
101 Innovation Drive
San Jose, CA 95134
www.altera.com

DDR and DDR2 SDRAM High-Performance
Controller User Guide

Software Version: 9.0
Document Date: March 2009

http://www.altera.com

Copyright © 2009 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending ap-
plications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

UG-01010-7.0

 © March 2009 Altera Corporation
Contents
Chapter 1. About These MegaCore Functions
Release Information . 1–1
Device Family Support . 1–1
Features . 1–2
General Description . 1–2
MegaCore Verification . 1–3
Performance and Resource Utilization . 1–4
Installation and Licensing . 1–7

OpenCore Plus Evaluation . 1–7
OpenCore Plus Time-Out Behavior . 1–8

Chapter 2. Getting Started
Design Flow . 2–1
Select Flow . 2–2
SOPC Builder Flow . 2–2

Specify Parameters . 2–2
Complete the SOPC Builder System . 2–3
Simulate the System . 2–4

MegaWizard Plug-In Manager Flow . 2–4
Specify Parameters . 2–5
Simulate the Example Design . 2–8

Simulating Using NativeLink . 2–8
IP Functional Simulations . 2–9

Compile the Design . 2–13
Program Device and Implement the Design . 2–14

Chapter 3. Parameter Settings
Memory Settings . 3–1
PHY Settings . 3–1
Controller Settings . 3–1

Chapter 4. Functional Description
Block Description . 4–2

Command FIFO . 4–3
Write Data FIFO . 4–3
Write Data Tracking Logic . 4–3
Main State Machine . 4–3
Bank Management Logic . 4–3
Timer Logic . 4–3
Initialization State Machine . 4–4
Address and Command Decode . 4–4
PHY Interface Logic . 4–4
ODT Generation Logic . 4–4
Low Power Mode Logic . 4–4

Control Logic . 4–5
Latency . 4–5
Error Correction Coding (ECC) . 4–7

Interrupts . 4–9
DDR and DDR2 SDRAM High-Performance Controller User Guide

iv
Partial Writes . 4–9
Partial Bursts . 4–10
ECC Latency . 4–10

Example Design . 4–11
Example Driver . 4–12

Interfaces and Signals . 4–14
Interface Description . 4–14

Full Rate Write, Avalon-MM Interface Mode . 4–14
Full Rate Write, Native Interface Mode—Non-Consecutive Write . 4–17
Half Rate Write, Avalon-MM Interface Mode . 4–20
Half Rate Write, Native Interface Mode . 4–22
Full Rate Read, Avalon-MM Interface Mode . 4–25
Half Rate Read, Native Interface Mode . