. Any arguments are placed in the operand field. By suitably selecting the ar-
guments in relation to their use as indicated by the macro definition, the programmer
causes the Assembler to produce in-line coding variations of the macro definition.

DSP ASSEMBLER REFERENCE MANUAL 5-1
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Macro Operations And Conditional Assembly
Macro Libraries

The effect of a macro call is to produce in-line code to perform a predefined function. The
code is inserted in the normal flow of the program so that the generated instructions are
executed with the rest of the program each time the macro is called.

An important feature in defining a macro is the use of macro calls within the macro defini-
tion. The Assembler processes such nested macro calls at expansion time only. The
nesting of one macro definition within another definition is permitted. However, the nested
macro definition will not be processed until the primary macro is expanded. The macro
must be defined before its appearance in a source statement operation field.

5.2 MACRO LIBRARIES

The Motorola DSP Assembler allows for the maintenance of macro libraries with the MA-
CLIB directive. This directive is used to specify the pathname (as defined by the host op-
erating system) of a directory that contains macro definitions. Each macro definition must
be in a separate file, and the file must be named the same as the macro with the extension
.ASM added. For example, BLOCKMV.ASM would be a file that contained the definition
of the macro called BLOCKMV.

If a MACLIB directive has been specified in the source code and the Assembler encoun-
ters a name in the operation field that is not a previously defined macro or is not contained
in the directive or mnemonic tables, the directory specified in the MACLIB directive will be
searched for a file of that name (with the .ASM extension added). If such a file is found,
the current source line will be saved, and the file will be opened for input as an INCLUDE
file. When the end of the file is encountered, the source line is restored and processing
is resumed.

Because the source line is restored, the processed file must have a macro definition of the
unknown name, or an error will result when the source line is restored and processed.
However, the processed file is not limited to macro definitions, and can include any legal
source code statements. Multiple MACLIB directives may be given, in which case the As-
sembler will search each directory in the order in which they were specified.

5.3 MACRO DEFINITION

The definition of a macro consists of three parts: the header, which assigns a name to the
macro and defines the dummy arguments; the body, which consists of prototype or skel-
eton source statements; and the terminator. The header is the MACRO directive, its label,
and the dummy argument list. The body contains the pattern of standard source state-
ments. The terminator is the ENDM directive.

The header of a macro definition has the form:

<label> MACRO [<dummy argument list>][<comment>]

5-2 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Macro Operations And Conditional Assembly
Macro Definition

The required label is the symbol by which the macro will be called. The dummy argument
list has the form:

[<dumarg>[,<dumarg>,...,<dumarg>]]

The dummy arguments are symbolic names that the macro processor will replace with ar-
guments when the macro is expanded (called). Each dummy argument must obey the
same rules as global symbol names. Dummy argument names that are preceded by an
underscore are not allowed. Dummy arguments are separated by commas.

For example, consider the following macro definition:

N_R MUL MACRO NMUL,AVEC,BVEC,RESULT header

;This macro implements N real multiplies
;RESULT(I) = AVEC(l) * BVEC(l) I=1..NMUL

:where
: NMUL = number of multiplications
; AVEC = base address of array AVEC()
; BVEC = base address of array BVEC(])
; RESULT = base address of array RESULT(I)
MOVE #AVEC,RO body
MOVE #BVEC,R4
MOVE #RESULT,R1
MOVE X:(R0)+,D4.S Y:(R4)+,D7.S
DO #NMUL, ENDLOOP
FMPY.S D4,D7,D0 X:(R0)+,D4.SY:(R4)+,D7.S
MOVE DO.S,X:(R1)+
_ENDLOOP
ENDM terminator

When a macro call is executed, the dummy arguments within the macro definition
(NMUL,AVEC,BVEC,RESULT in the example above) are replaced with the correspond-
ing argument as defined by the macro call.

All local labels within a macro are considered distinct for the currently active level of macro
expansion (unless the macro local label override is used, see below). These local labels
are valid for the entire macro expansion and are not considered bounded by non-local la-
bels. Therefore, all local labels within a macro must be unique. This mechanism allows
the programmer to freely use local labels within a macro definition without regard to the
number of times that the macro is expanded. Non-local labels within a macro expansion
are considered to be normal labels and thus cannot occur more than once unless used
with the SET directive (see Chapter 6).

DSP ASSEMBLER REFERENCE MANUAL 5-3
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Macro Operations And Conditional Assembly
Macro Calls

When specifying a local label within the body of a macro, the programmer must be aware
that the label symbol is valid for the entire body of the current level of macro expansion.
It is not valid for any nested macros within the current level of expansion. The example
above shows why the local label feature is useful. If the macro N_R_MUL were called
several times, there would be several ENDLOOP labels resulting from the macro expan-
sions. This is acceptable because each _ENDLOOP label is considered private to a par-
ticular instance of macro expansion.

It is sometimes desirable to pass local labels as macro arguments to be used within the
macro as address references (e.g. MOVE #_LABEL,R0). The Assembler effectively dis-
allows this, however, since underscore label references within a macro invocation are re-
garded as labels local to that expansion of the macro. A macro local label override is
provided which causes local symbol lookup to have normal scope rather than macro call
scope. If a circumflex (") precedes an expression containing an underscore label, at ex-
pansion the associated term will be evaluated using the normal local label list rather than
the macro local label list. The operator has no effect on normal labels or outside a macro
expansion.

5.4 MACRO CALLS

When a macro is invoked the statement causing the action is termed a macro call . The
syntax of a macro call consists of the following fields:

[<label>] <macro name> [<arguments>][<comment>]

The argument field can have the form:
[<arg>[,<arg>,...,<arg>]]

The macro call statement is made up of three fields besides the comment field: the <la-
bel>, if any, will correspond to the value of the location counter at the start of the macro
expansion; the operation field which contains the macro name; and the operand field
which contains substitutable arguments. Within the operand field each calling argument
of a macro call corresponds one-to-one with a dummy argument of the macro definition.
For example, the N_R_MUL macro defined earlier could be invoked for expansion (called)
by the statement:

N_R_MUL CNT+1,VEC1,VEC2,0UT

where the operand field arguments, separated by commas and taken left to right, corre-
spond to the dummy arguments "N" through "RESULT", respectively. These arguments
are then substituted in their corresponding positions of the definition to produce a se-
guence of instructions.

Macro arguments consist of sequences of characters separated by commas. Although
these can be specified as quoted strings, to simplify coding the Assembler does not re-
guire single quotes around macro argument strings. However, if an argument has an em-
bedded comma or space, that argument must be surrounded by single quotes (). An

54 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Macro Operations And Conditional Assembly
Dummy Argument Operators

argument can be declared null when calling a macro. However, it must be declared ex-
plicitly null. Null arguments can be specified in four ways: by writing the delimiting com-
mas in succession with no intervening spaces, by terminating the argument list with a
comma and omitting the rest of the argument list, by declaring the argument as a null
string, or by simply omitting some or all of the arguments. A null argument will cause no
character to be substituted in the generated statements that reference the argument. If
more arguments are supplied in the macro call than appear in the macro definition, a
warning will be output by the Assembler.

5.5 DUMMY ARGUMENT OPERATORS

The Assembler macro processor provides for text substitution of arguments during macro
expansion. In order to make the argument substitution facility more flexible, the Assem-
bler also recognizes certain text operators within macro definitions which allow for trans-
formations of the argument text. These operators can be used for text concatenation,
numeric conversion, and string handling.

5.5.1 Dummy argument concatenation operator - \

Dummy arguments that are intended to be concatenated with other characters must be
preceded by the concatenation operator, '\' to separate them from the rest of the charac-
ters. The argument may precede or follow the adjoining text, but there must be no inter-
vening blanks between the concatenation operator and the rest of the characters. To
position an argument between two alphanumeric characters, place a backslash both be-
fore and after the argument name. For example, consider the following macro definition:

SWAP_REG MACRO REG1,REG2 :swap REG1,REG2 using X0 as temp
MOVE R\REGL,X0
MOVE R\REG2,R\REG1
MOVE XO,R\REG2
ENDM

If this macro were called with the following statement,

SWAP_REG 0,1

then for the macro expansion, the macro processor would substitute the character O for
the dummy argument REG1, and the character 1 for the dummy argument REG2. The
concatenation operator (\) indicates to the macro processor that the substitution charac-
ters for the dummy arguments are to be concatenated in both cases with the character R.
The resulting expansion of this macro call would be:

MOVE RO,X0
MOVE R1,RO
MOVE XO,R1

DSP ASSEMBLER REFERENCE MANUAL 5-5
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Macro Operations And Conditional Assembly
Dummy Argument Operators

5.5.2 Return value operator - ?

Another macro definition operator is the question mark (?) that returns the value of a sym-
bol. When the macro processor encounters this operator, the ?<symbol> sequence is
converted to a character string representing the decimal value of the <symbol>. For ex-
ample, consider the following modification of the SWAP_REG macro described above:

SWAP_SYM MACRO REG1,REG2 :swap REG1,REG2 using X0 as temp
MOVE R\?REG1,X0
MOVE R\?REG2,R\?REG1
MOVE XO,R\?REG2
ENDM

If the source file contained the following SET statements and macro call,

AREG SET 0
BREG SET 1
SWAP_SYM AREG,BREG

then the sequence of events would be as follows: the macro processor would first substi-
tute the characters AREG for each occurrence of REG1 and BREG for each occurrence
of REG2. For discussion purposes (this would never appear on the source listing), the
intermediate macro expansion would be:

MOVE R\?AREG,X0
MOVE R\?BREG,R\?AREG
MOVE XO,R\?BREG

The macro processor would then replace ?AREG with the character 0 and ?BREG with
the character 1, since O is the value of the symbol AREG and 1 is the value of BREG. The
resulting intermediate expansion would be:

MOVE R\0,X0
MOVE R\1,R\0
MOVE XO,R\1

Next, the macro processor would apply the concatenation operator (\), and the resulting
expansion as it would appear on the source listing would be:

MOVE RO,X0
MOVE R1,RO
MOVE XO,R1

5-6 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Macro Operations And Conditional Assembly
Dummy Argument Operators

5.5.3 Return hex value operator - %

The percent sign (%) is similar to the standard return value operator except that it returns
the hexadecimal value of a symbol. When the macro processor encounters this operator,
the %<symbol> sequence is converted to a character string representing the hexadecimal
value of the <symbol>. Consider the following macro definition:

GEN_LAB MACRO LAB,VAL,STMT
LAB\%VAL STMT
ENDM

This macro generates a label consisting of the concatenation of the label prefix argument
and a value that is interpreted as hexadecimal. If this macro were called as follows,

NUM SET 10
GEN_LAB HEX,NUM,'NOP"

the macro processor would first substitute the characters HEX for LAB, then it would re-
place % VAL with the character A, since A is the hexadecimal representation for the dec-
imal integer 10. Next, the macro processor would apply the concatenation operator (\).
Finally, the string 'NOP' would be substituted for the STMT argument. The resulting ex-
pansion as it would appear in the listing file would be:

HEXA NOP

The percent sign is also the character used to indicate a binary constant. If a binary con-
stant is required inside a macro it may be necessary to enclose the constant in parenthe-
ses or escape the constant by following the percent sign by a backslash (\).

5.5.4 Dummy argument string operator - "

Another dummy argument operator is the double quote (*). This character is replaced with
a single quote by the macro processor, but following characters are still examined for
dummy argument names. The effect in the macro call is to transform any enclosed dummy
arguments into literal strings. For example, consider the following macro definition:

STR_MAC MACRO STRING
DC "STRING"
ENDM

If this macro were called with the following macro expansion line,
STR_MAC ABCD
then the resulting macro expansion would be:

DC '‘ABCD'

DSP ASSEMBLER REFERENCE MANUAL 5-7
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Macro Operations And Conditional Assembly
Dummy Argument Operators

Double quotes also make possible DEFINE directive expansion within quoted strings. Be-
cause of this overloading of the double quotes, care must be taken to insure against inap-
propriate expansions in macro definitions. Since DEFINE expansion occurs before macro
substitution, any DEFINE symbols are replaced first within a macro dummy argument
string:

DEFINE LONG 'short’
STR_MAC MACRO STRING

MSG 'This is a LONG STRING'

MSG "This is a LONG STRING"

ENDM

If this macro were invoked as follows,

STR_MAC sentence

then the resulting expansion would be:

MSG 'This is a LONG STRING'
MSG "This is a short sentence'

5.5.5 Macro local label override operator - »

It may be desirable to pass a local label as a macro argument to be used as an address
reference within the macro body. If a circumflex (*) precedes an expression containing
an underscore label, during macro expansion the associated term will be evaluated with
normal local label scope rather than macro call scope. Such interpretation disables the
usual local label semantics for this particular reference within the macro call. Here is an
example:

LOAD MACRO ADDR
MOVE P:*ADDR,RO
ENDM

The macro local label override operator causes the ADDR argument to be interpreted as
a local label outside the macro if the expanded argument has a leading underscore. If
there is no leading underscore on the actual argument then the override operator has no
effect. Consider the following macro call:

_LOCAL
LOAD _LOCAL

Without the local label override in the macro definition, an error would occur at the macro
call because a symbol _LOCAL was not defined in the body of the macro. Because the
circumflex was used the value of _LOCAL gets moved to RO. Note that any arbitrary string
may be used as the actual parameter to the LOAD macro. The override operator has an
effect only with underscore labels. Care must be exercised, however, in not defining a

5-8 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Macro Operations And Conditional Assembly
DUP, DUPA, DUPC, DUPF Directives

macro label called _LOCAL and attempting to reference it as in the above example. In
that case the macro local label override operator prevents the Assembler from seeing the
local label definition for that reference, and an error would result.

5.6 DUP, DUPA, DUPC, DUPF DIRECTIVES

The DUP, DUPA, DUPC, and DUPF directives are specialized macro forms. They can be
thought of as a simultaneous definition and call of an unnamed macro. The source state-
ments between the DUP, DUPA, DUPC, and DUPF directives and the ENDM directive fol-
low the same rules as macro definitions, including (in the case of DUPA, DUPC, and
DUPF) the dummy operator characters described previously. For a detailed description of
these directives, refer to Chapter 6.

5.7 CONDITIONAL ASSEMBLY

Conditional assembly facilitates the writing of comprehensive source programs that can
cover many conditions. Assembly conditions may be specified through the use of argu-
ments in the case of macros, and through definition of symbols via the DEFINE, SET, and
EQU directives. Variations of parameters can then cause assembly of only those parts
necessary for the given conditions. The built-in functions of the Assembler provide a ver-
satile means of testing many conditions of the assembly environment (see Section 3.8 for
more information on the Assembler built-in functions).

Conditional directives can also be used within a macro definition to ensure at expansion
time that arguments fall within a range of allowable values. In this way macros become
self-checking and can generate error messages to any desired level of detail.

The conditional assembly directive IF has the following form:

IF <expression>
[ELSE] (the ELSE directive is optional)
ENDIF

A section of a program that is to be conditionally assembled must be bounded by an IF-
ENDIF directive pair. If the optional ELSE directive is not present, then the source state-
ments following the IF directive and up to the next ENDIF directive will be included as part
of the source file being assembled only if the <expression> had a nonzero result. If the
<expression> has a value of zero, the source file will be assembled as if those statements
between the IF and the ENDIF directives were never encountered. If the ELSE directive
is present and <expression> has a nonzero result, then the statements between the IF
and ELSE directives will be assembled, and the statements between the ELSE and
ENDIF directives will be skipped. Alternatively, if <expression> has a value of zero, then

DSP ASSEMBLER REFERENCE MANUAL 5-9
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Macro Operations And Conditional Assembly
Conditional Assembly

the statements between the IF and ELSE directives will be skipped, and the statements
between the ELSE and ENDIF directives will be assembled.

5-10 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

ASSEMBLER SIGNIFICANT CHARACTERS AND DIRECTIVES

Freescale Semiconductor, Inc.

Chapter 6

6.1 INTRODUCTION

This chapter describes the directives that are recognized by the Motorola DSP Assem-
bler. The Assembler directives are instructions to the Assembler rather than instructions
to be directly translated into object code. In addition, this chapter describes special char-
acters that are considered significant to the Assembler.

6.2 ASSEMBLER SIGNIFICANT CHARACTERS

There are several one and two character sequences that are significant to the Assembler.
Some have multiple meanings depending on the context in which they are used. Special
characters associated with expression evaluation are described in Chapter 3. Other As-
sembler-significant characters are:

++

[]

<<

\%

Comment delimiter
Unreported comment delimiter
Line continuation character or

Macro dummy argument concatenation operator

Macro value substitution operator

Macro hex value substitution operator
Macro local label override operator
Macro string delimiter or

Quoted string DEFINE expansion character
Function delimiter

Location counter substitution

String concatenation operator

Substring delimiter

I/O short addressing mode force operator
Short addressing mode force operator
Long addressing mode force operator
Immediate addressing mode operator

DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

6-1

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives

Assembler Directives

#< - Immediate short addressing mode force operator
#> - Immediate long addressing mode force operator

6.3 ASSEMBLER DIRECTIVES
Assembler directives can be grouped by function into seven types:

1. Assembly control

Symbol definition

Data definition/storage allocation
Listing control and options
Object file control

Macros and conditional assembly
Structured programming

No ok wd

6.3.1 Assembly Control

The directives used for assembly control are:

COMMENT - Start comment lines
DEFINE - Define substitution string
END - End of source program
FAIL - Programmer generated error message
FORCE - Set operand forcing mode
HIMEM - Set high memory bounds
INCLUDE - Include secondary file
LOMEM - Set low memory bounds
MODE - Change relocation mode
MSG - Programmer generated message
ORG - Initialize memory space and location counters
RADIX - Change input radix for constants
RDIRECT - Remove directive or mnemonic from table
SCSIMP - Set structured control branching mode
SCSREG - Reassign structured control statement registers
UNDEF - Undefine DEFINE symbol
WARN - Programmer generated warning
6-2 DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Assembler Significant Characters And Directives

6.3.2 Symbol Definition

The directives used to control symbol definition are:

ENDSEC - End section

EQU - Equate symbol to a value
GLOBAL - Global section symbol declaration
GSET - Set global symbol to a value
LOCAL - Local section symbol declaration
SECTION - Start section

SET - Set symbol to a value

XDEF - External section symbol definition
XREF - External section symbol reference

6.3.3 Data Definition/Storage Allocation

Assembler Directives

The directives used to control constant data definition and storage allocation are:

BADDR - Set buffer address

BSB - Block storage bit-reverse
BSC - Block storage of constant
BSM - Block storage modulo
BUFFER - Start buffer

DC - Define constant

DCB - Define constant byte

DS - Define storage

DSM - Define modulo storage
DSR - Define reverse carry storage
ENDBUF - End buffer

6.3.4 Listing Control and Options

The directives used to control the output listing are:

LIST - List the assembly

LSTCOL - Set listing field widths
NOLIST - Stop assembly listing

OPT - Assembler options

PAGE - Top of page/size page
PRCTL - Send control string to printer
STITLE - Initialize program subtitle
TABS - Set listing tab stops

TITLE - Initialize program title

DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

6-3

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives

Assembler Directives
6.3.5 Object File Control

The directives used for control of the object file are:

COBJ - Comment object code
IDENT - Object code identification record
SYMOBJ - Write symbol information to object file

6.3.6 Macros and Conditional Assembly

The directives used for macros and conditional assembly are:

DUP - Duplicate sequence of source lines
DUPA - Duplicate sequence with arguments
DUPC - Duplicate sequence with characters
DUPF - Duplicate sequence in loop

ENDIF - End of conditional assembly

ENDM - End of macro definition

EXITM - Exit macro

IF - Conditional assembly directive
MACLIB - Macro library

MACRO - Macro definition

PMACRO - Purge macro definition

6.3.7 Structured Programming

The directives used for structured programming are:

.BREAK - Exit from structured loop construct
.CONTINUE - Continue next iteration of structured loop
.ELSE - Perform following statements when .IF false
.ENDF - End of .FOR loop
.ENDI - End of .IF condition
.ENDL - End of hardware loop
.ENDW - End of .WHILE loop
.FOR - Begin .FOR loop
AF - Begin .IF condition
.LOOP - Begin hardware loop
.REPEAT - Begin .REPEAT loop
{UNTIL - End of .REPEAT loop
.WHILE - Begin .WHILE loop
6-4 DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

Individual descriptions of each of the Assembler special characters and directives follow.
They include usage guidelines, functional descriptions, and examples. Structured pro-
gramming directives are discussed separately in Chapter 7.

Some directives require a label field, while in many cases a label is optional. If the descrip-
tion of an Assembler directive does not indicate a mandatory or optional label field, then
a label is not allowed on the same line as the directive. In general, it is disallowed to use
the label field of a data directive (such as DS, BSC, or buffer directives) in an expression
used to define the space being allocated. This is because in some cases the label value
cannot be determined until the operand field is fully evaluated. For example:

BADDS DS BADDS

The line above is invalid because the label BADDS cannot reasonably be determined in
this context.

DSP ASSEMBLER REFERENCE MANUAL 6-5
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

Comment Delimiter Character

Any number of characters preceded by a semicolon (;), but not part of a literal string, is
considered a comment. Comments are not significant to the Assembler, but they can be
used to document the source program. Comments will be reproduced in the Assembler
output listing. Comments are normally preserved in macro definitions, but this option can
be turned off (see the OPT directive, this chapter).

Comments can occupy an entire line, or can be placed after the last Assembler-significant
field in a source statement. A comment starting in the first column of the source file will
be aligned with the label field in the listing file. Otherwise, the comment will be shifted right
and aligned with the comment field in the listing file.

EXAMPLE:

; THIS COMMENT BEGINS IN COLUMN 1 OF THE SOURCE FILE

LOOP JSR COMPUTE ; THIS IS A TRAILING COMMENT
; THESE TWO COMMENTS ARE PRECEDED
; BY ATAB IN THE SOURCE FILE

6-6 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

Unreported Comment Delimiter Characters

Unreported comments are any number of characters preceded by two consecutive semi-
colons (;;) that are not part of a literal string. Unreported comments are not considered
significant by the Assembler, and can be included in the source statement, following the
same rules as normal comments. However, unreported comments are never reproduced
on the Assembler output listing, and are never saved as part of macro definitions.

EXAMPLE:

;» THESE LINES WILL NOT BE REPRODUCED
;» IN THE SOURCE LISTING

DSP ASSEMBLER REFERENCE MANUAL 6-7
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

\
Line Continuation Character or
Macro Argument Concatenation Character

Line Continuation

The backslash character (\), if used as the last character on a line, indicates to the Assem-
bler that the source statement is continued on the following line. The continuation line will
be concatenated to the previous line of the source statement, and the result will be pro-
cessed by the Assembler as if it were a single line source statement. The maximum
source statement length (the first line and any continuation lines) is 512 characters.

EXAMPLE:

; THIS COMMENT \
EXTENDS OVER\
THREE LINES

Macro Argument Concatenation

The backslash (\) is also used to cause the concatenation of a macro dummy argument
with other adjacent alphanumeric characters. For the macro processor to recognize dum-
my arguments, they must normally be separated from other alphanumeric characters by
a non-symbol character. However, sometimes it is desirable to concatenate the argument
characters with other characters. If an argument is to be concatenated in front of or be-
hind some other symbol characters, then it must be followed by or preceded by the back-
slash, respectively.

EXAMPLE:
Suppose the source input file contained the following macro definition:

SWAP_REG MACRO REG1,REG2 ;swap REG1,REG2 using D4.L as temp
MOVE R\REG1,D4.L
MOVE R\REG2,R\REG1
MOVE DA4.L,R\REG2
ENDM

6-8 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

The concatenation operator (\) indicates to the macro processor that the substitution char-
acters for the dummy arguments are to be concatenated in both cases with the character
R. If this macro were called with the following statement,

SWAP_REG 0,1

the resulting expansion would be:

MOVE RO,D4.L
MOVE R1,RO
MOVE D4.LR1

DSP ASSEMBLER REFERENCE MANUAL 6-9
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

?
Return Value of Symbol Character

The ?<symbol> sequence, when used in macro definitions, will be replaced by an ASCII
string representing the value of <symbol>. This operator may be used in association with
the backslash (\) operator. The value of <symbol> must be an integer (not floating point).

EXAMPLE:
Consider the following macro definition:

SWAP_SYM MACRO REG1,REG2 ;swap REG1,REG2 using D4.L as temp
MOVE R\?REG1,D4.L
MOVE R\?REG2,R\?REG1
MOVE DA4.L,R\?REG2
ENDM

If the source file contained the following SET statements and macro call,

AREG SET 0
BREG SET 1
SWAP_SYM AREG,BREG

the resulting expansion as it would appear on the source listing would be:

MOVE RO,D4.L
MOVE R1,RO
MOVE D4.LR1

6-10 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

%
Return Hex Value of Symbol Character

The %<symbol> sequence, when used in macro definitions, will be replaced by an ASCII
string representing the hexadecimal value of <symbol>. This operator may be used in as-
sociation with the backslash (\) operator. The value of <symbol> must be an integer (not
floating point).

EXAMPLE:

Consider the following macro definition:

GEN_LAB MACRO LAB,VAL,STMT
LAB\%VAL STMT
ENDM

If this macro were called as follows,

NUM SET 10
GEN_LAB HEX,NUM,'NOP"

The resulting expansion as it would appear in the listing file would be:

HEXA NOP

DSP ASSEMBLER REFERENCE MANUAL 6-11
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

AN

Macro Local Label Override

The circumflex ("), when used as a unary expression operator in a macro expansion, will
cause any local labels in its associated term to be evaluated at normal scope rather than
macro scope. This means that any underscore labels in the expression term following the
circumflex will not be searched for in the macro local label list. The operator has no effect
on normal labels or outside of a macro expansion. The circumflex operator is useful for
passing local labels as macro arguments to be used as referents in the macro. Note that
the circumflex is also used as the binary exclusive OR operator.

EXAMPLE:

Consider the following macro definition:

LOAD MACRO ADDR
MOVE P:*ADDR,RO
ENDM

If this macro were called as follows,

_LOCAL
LOAD _LOCAL

the Assembler would ordinarily issue an error since _LOCAL is not defined within the body
of the macro. With the override operator the Assembler recognizes the _LOCAL symbol
outside the macro expansion and uses that value in the MOVE instruction.

6-12 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

Macro String Delimiter or
Quoted String DEFINE Expansion Character

Macro String

The double quote ("), when used in macro definitions, is transformed by the macro pro-
cessor into the string delimiter, the single quote (). The macro processor examines the
characters between the double quotes for any macro arguments. This mechanism allows
the use of macro arguments as literal strings.

EXAMPLE:

Using the following macro definition,

CSTR MACRO STRING
DC "STRING"
ENDM

and a macro call,

CSTR ABCD
the resulting macro expansion would be:
DC '‘ABCD'

Quoted String DEFINE Expansion

A sequence of characters which matches a symbol created with a DEFINE directive will
not be expanded if the character sequence is contained within a quoted string. Assembler
strings generally are enclosed in single quotes ('). If the string is enclosed in double

DSP ASSEMBLER REFERENCE MANUAL 6-13
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

guotes (") then DEFINE symbols will be expanded within the string. In all other respects
usage of double quotes is equivalent to that of single quotes.

EXAMPLE:

Consider the source fragment below:

DEFINE LONG 'short’
STR_MAC MACRO STRING

MSG 'This is a LONG STRING'

MSG "This is a LONG STRING"

ENDM

If this macro were invoked as follows,

STR_MAC sentence

then the resulting expansion would be:

MSG 'This is a LONG STRING'
MSG "This is a short sentence'
6-14 DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Assembler Significant Characters And Directives
Assembler Directives

@

Function Delimiter

All Assembler built-in functions start with the @ symbol. See Section 3.8 for a full discus-
sion of these functions.

EXAMPLE:

SVAL EQU @SQT(FVAL) ; OBTAIN SQUARE ROOT

DSP ASSEMBLER REFERENCE MANUAL 6-15
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

*

Location Counter Substitution

When used as an operand in an expression, the asterisk represents the current integer
value of the runtime location counter.

EXAMPLE:

ORG X:$100
XBASE EQU *+$20 ; XBASE = $120
6-16 DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

++
String Concatenation Operator

Any two strings can be concatenated with the string concatenation operator (++). The two
strings must each be enclosed by single or double quotes, and there must be no interven-
ing blanks between the string concatenation operator and the two strings.

EXAMPLE:

'‘ABC'++'DEF' = '"ABCDEF'

DSP ASSEMBLER REFERENCE MANUAL 6-17
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

[]

Substring Delimiter
[<string>,<offset><length>]

Square brackets delimit a substring operation. The <string> argument is the source
string. <offset> is the substring starting position within <string>. <length> is the length of
the desired substring. <string> may be any legal string combination, including another
substring. An error is issued if either <offset> or <length> exceed the length of <string>.

EXAMPLE:
DEFINE ID ['DSP56000',3,5] ; ID ='56000"'

6-18 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

<<
I/O Short Addressing Mode Force Operator

Many DSP instructions allow an 1/0O short form of addressing. If the value of an absolute
address is known to the Assembler on pass one, then the Assembler will always pick the
shortest form of addressing consistent with the instruction format. If the absolute address
is not known to the Assembler on pass one (that is, the address is a forward or external
reference), then the Assembler will pick the long form of addressing by default. If this is
not desired, then the I/O short form of addressing can be forced by preceding the absolute
address by the I/O short addressing mode force operator (<<).

EXAMPLE:

Since the symbol IOPORT is a forward reference in the following sequence of source
lines, the Assembler would pick the long absolute form of addressing by default:

BTST #4,Y:I0PORT
IOPORT EQU Y:$FFF3

Because the long absolute addressing mode would cause the instruction to be two words
long instead of one word for the 1/0 short absolute addressing mode, it would be desirable
to force the 1/0 short absolute addressing mode as shown below:

BTST #4,Y <<IOPORT
IOPORT EQU Y:$FFF3

DSP ASSEMBLER REFERENCE MANUAL 6-19
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

<
Short Addressing Mode Force Operator

Many DSP instructions allow a short form of addressing. If the value of an absolute ad-
dress is known to the Assembler on pass one, or the FORCE SHORT directive is active,
then the Assembler will always pick the shortest form of addressing consistent with the
instruction format. If the absolute address is not known to the Assembler on pass one
(that is, the address is a forward or external reference), then the Assembler will pick the
long form of addressing by default. If this is not desired, then the short absolute form of
addressing can be forced by preceding the absolute address by the short addressing
mode force operator (<).

See also: FORCE
EXAMPLE:

Since the symbol DATAST is a forward reference in the following sequence of source
lines, the Assembler would pick the long absolute form of addressing by default:

MOVE DO.L,Y:DATAST
DATAST EQU Y:$23

Because the long absolute addressing mode would cause the instruction to be two words
long instead of one word for the short absolute addressing mode, it would be desirable to
force the short absolute addressing mode as shown below:

MOVE DO.L,Y:<DATAST
DATAST EQU Y:$23

6-20 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

>
Long Addressing Mode Force Operator

Many DSP instructions allow a long form of addressing. If the value of an absolute ad-
dress is known to the Assembler on pass one, then the Assembler will always pick the
shortest form of addressing consistent with the instruction format, unless the FORCE
LONG directive is active. If this is not desired, then the long absolute form of addressing
can be forced by preceding the absolute address by the long addressing mode force op-
erator (>).

See also: FORCE
EXAMPLE:

Since the symbol DATAST is a not a forward reference in the following sequence of
source lines, the Assembler would pick the short absolute form of addressing:

DATAST EQU Y:$23
MOVE DO.L,Y:DATAST

If this is not desirable, then the long absolute addressing mode can be forced as shown
below:

DATAST EQU Y:$23
MOVE DO.L,Y:>DATAST

DSP ASSEMBLER REFERENCE MANUAL 6-21
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

#
Immediate Addressing Mode

The pound sign (#) is used to indicate to the Assembler to use the immediate addressing
mode.

EXAMPLE:
CNST EQU $5
MOVE #CNST,DO.L
6-22 DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

#<
Immediate Short Addressing Mode Force Operator

Many DSP instructions allow a shortimmediate form of addressing. If the immediate data
is known to the Assembler on pass one (not a forward or external reference), or the
FORCE SHORT directive is active, then the Assembler will always pick the shortest form
of immediate addressing consistent with the instruction. If the immediate data is a forward
or external reference, then the Assembler will pick the long form of immediate addressing
by default. If this is not desired, then the short form of addressing can be forced using the
immediate short addressing mode force operator (#<).

See also: FORCE
EXAMPLE:

In the following sequence of source lines, the symbol CNST is not known to the Assembler
on pass one, and therefore, the Assembler would use the long immediate addressing form
for the MOVE instruction.

MOVE #CNST,DO.L
CNST EQU $5

Because the long immediate addressing mode makes the instruction two words long in-
stead of one word for the immediate short addressing mode, it may be desirable to force
the immediate short addressing mode as shown below:

MOVE #<CNST,DO.L
CNST EQU $5

DSP ASSEMBLER REFERENCE MANUAL 6-23
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

#>
Immediate Long Addressing Mode Force Operator

Many DSP instructions allow a long immediate form of addressing. If the immediate data
is known to the Assembler on pass one (not a forward or external reference), then the As-
sembler will always pick the shortest form of immediate addressing consistent with the in-
struction, unless the FORCE LONG directive is active. If this is not desired, then the long
form of addressing can be forced using the immediate long addressing mode force oper-
ator (#>).

See also: FORCE
EXAMPLE:

In the following sequence of source lines, the symbol CNST is known to the Assembler
on pass one, and therefore, the Assembler would use the short immediate addressing
form for the MOVE instruction.

CNST EQU $5
MOVE #CNST,DO.L

If this is not desirable, then the long immediate form of addressing can be forced as shown
below:

CNST EQU $5
MOVE #>CNST,DO.L

6-24 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

BADDR
Set Buffer Address

BADDR <M | R>,<expression>

The BADDR directive sets the runtime location counter to the address of a buffer of the
given type, the length of which in words is equal to the value of <expression>. The buffer
type may be either Modulo or Reverse-carry. If the runtime location counter is not zero,
this directive first advances the runtime location counter to a base address that is a mul-

tiple of 2K where 2K >= <expression>. An error will be issued if there is insufficient memory
remaining to establish a valid base address. Unlike other buffer allocation directives, the
runtime location counter is not advanced by the value of the integer expression in the op-
erand field; the location counter remains at the buffer base address. The block of memory
intended for the buffer is not initialized to any value.

The result of <expression> may have any memory space attribute but must be an abso-
lute integer greater than zero and cannot contain any forward references (symbols that
have not yet been defined). If a Modulo buffer is specified, the expression must fall within
the range 2 <= <expression> <= m, where m is the maximum address of the target DSP.
If a Reverse-carry buffer is designated and <expression> is not a power of two a warning
will be issued.

A label is not allowed with this directive.
See also: BSM, BSB, BUFFER, DSM, DSR
EXAMPLE:

ORG X:$100
M_BUF BADDR M,24 ; CIRCULAR BUFFER MOD 24

DSP ASSEMBLER REFERENCE MANUAL 6-25
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

BSB
Block Storage Bit-Reverse

[<label>] BSB <expression>[,<expression>]

The BSB directive causes the Assembler to allocate and initialize a block of words for a
reverse-carry buffer. The number of words in the block is given by the first expression,
which must evaluate to an absolute integer. Each word is assigned the initial value of the
second expression. If there is no second expression, an initial value of zero is assumed.
If the runtime location counter is not zero, this directive first advances the runtime location

counter to a base address that is a multiple of 2X where 2K is greater than or equal to the
value of the first expression. An error will occur if the first expression contains symbols
that are not yet defined (forward references) or if the expression has a value of less than
or equal to zero. Also, if the first expression is not a power of two a warning will be gener-
ated. Both expressions can have any memory space attribute.

<label>, if present, will be assigned the value of the runtime location counter after a valid
base address has been established.

Only one word of object code will be shown on the listing, regardless of how large the first
expression is. However, the runtime location counter will be advanced by the number of
words generated.

See also: BSC, BSM, DC

EXAMPLE:
BUFFER BSB BUFSIZ ; INITIALIZE BUFFER TO ZEROS
6-26 DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

BSC
Block Storage of Constant

[<label>] BSC <expression>[,<expression>]

The BSC directive causes the Assembler to allocate and initialize a block of words. The
number of words in the block is given by the first expression, which must evaluate to an
absolute integer. Each word is assigned the initial value of the second expression. If
there is no second expression, an initial value of zero is assumed. If the first expression
contains symbols that are not yet defined (forward references) or if the expression has a
value of less than or equal to zero, an error will be generated. Both expressions can have
any memory space attribute.

<label>, if present, will be assigned the value of the runtime location counter at the start
of the directive processing.

Only one word of object code will be shown on the listing, regardless of how large the first
expression is. However, the runtime location counter will be advanced by the number of
words generated.

See also: BSM, BSB, DC
EXAMPLE:

UNUSED BSC $2FFF-@LCV(R),$FFFFFFFF ; FILL UNUSED EPROM

DSP ASSEMBLER REFERENCE MANUAL 6-27
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

BSM
Block Storage Modulo

[<label>] BSM <expression>[,<expression>]

The BSM directive causes the Assembler to allocate and initialize a block of words for a
modulo buffer. The number of words in the block is given by the first expression, which
must evaluate to an absolute integer. Each word is assigned the initial value of the second
expression. If there is no second expression, an initial value of zero is assumed. If the
runtime location counter is not zero, this directive first advances the runtime location

counter to a base address that is a multiple of 2X where 2K is greater than or equal to the
value of the first expression. An error will occur if the first expression contains symbols
that are not yet defined (forward references), has a value of less than or equal to zero, or
falls outside the range 2 <= <expression> <= m, where m is the maximum address of the
target DSP. Both expressions can have any memory space attribute.

<label>, if present, will be assigned the value of the runtime location counter after a valid
base address has been established.

Only one word of object code will be shown on the listing, regardless of how large the first
expression is. However, the runtime location counter will be advanced by the number of
words generated.

See also: BSC, BSB, DC

EXAMPLE:
BUFFER BSM BUFSIZ,$FFFFFFFF ; INITIALIZE BUFFER TO ALL ONES
6-28 DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

BUFFER
Start Buffer

BUFFER <M | R><expression>

The BUFFER directive indicates the start of a buffer of the given type. Data is allocated
for the buffer until an ENDBUF directive is encountered. Instructions and most data def-
inition directives may appear between the BUFFER and ENDBUF pair, although BUFF-
ER directives may not be nested and certain types of directives such as MODE, ORG,
SECTION, and other buffer allocation directives may not be used. The <expression> rep-
resents the buffer size. If less data is allocated than the size of the buffer, the remaining
buffer locations will be uninitialized. If more data is allocated than the specified size of the
buffer, an error is issued.

The BUFFER directive sets the runtime location counter to the address of a buffer of the
given type, the length of which in words is equal to the value of <expression>. The buffer
type may be either Modulo or Reverse-carry. If the runtime location counter is not zero,
this directive first advances the runtime location counter to a base address that is a mul-

tiple of 2%, where 2K >= <expression>. An error will be issued if there is insufficient memory
remaining to establish a valid base address. Unlike other buffer allocation directives, the
runtime location counter is not advanced by the value of the integer expression in the op-
erand field; the location counter remains at the buffer base address.

The result of <expression> may have any memory space attribute but must be an abso-
lute integer greater than zero and cannot contain any forward references (symbols that
have not yet been defined). If a Modulo buffer is specified, the expression must fall within
the range 2 <= <expression> <= m, where m is the maximum address of the target DSP.
If a Reverse-carry buffer is designated and <expression> is not a power of two a warning
will be issued.

A label is not allowed with this directive.

See also: BADDR, BSM, BSB, DSM, DSR, ENDBUF

EXAMPLE:
ORG X:$100
BUFFER M,24 : CIRCULAR BUFFER MOD 24
M_BUF DC 0.5,0.5,0.5,0.5
DS 20 - REMAINDER UNINITIALIZED
ENDBUF
DSP ASSEMBLER REFERENCE MANUAL 6-29

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

COBJ
Comment Object File

COBJ <string>

The COBJ directive is used to place a comment in the object code file. The <string> will
be put in the object file as a comment (refer to the object format description in Appendix
E).

A label is not allowed with this directive.
See also: IDENT
EXAMPLE:

COBJ 'Start of filter coefficients'

6-30 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

COMMENT
Start Comment Lines

COMMENT <delimiter>

<delimiter>

The COMMENT directive is used to define one or more lines as comments. The first non-
blank character after the COMMENT directive is the comment delimiter. The two delimit-
ers are used to define the comment text. The line containing the second comment delim-
iter will be considered the last line of the comment. The comment text can include any
printable characters and the comment text will be reproduced in the source listing as it ap-
pears in the source file.

A label is not allowed with this directive.
EXAMPLE:

COMMENT + This is a one line comment +
COMMENT * This is a multiple line
comment. Any number of lines
can be placed between the two delimiters.

DSP ASSEMBLER REFERENCE MANUAL 6-31
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

DC
Define Constant

[<label>] DC <arg>[,<arg>,...,<arg>]

The DC directive allocates and initializes a word of memory for each <arg> argument.
<arg> may be a numeric constant, a single or multiple character string constant, a symbol,
or an expression. The DC directive may have one or more arguments separated by com-
mas. Multiple arguments are stored in successive address locations. If multiple argu-
ments are present, one or more of them can be null (two adjacent commas), in which case
the corresponding address location will be filled with zeros. If the DC directive is used in
L memory, the arguments will be evaluated and stored as long word quantities. Other-
wise, an error will occur if the evaluated argument value is too large to represent in a sin-
gle DSP word.

<label>, if present, will be assigned the value of the runtime location counter at the start
of the directive processing.

Integer arguments are stored as is; floating point numbers are converted to binary values.
Single and multiple character strings are handled in the following manner:

1. Single character strings are stored in a word whose lower seven bits repre-
sent the ASCII value of the character.

EXAMPLE: 'R’ = $000052

2. Multiple character strings represent words whose bytes are composed of
concatenated sequences of the ASCII representation of the characters in the string
(unless the NOPS option is specified; see the OPT directive). If the number of
characters is not an even multiple of the number of bytes per DSP word, then the
last word will have the remaining characters left aligned and the rest of the word
will be zero-filled. If the NOPS option is given, each character in the string is stored
in a word whose lower seven bits represent the ASCII value of the character.

EXAMPLE:
'ABCD' = $414243
$440000

See also: BSC, DCB
EXAMPLE:
TABLE DC 1426,253,$2662,'ABCD'
CHARS DC '‘A','B','C",'D'
6-32 DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

DCB
Define Constant Byte

[<label>] DCB <arg>[,<arg>,...,<arg>]

The DCB directive allocates and initializes a byte of memory for each <arg> argument.
<arg> may be a byte integer constant, a single or multiple character string constant, a
symbol, or a byte expression. The DCB directive may have one or more arguments sep-
arated by commas. Multiple arguments are stored in successive byte locations. If multi-
ple arguments are present, one or more of them can be null (two adjacent commas), in
which case the corresponding byte location will be filled with zeros.

<label>, if present, will be assigned the value of the runtime location counter at the start
of the directive processing.

Integer arguments are stored as is, but must be byte values (e.g. within the range 0-255);
floating point numbers are not allowed. Single and multiple character strings are handled
in the following manner:

1. Single character strings are stored in a word whose lower seven bits repre-
sent the ASCII value of the character.

EXAMPLE: 'R = $000052

2. Multiple character strings represent words whose bytes are composed of
concatenated sequences of the ASCII representation of the characters in the string
(unless the NOPS option is specified; see the OPT directive). If the number of
characters is not an even multiple of the number of bytes per DSP word, then the
last word will have the remaining characters left aligned and the rest of the word
will be zero-filled. If the NOPS option is given, each character in the string is stored
in a word whose lower seven bits represent the ASCII value of the character.

EXAMPLE:
'‘AB',,'CD' = $414200
$434400
See also: BSC, DC
EXAMPLE:
TABLE DCB 'two',0,'strings’,0
CHARS DCB ‘A''B','C','D'
DSP ASSEMBLER REFERENCE MANUAL 6-33

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

DEFINE
Define Substitution String

DEFINE <symbol> <string>

The DEFINE directive is used to define substitution strings that will be used on all follow-
ing source lines. All succeeding lines will be searched for an occurrence of <symbol>,
which will be replaced by <string>. This directive is useful for providing better documen-
tation in the source program. <symbol> must adhere to the restrictions for non-local la-
bels. That is, it cannot exceed 512 characters, the first of which must be alphabetic, and
the remainder of which must be either alphanumeric or the underscore(_). A warning will
result if a new definition of a previously defined symbol is attempted. The Assembler out-
put listing will show lines after the DEFINE directive has been applied and therefore rede-
fined symbols will be replaced by their substitution strings (unless the NODXL option in
effect; see the OPT directive).

Macros represent a special case. DEFINE directive translations will be applied to the
macro definition as it is encountered. When the macro is expanded any active DEFINE
directive translations will again be applied.

DEFINE directive symbols that are defined within a section will only apply to that section.
See the SECTION directive.

A label is not allowed with this directive.

See also: UNDEF

EXAMPLE:

If the following DEFINE directive occurred in the first part of the source program:
DEFINE ARRAYSIZ 10 * SAMPLSIZ'

then the source line below:

DS ARRAYSIZ

would be transformed by the Assembler to the following:

DS 10 * SAMPLSIZ

6-34 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

DS
Define Storage

[<label>] DS <expression>

The DS directive reserves a block of memory the length of which in words is equal to the
value of <expression>. This directive causes the runtime location counter to be advanced
by the value of the absolute integer expression in the operand field. <expression> can
have any memory space attribute. The block of memory reserved is not initialized to any
value. The expression must be an integer greater than zero and cannot contain any for-
ward references (symbols that have not yet been defined).

<label>, if present, will be assigned the value of the runtime location counter at the start
of the directive processing.

See also: DSM, DSR
EXAMPLE:

S_BUF DS 12 ; SAMPLE BUFFER

DSP ASSEMBLER REFERENCE MANUAL 6-35
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

DSM
Define Modulo Storage

[<label>] DSM <expression>

The DSM directive reserves a block of memory the length of which in words is equal to
the value of <expression>. If the runtime location counter is not zero, this directive first

advances the runtime location counter to a base address that is a multiple of 2¢, where

2K >= <expression>. An error will be issued if there is insufficient memory remaining to es-
tablish a valid base address. Next the runtime location counter is advanced by the value
of the integer expression in the operand field. <expression> can have any memory space
attribute. The block of memory reserved is not initialized to any given value. The result of
<expression> must be an absolute integer greater than zero and cannot contain any for-
ward references (symbols that have not yet been defined). The expression also must fall
within the range 2 <= <expression> <= m, where m is the maximum address of the target
DSP.

<label>, if present, will be assigned the value of the runtime location counter after a valid
base address has been established.

See also: DS, DSR

EXAMPLE:

ORG X:$100
M_BUF DSM 24 ; CIRCULAR BUFFER MOD 24
6-36 DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

DSR
Define Reverse Carry Storage

[<label>] DSR <expression>

The DSR directive reserves a block of memory the length of which in words is equal to the
value of <expression>. If the runtime location counter is not zero, this directive first ad-
vances the runtime location counter to a base address that is a multiple of 2X, where

2K >= <expression>. An error will be issued if there is insufficient memory remaining to
establish a valid base address. Next the runtime location counter is advanced by the value
of the integer expression in the operand field. <expression> can have any memory space
attribute. The block of memory reserved is not initialized to any given value. The result of
<expression> must be an absolute integer greater than zero and cannot contain any for-
ward references (symbols that have not yet been defined). Since the DSR directive is use-
ful mainly for generating FFT buffers, if <expression> is not a power of two a warning will
be generated.

<label>, if present, will be assigned the value of the runtime location counter after a valid
base address has been established.

See also: DS, DSM
EXAMPLE:

ORG X:$100
R_BUF DSR 8 ; REVERSE CARRY BUFFER FOR 16 POINT FFT

DSP ASSEMBLER REFERENCE MANUAL 6-37
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

DUP
Duplicate Sequence of Source Lines

[<label>] DUP <expression>

ENDM

The sequence of source lines between the DUP and ENDM directives will be duplicated
by the number specified by the integer <expression>. <expression> can have any mem-
ory space attribute. If the expression evaluates to a number less than or equal to 0, the
sequence of lines will not be included in the Assembler output. The expression result
must be an absolute integer and cannot contain any forward references (symbols that
have not already been defined). The DUP directive may be nested to any level.

<label>, if present, will be assigned the value of the runtime location counter at the start
of the DUP directive processing.

See also: DUPA, DUPC, DUPF, ENDM, MACRO
EXAMPLE:

The sequence of source input statements,

COUNT SET 3
DUP COUNT ; ASR BY COUNT
ASR DO
ENDM

would generate the following in the source listing:

COUNT SET 3
DUP COUNT ; ASR BY COUNT
ASR DO
ASR DO
ASR DO
ENDM
6-38 DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

Note that the lines

DUP COUNT ;ASR BY COUNT
ENDM

will only be shown on the source listing if the MD option is enabled. The lines

ASR DO
ASR DO
ASR DO

will only be shown on the source listing if the MEX option is enabled.

See the OPT directive in this chapter for more information on the MD and MEX options.

DSP ASSEMBLER REFERENCE MANUAL 6-39
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

DUPA
Duplicate Sequence With Arguments
[<label>] DUPA <dummy><arg>[<,<arg>,...,<arg>]
ENDM

The block of source statements defined by the DUPA and ENDM directives will be repeat-
ed for each argument. For each repetition, every occurrence of the dummy parameter
within the block is replaced with each succeeding argument string. If the argument string
is a null, then the block is repeated with each occurrence of the dummy parameter re-
moved. If an argument includes an embedded blank or other Assembler-significant char-
acter, it must be enclosed with single quotes.

<label>, if present, will be assigned the value of the runtime location counter at the start
of the DUPA directive processing.

See also: DUP, DUPC, DUPF, ENDM, MACRO
EXAMPLE:
If the input source file contained the following statements,

DUPA VALUE,12,32,34
DC VALUE
ENDM

then the assembled source listing would show

DUPA VALUE,12,32,34

DC 12
DC 32
DC 34
ENDM
6-40 DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

Note that the lines

DUPA VALUE,12,32,34
ENDM

will only be shown on the source listing if the MD option is enabled. The lines

DC 12
DC 32
DC 34

will only be shown on the source listing if the MEX option is enabled.

See the OPT directive in this chapter for more information on the MD and MEX options.

DSP ASSEMBLER REFERENCE MANUAL 6-41
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

DUPC
Duplicate Sequence With Characters
[<label>] DUPC <dummy>,<string>
ENDM

The block of source statements defined by the DUPC and ENDM directives will be repeat-
ed for each character of <string>. For each repetition, every occurrence of the dummy
parameter within the block is replaced with each succeeding character in the string. If the
string is null, then the block is skipped.

<label>, if present, will be assigned the value of the runtime location counter at the start
of the DUPC directive processing.

See also: DUP, DUPA, DUPF, ENDM, MACRO
EXAMPLE:
If input source file contained the following statements,

DUPC VALUE,'123'
DC VALUE
ENDM

then the assembled source listing would show:

DUPC VALUE,'123'

DC 1
DC 2
DC 3
ENDM

Note that the lines

DUPC VALUE,'123'
ENDM

will only be shown on the source listing if the MD option is enabled. The lines

DC 1
DC 2
DC 3

will only be shown on the source listing if the MEX option is enabled.

See the OPT directive in this chapter for more information on the MD and MEX options.

6-42 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

DUPF
Duplicate Sequence In Loop
[<label>] DUPF <dummy>,[<start>],<end>[,<increment>]
ENDM

The block of source statements defined by the DUPF and ENDM directives will be repeat-
ed in general (<end> - <start>) + 1 times when <increment> is 1. <start> is the starting
value for the loop index; <end> represents the final value. <increment> is the increment
for the loop index; it defaults to 1 if omitted (as does the <start> value). The <dummy>
parameter holds the loop index value and may be used within the body of instructions.

<label>, if present, will be assigned the value of the runtime location counter at the start
of the DUPF directive processing.

See also: DUP, DUPA, DUPC, ENDM, MACRO
EXAMPLE:
If input source file contained the following statements,

DUPF NUM,0,7
MOVE #0,R\NUM
ENDM

then the assembled source listing would show:

DUPF NUM,0,7
MOVE #0,R0O
MOVE #0,R1
MOVE #0,R2
MOVE #0,R3
MOVE #0,R4
MOVE #0,R5
MOVE #0,R6
MOVE #0,R7
ENDM

DSP ASSEMBLER REFERENCE MANUAL 6-43
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives

Assembler Directives

Note that the lines

DUPF NUM,0,7
ENDM

will only be shown on the source listing if the MD option is enabled. The lines

MOVE #0,R0O
MOVE #0,R1
MOVE #0,R2
MOVE #0,R3
MOVE #0,R4
MOVE #0,R5
MOVE #0,R6
MOVE #0,R7

will only be shown on the source listing if the MEX option is enabled.

See the OPT directive in this chapter for more information on the MD and MEX options.

6-44 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

END
End of Source Program

END [<expression>]

The optional END directive indicates that the logical end of the source program has been
encountered. Any statements following the END directive are ignored. The optional ex-
pression in the operand field can be used to specify the starting execution address of the
program. <expression> may be absolute or relocatable, but must have a memory space
attribute of Program or None. The END directive cannot be used in a macro expansion.

A label is not allowed with this directive.
EXAMPLE:

END BEGIN ; BEGIN is the starting execution address

DSP ASSEMBLER REFERENCE MANUAL 6-45
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

ENDBUF
End Buffer

ENDBUF

The ENDBUF directive is used to signify the end of a buffer block. The runtime location
counter will remain just beyond the end of the buffer when the ENDBUF directive is en-
countered.

A label is not allowed with this directive.

See also: BUFFER

EXAMPLE:
ORG X:$100

BUF BUFFER R,64 ; uninitialized reverse-carry buffer
ENDBUF

6-46 DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

ENDIF
End of Conditional Assembly

ENDIF

The ENDIF directive is used to signify the end of the current level of conditional assembly.
Conditional assembly directives can be nested to any level, but the ENDIF directive al-
ways refers to the most previous IF directive.

A label is not allowed with this directive.

See also: IF

EXAMPLE:
IF @REL()

SAVEPC SET * ; Save current program counter
ENDIF

DSP ASSEMBLER REFERENCE MANUAL 6-47
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

ENDM
End of Macro Definition

ENDM

Every MACRO, DUP, DUPA, and DUPC directive must be terminated by an ENDM direc-
tive.

A label is not allowed with this directive.

See also: DUP, DUPA, DUPC, MACRO

EXAMPLE:
SWAP_SYM MACRO REG1,REG ;swap REG1,REG2 using D4.L as temp
MOVE R\?REG1,D4.L
MOVE R\?REG2,R\?REG1
MOVE D4.L,R\?REG2
ENDM
6-48 DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

ENDSEC
End Section

ENDSEC
Every SECTION directive must be terminated by an ENDSEC directive.
A label is not allowed with this directive.

See also: SECTION

EXAMPLE:
SECTION COEFF
ORG Y:
VALUES BSC $100 . Initialize to zero
ENDSEC
DSP ASSEMBLER REFERENCE MANUAL 6-49

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

EQU
Equate Symbol to a Value

<label> EQU [{X: | Y:|L:|P:|E:}|<expression>

The EQU directive assigns the value and memory space attribute of <expression> to the
symbol <label>. If <expression> has a memory space attribute of None, then it can op-
tionally be preceded by any of the indicated memory space qualifiers to force a memory
space attribute. An error will occur if the expression has a memory space attribute other
than None and it is different than the forcing memory space attribute. The optional forcing
memory space attribute is useful to assign a memory space attribute to an expression that
consists only of constants but is intended to refer to a fixed address in a memory space.

The EQU directive is one of the directives that assigns a value other than the program
counter to the label. The label cannot be redefined anywhere else in the program (or sec-
tion, if SECTION directives are being used). The <expression> may be relative or abso-
lute, but cannot include a symbol that is not yet defined (no forward references are
allowed).

See also: SET
EXAMPLE:
A D PORT EQU X:$4000

This would assign the value $4000 with a memory space attribute of X to the symbol
A D _PORT.

COMPUTE EQU @LCV(L)

@LCV(L) is used to refer to the value and memory space attribute of the load location
counter. This value and memory space attribute would be assigned to the symbol COM-
PUTE.

6-50 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

EXITM
Exit Macro

EXITM

The EXITM directive will cause immediate termination of a macro expansion. It is useful
when used with the conditional assembly directive IF to terminate macro expansion when
error conditions are detected.

A label is not allowed with this directive.

See also: DUP, DUPA, DUPC, MACRO

EXAMPLE:
CALC MACRO XVAL,YVAL
IF XVAL<O
FAIL '‘Macro parameter value out of range'
EXITM ; Exit macro
ENDIF
ENDM
DSP ASSEMBLER REFERENCE MANUAL 6-51

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

FAIL
Programmer Generated Error

FAIL [{<str>|<exp>}[,{<str>|<exp>},...,{<str>|<exp>}]]

The FAIL directive will cause an error message to be output by the Assembler. The total
error count will be incremented as with any other error. The FAIL directive is normally
used in conjunction with conditional assembly directives for exceptional condition check-
ing. The assembly proceeds normally after the error has been printed. An arbitrary num-
ber of strings and expressions, in any order but separated by commas with no intervening
white space, can be specified optionally to describe the nature of the generated error.

A label is not allowed with this directive.
See also: MSG, WARN
EXAMPLE:

FAIL '‘Parameter out of range’

6-52 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

FORCE
Set Operand Forcing Mode

FORCE {SHORT | LONG | NONE}

The FORCE directive causes the Assembler to force all immediate, memory, and address
operands to the specified mode as if an explicit forcing operator were used. Note that if
a relocatable operand value forced short is determined to be too large for the instruction
word, an error will occur at link time, not during assembly. Explicit forcing operators over-
ride the effect of this directive.

A label is not allowed with this directive.
See also: <, >, #<, #>
EXAMPLE:

FORCE SHORT ; force operands short

DSP ASSEMBLER REFERENCE MANUAL 6-53
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

GLOBAL
Global Section Symbol Declaration

GLOBAL <symbol>[,<symbol>,...,<symbol>]

The GLOBAL directive is used to specify that the list of symbols is defined within the cur-
rent section, and that those definitions should be accessible by all sections. This directive
is only valid if used within a program block bounded by the SECTION and ENDSEC di-
rectives. If the symbols that appear in the operand field are not defined in the section, an
error will be generated.

A label is not allowed with this directive.
See also: SECTION, XDEF, XREF
EXAMPLE:

SECTION (@]
GLOBAL LOOPA ; LOOPA will be globally accessible by other sections

ENDSEC

6-54 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

GSET
Set Global Symbol to a Value
<label> GSET <expression>
GSET <label> <expression>

The GSET directive is used to assign the value of the expression in the operand field to
the label. The GSET directive functions somewhat like the EQU directive. However, labels
defined via the GSET directive can have their values redefined in another part of the pro-
gram (but only through the use of another GSET or SET directive). The GSET directive is
useful for resetting a global SET symbol within a section, where the SET symbol would
otherwise be considered local. The expression in the operand field of a GSET must be
absolute and cannot include a symbol that is not yet defined (no forward references are
allowed).

See also: EQU, SET
EXAMPLE:
COUNT GSET 0 ; INITIALIZE COUNT

DSP ASSEMBLER REFERENCE MANUAL 6-55
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

HIMEM
Set High Memory Bounds

HIMEM <mem>[<rl>]:<expression>[,...]

The HIMEM directive establishes an absolute high memory bound for code and data gen-
eration. <mem> corresponds to one of the DSP memory spaces (X, Y, L, P, E). <rl>is one
of the letters R for runtime counter or L for load counter. The <expression> is an absolute
integer value within the address range of the machine. If during assembly the specified
location counter exceeds the value given by <expression>, a warning is issued.

A label is not allowed with this directive.

See also: LOMEM

EXAMPLE:
HIMEM XR:$7FFF,YR:$7FFF ; SET X/Y RUN HIGH MEM
BOUNDS

6-56 DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

IDENT
Object Code Identification Record

[<label>] IDENT <expressionl>,<expression2>

The IDENT directive is used to create an identification record for the object module. If <la-
bel> is specified, it will be used as the module name. If <label> is not specified, then the
filename of the source input file is used as the module name. <expressionl> is the ver-
sion number; <expression2> is the revision number. The two expressions must each
evaluate to an integer result. The comment field of the IDENT directive will also be passed
on to the object module.

See also: COBJ
EXAMPLE:
If the following line was included in the source file,

FFILTER IDENT 1,2 ; FIR FILTER MODULE

then the object module identification record would include the module name (FFILTER),
the version number (1), the revision number (2), and the comment field (; FIR FILTER
MODULE).

DSP ASSEMBLER REFERENCE MANUAL 6-57
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

IF
Conditional Assembly Directive

IF <expression>
[ELSE] (the ELSE directive is optional)
ENDIF

Part of a program that is to be conditionally assembled must be bounded by an IF-ENDIF
directive pair. If the optional ELSE directive is not present, then the source statements
following the IF directive and up to the next ENDIF directive will be included as part of the
source file being assembled only if the <expression> has a nonzero result. If the <expres-
sion> has a value of zero, the source file will be assembled as if those statements be-
tween the IF and the ENDIF directives were never encountered. If the ELSE directive is
present and <expression> has a nonzero result, then the statements between the IF and
ELSE directives will be assembled, and the statements between the ELSE and ENDIF di-
rectives will be skipped. Alternatively, if <expression> has a value of zero, then the state-
ments between the IF and ELSE directives will be skipped, and the statements between
the ELSE and ENDIF directives will be assembled.

The <expression> must have an absolute integer result and is considered true if it has a
nonzero result. The <expression> is false only if it has a result of 0. Because of the nature
of the directive, <expression> must be known on pass one (no forward references al-
lowed). IF directives can be nested to any level. The ELSE directive will always refer to
the nearest previous IF directive as will the ENDIF directive.

A label is not allowed with this directive.

See also: ENDIF

EXAMPLE:
IF @LST>0
DUP @LST : Unwind LIST directive stack
NOLIST
ENDM
ENDIF
6-58 DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

INCLUDE
Include Secondary File

INCLUDE <string> | <<string>>

This directive is inserted into the source program at any point where a secondary file is to
be included in the source input stream. The string specifies the filename of the secondary
file. The filename must be compatible with the operating system and can include a direc-
tory specification. If no extension is given for the filename, a default extension of .ASM is
supplied.

The file is searched for first in the current directory, unless the <<string>> syntax is used,
or in the directory specified in <string>. If the file is not found, and the -l option was used
on the command line that invoked the Assembler, then the string specified with the -1 op-
tion is prefixed to <string> and that directory is searched. If the <<string>> syntax is given,
the file is searched for only in the directories specified with the -1 option. Refer to Chapter
1, Running The Assembler.

A label is not allowed with this directive.

See also: MACLIB

EXAMPLE:
INCLUDE ‘headers/io.asm’ ; Unix example
INCLUDE 'storage\mem.asm' ; MS-DOS example
INCLUDE <data.asm> ; Do not look in current directory
DSP ASSEMBLER REFERENCE MANUAL 6-59

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

LIST
List the Assembly

LIST

Print the listing from this point on. The LIST directive will not be printed, but the subse-
guent source lines will be output to the source listing. The default is to print the source
listing. If the IL option has been specified, the LIST directive has no effect when encoun-
tered within the source program.

The LIST directive actually increments a counter that is checked for a positive value and
is symmetrical with respect to the NOLIST directive. Note the following sequence:

; Counter value currently 1

LIST : Counter value = 2
LIST ; Counter value = 3
NOLIST : Counter value = 2
NOLIST ; Counter value = 1

The listing still would not be disabled until another NOLIST directive was issued.
A label is not allowed with this directive.

See also: NOLIST, OPT

EXAMPLE:
IF LISTON
LIST ; Turn the listing back on
ENDIF

6-60 DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

LOCAL
Local Section Symbol Declaration

LOCAL <symbol>[,<symbol>,...,<symbol>]

The LOCAL directive is used to specify that the list of symbols is defined within the current
section, and that those definitions are explicitly local to that section. It is useful in cases
where a symbol is used as a forward reference in a nested section where the enclosing
section contains a like-named symbol. This directive is only valid if used within a program
block bounded by the SECTION and ENDSEC directives. The LOCAL directive must ap-
pear before <symbol> is defined in the section. If the symbols that appear in the operand
field are not defined in the section, an error will be generated.

A label is not allowed with this directive.

See also: SECTION, XDEF, XREF

EXAMPLE:
SECTION 10
LOCAL LOOPA ; LOOPA local to this section
ENDSEC

DSP ASSEMBLER REFERENCE MANUAL 6-61
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

LOMEM
Set Low Memory Bounds

LOMEM <mem>[<rl>]:<expression>[,...]

The LOMEM directive establishes an absolute low memory bound for code and data gen-
eration. <mem> corresponds to one of the DSP memory spaces (X, Y, L, P, E). <rl>is one
of the letters R for runtime counter or L for load counter. The <expression> is an absolute
integer value within the address range of the machine. If during assembly the specified
location counter falls below the value given by <expression>, a warning is issued.

A label is not allowed with this directive.
See also: HIMEM
EXAMPLE:

LOMEM XR:$100,YR:$100 ; SET X/Y RUN LOW MEM BOUNDS

6-62 DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

LSTCOL
Set Listing Field Widths

LSTCOL [<labw>[,<opcw>[,<oprw>[,<opc2w>[,<opr2w>[,<xw>[,<yw>]]]]]]]

Sets the width of the output fields in the source listing. Widths are specified in terms of
column positions. The starting position of any field is relative to its predecessor except for
the label field, which always starts at the same position relative to page left margin, pro-
gram counter value, and cycle count display. The widths may be expressed as any pos-
itive absolute integer expression. However, if the width is not adequate to accommodate
the contents of a field, the text is separated from the next field by at least one space.

Any field for which the default is desired may be null. A null field can be indicated by two
adjacent commas with no intervening space or by omitting any trailing fields altogether. If
the LSTCOL directive is given with no arguments all field widths are reset to their default
values.

A label is not allowed with this directive.
See also: PAGE
EXAMPLE:
LSTCOL 40,,,,,20,20 ; Reset label, X, and Y data field widths

DSP ASSEMBLER REFERENCE MANUAL 6-63
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

MACLIB
Macro Library

MACLIB <pathname>

This directive is used to specify the <pathname> (as defined by the operating system) of
a directory that contains macro definitions. Each macro definition must be in a separate
file, and the file must be named the same as the macro with the extension .ASM added.
For example, BLOCKMV.ASM would be a file that contained the definition of the macro
called BLOCKMV.

If the Assembler encounters a directive in the operation field that is not contained in the
directive or mnemonic tables, the directory specified by <pathname> will be searched for
a file of the unknown name (with the .ASM extension added). If such a file is found, the
current source line will be saved, and the file will be opened for input as an INCLUDE file.
When the end of the file is encountered, the source line is restored and processing is re-
sumed. Because the source line is restored, the processed file must have a macro defi-
nition of the unknown directive name, or else an error will result when the source line is
restored and processed. However, the processed file is not limited to macro definitions,
and can include any legal source code statements.

Multiple MACLIB directives may be given, in which case the Assembler will search each
directory in the order in which it is encountered.

A label is not allowed with this directive.

See also: INCLUDE

EXAMPLE:
MACLIB 'macros\mymacs\' ; IBM PC example
MACLIB ‘fftlib/' ; UNIX example
6-64 DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

MACRO
Macro Definition

<label> MACRO [<dummy argument list>]
<macro definition statements>

ENDM
The dummy argument list has the form:
[<dumarg>[,<dumarg>,...,<dumarg>]]

The required label is the symbol by which the macro will be called. If the macro is named
the same as an existing Assembler directive or mnemonic, a warning will be issued. This
warning can be avoided with the RDIRECT directive.

The definition of a macro consists of three parts: the header, which assigns a name to the
macro and defines the dummy arguments; the body, which consists of prototype or skel-
eton source statements; and the terminator. The header is the MACRO directive, its label,
and the dummy argument list. The body contains the pattern of standard source state-
ments. The terminator is the ENDM directive.

The dummy arguments are symbolic names that the macro processor will replace with ar-
guments when the macro is expanded (called). Each dummy argument must obey the
same rules as symbol names. Dummy argument names that are preceded by an under-
score are not allowed. Within each of the three dummy argument fields, the dummy ar-
guments are separated by commas. The dummy argument fields are separated by one
or more blanks.

Macro definitions may be nested but the nested macro will not be defined until the primary
macro is expanded.

Chapter 5 contains a complete description of macros.
See also: DUP, DUPA, DUPC, DUPF, ENDM
EXAMPLE:

SWAP_SYM MACRO REG1,REG2 ;swap REG1,REG2 using X0 as temp
MOVE R\?REG1,X0
MOVE R\?REG2,R\?REG1
MOVE XO,R\?REG2
ENDM

DSP ASSEMBLER REFERENCE MANUAL 6-65
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

MODE
Change Relocation Mode

MODE <ABS[OLUTE] | REL[ATIVE]>

Causes the Assembler to change to the designated operational mode. The MODE direc-
tive may be given at any time in the assembly source to alter the set of location counters
used for section addressing. Code generated while in absolute mode will be placed in
memory at the location determined during assembly. Relocatable code and data are
based from the enclosing section start address. The MODE directive has no effect when
the command line -A option is issued. See Chapter 4 for more information on modes, sec-
tions, and relocation.

A label is not allowed with this directive.

See also: ORG
EXAMPLE:

MODE ABS ; Change to absolute mode
6-66 DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

MSG
Programmer Generated Message

MSG [{<str>|<exp>} {<str>|<exp>},... {<str>|<exp>}]]

The MSG directive will cause a message to be output by the Assembler. The error and
warning counts will not be affected. The MSG directive is normally used in conjunction
with conditional assembly directives for informational purposes. The assembly proceeds
normally after the message has been printed. An arbitrary number of strings and expres-
sions, in any order but separated by commas with no intervening white space, can be
specified optionally to describe the nature of the message.

A label is not allowed with this directive.
See also: FAIL, WARN
EXAMPLE:

MSG '‘Generating sine tables’

DSP ASSEMBLER REFERENCE MANUAL 6-67
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

NOLIST
Stop Assembly Listing

NOLIST

Do not print the listing from this point on (including the NOLIST directive). Subsequent
source lines will not be printed.

The NOLIST directive actually decrements a counter that is checked for a positive value
and is symmetrical with respect to the LIST directive. Note the following sequence:

; Counter value currently 1

LIST : Counter value = 2
LIST ; Counter value = 3
NOLIST : Counter value = 2
NOLIST ; Counter value = 1

The listing still would not be disabled until another NOLIST directive was issued.
A label is not allowed with this directive.

See also: LIST, OPT

EXAMPLE:
IF LISTOFF
NOLIST ; Turn the listing off
ENDIF

6-68 DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives
Assembler Directives

OPT
Assembler Options

OPT <option>[,<option>,...,<option>] [<comment>]

The OPT directive is used to designate the Assembler options. Assembler options are giv-
en in the operand field of the source input file and are separated by commas. Options also
may be specified using the command line -O option (see Chapter 1). All options have a
default condition. Some options are reset to their default condition at the end of pass one.
Some are allowed to have the prefix NO attached to them, which then reverses their
meaning.

Options can be grouped by function into five different types:

1. Listing format control
Reporting options
Message control
Symbol options
Assembler operation

a s wn

Listing Format Control

These options control the format of the listing file:

FC - Fold trailing comments
FF - Form feeds for page ejects
FM - Format messages
PP - Pretty print listing
RC - Relative comment spacing
DSP ASSEMBLER REFERENCE MANUAL 6-69

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives

Assembler Directives
Reporting Options

These options control what is reported in the listing file:

CC - Enable cycle counts

CEX - Print DC expansions

CL - Print conditional assembly directives

CM - Preserve comment lines within macros
CONTC - Continue cycle counts

CRE - Print symbol cross-reference

DXL - Expand DEFINE directive strings in listing
HDR - Generate listing headers

IL - Inhibit source listing

LOC - Print local labels in cross-reference

MC - Print macro calls

MD - Print macro definitions

MEX - Print macro expansions

MU - Print memory utilization report

NL - Print conditional assembly and section nesting levels
S - Print symbol table

U - Print skipped conditional assembly lines

Message Control

These options control the types of Assembler messages that are generated:

AE - Check address expressions
IDW - Warn on pipeline stalls
MSW - Warn on memory space incompatibilities
NDE - Warn on DALU pipeline interlocks
UR - Flag unresolved references
wW - Display warning messages
6-70 DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Assembler Significant Characters And Directives

Symbol Options

Assembler Directives

These options deal with the handling of symbols by the Assembler:

CONST
DEX
GL
GS
IC
NS
SCL
SCO
SMS
SO
XLL
XR

- Make EQU symbols assembly time constants
- Expand DEFINE symbols within quoted strings
- Make all section symbols global

- Make all sections global static

- Ignore case in symbol names

- Support symbol scoping in nested sections

- Scope structured control statement labels

- Structured control statement labels to listing/object file

- Preserve memory space in SET symbols

- Write symbols to object file

- Write local labels to object file

- Recognize XDEFed symbols without XREF

Assembler Operation

Miscellaneous options having to do with internal Assembler operation:

AL
CK

CONTCK

DBL
DLD
EM
INTR
LB
LBX
LDB
Ml
PS
PSB
PSM
RP
RSV
SBM
Sl
SVO

- Align load counter in overlay buffers

- Enable checksumming

- Continue checksumming

- Split dual read instructions

- Do not restrict directives in loops

- Emulate 56100 instructions on the 56800

- Perform interrupt location checks

- Byte increment load counter

- Split load words into bytes

- Listing file debug

- Scan MACLIB directories for include files

- Pack strings

- Preserve sign bit in negative operands

- Programmable short addressing mode

- Generate NOP to accommodate pipeline delay
- Check reserve data memory locations

- Sixteen bit mode support

- Interpret short immediate as long or sign extended
- Preserve object file on errors

DSP ASSEMBLER REFERENCE MANUAL
For More Information On This Product,

Go to: www.freescale.com

6-71

Freescale Semiconductor, Inc.

Assembler Significant Characters And Directives

Assembler Directives

Following are descriptions of the individual options. The parenthetical inserts specify de-
fault if the option is the default condition, and reset if the option is reset to its default state
at the end of pass one.

A label is not allowed with this directive.

AE (default, reset) Check address expressions for appropriate arithmetic opera-
tions. For example, this will check that only valid add or subtract operations
are performed on address terms.

AL (default, reset) Align load counter in overlay buffers.

CC Enable cycle counts and clear total cycle count. Cycle counts will be shown
on the output listing for each instruction. Cycle counts assume a full instruc-
tion fetch pipeline and no wait states.

CEX Print DC expansions.

CK Enable checksumming of instruction and data values and clear cumulative
checksum. The checksum value can be obtained using the @CHK() function
(see Chapter 3).

CL (default, reset) Print the conditional assembly directives.

CM (default, reset) Preserve comment lines of macros when they are defined.
Note that any comment line within a macro definition that starts with two con-
secutive semicolons (;;) is never preserved in the macro definition.

CONST EQU symbols are maintained as assembly time constants and will not be sent
to the object file.

CONTC Re-enable cycle counts. Does not clear total cycle counts. The cycle count
for each instruction will be shown on the output listing.

CONTCK Re-enable checksumming of instructions and data. Does not clear cumula-
tive checksum value.

CRE Print a cross reference table at the end of the source listing. This option, if
used, must be specified before the first symbol in the source program is de-
fined.

DBL (DSP56800 only) Split dual read instructions.

DEX Expand DEFINE symbols within quoted strings. Can also be done on a case-
by-case basis using double-quoted strings.

DLD Do not restrict directives in DO loops. The presence of some directives in DO
loops does not make sense, including some OPT directive variations. This op-
tion suppresses errors on particular directives in loops.

DXL (default, reset) Expand DEFINE directive strings in listing.

6-72 DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives

EM

FC

FF
FM

GL

GS

INTR

LB

LBX

LDB

Assembler Directives

(DSP56800 only) Used when it is necessary to emulate 56100 instructions.
This option must be used in order to use the following 56100 instructions in
the 56800 part: ASR16, IMAC, NEGW, TFR2, SUBL and SWAP.

Fold trailing comments. Any trailing comments that are included in a source
line will be folded underneath the source line and aligned with the opcode
field. Lines that start with the comment character will be aligned with the label
field in the source listing. The FC option is useful for displaying the source
listing on 80 column devices.

Use form feeds for page ejects in the listing file.

Format Assembler messages so that the message text is aligned and broken
at word boundaries.

Make all section symbols global. This has the same effect as declaring every
section explicitly GLOBAL. This option must be given before any sections are
defined explicitly in the source file.

(default, reset in absolute mode) Make all sections global static. All section
counters and attributes will be associated with the GLOBAL section. This op-
tion must be given before any sections are defined explicitly in the source file.

(default, reset) Generate listing header along with titles and subititles.

Ignore case in symbol, section, and macro names. This directive must be is-
sued before any symbols, sections, or macros are defined.

(DSP56300 only) (default, reset) Generate warning on instruction delays due
to pipeline stalls.

Inhibit source listing. This option will stop the Assembler from producing a
source listing.

(default, reset in absolute mode) Perform interrupt location checks. Certain
DSP instructions may not appear in the interrupt vector locations in program
memory. This option enables the Assembler to check for these instructions
when the program counter is within the interrupt vector bounds.

Increment load counter (if different from runtime) by number of bytes in DSP
word to provide byte-wide support for overlays in bootstrap mode. This option
must appear before any code or data generation.

Split overlay load words into bytes and increment load counter by bytes. This
option facilitates debugging of custom boot code. It must appear prior to any
code or data generation.

Use the listing file as the debug source file rather than the assembly language
file. The -L command line option to generate a listing file must be specified for
this option to take effect.

DSP ASSEMBLER REFERENCE MANUAL 6-73
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Assembler Significant Characters And Directives

Assembler Directives

LOC

MC
MD
MEX
Ml

MSW
MU

NDE

NL

NOAE
NOAL
NOCC
NOCEX
NOCK
NOCL
NOCM

Include local labels in the symbol table and cross-reference listing. Local la-
bels are not normally included in these listings. If neither the S or CRE options
are specified, then this option has no effect. The LOC option must be speci-
fied before the first symbol is encountered in the source file.

(default, reset) Print macro calls.
(default, reset) Print macro definitions.
Print macro expansions.

Scan MACLIB directory paths for include files. The Assembler ordinarily
looks for included files only in the directory specified in the INCLUDE directory
or in the paths given by the - command line option. If the Ml option is used
the Assembler will also look for included files in any designated MACLIB di-
rectories.

(default, reset) Issue warning on memory space incompatibilities.

Include a memory utilization report in the source listing. This option must ap-
pear before any code or data generation.

(DSP56300 only) (default, reset) This is used to check for DALU pipeline in-
terlocks. It flags all interlocks that occur as a result of using the accumulator
register as a destination in previous instructions.

Display conditional assembly (IF-ELSE-ENDIF) and section nesting levels on
listing.

Do not check address expressions.

Do not align load counter in overlay buffers.

(default, reset) Disable cycle counts. Does not clear total cycle count.
(default, reset) Do not print DC expansions.

(default, reset) Disable checksumming of instruction and data values.
Do not print the conditional assembly directives.

Do not preserve comment lines of macros when they are defined.

NOCONST (default, reset) EQU symbols are exported to the object file.

NODBL (DSP56800 only) (default, reset) Do not split dual read instructions.
NODEX (default, reset) Do not expand DEFINE symbols within quoted strings.
NODLD (default, reset) Restrict use of certain directives in DO loop.

NODXL Do not expand DEFINE directive strings in listing.

6-74 DSP ASSEMBLER REFERENCE MANUAL

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Assembler Significant Characters And Directives

NOEM
NOFC
NOFF
NOFM
NOGS
NOHDR
NOIDW
NOINTR
NOMC
NOMD
NOMEX
NOMI
NOMSW
NONDE
NONL
NONS
NOPP

NOPS

NOPSB
NOPSM

NORC
NORP
NORSV
NOSCL

Assembler Directives

(DSP56800 only) (default, reset) Do not emulate 56100 instructions.
(default, reset) Inhibit folded comments.

(default, reset) Use multiple line feeds for page ejects in the listing file.
(default, reset) Do not format Assembler messages.

(default, reset in relative mode) Do not make all sections global static.
Do not generate listing header. This also turns off titles and subtitles.
(DSP56300 only) Do not generate warnings on pipeline stalls.
(default, reset in relative mode) Do not perform interrupt location checks.
Do not print macro calls.

Do not print macro definitions.

(default, reset) Do not print macro expansions.

(default, reset) Do not scan MACLIB directory paths for include files.
Do not issue warning on memory space incompatibilities.

(DSP56300 only) Do not flag DALU pipeline interlocks.

(default, reset) Do not display nesting levels on listing.

Do not allow scoping of symbols within nested sections.

Do not pretty print listing file. Source lines are sent to the listing file as they
are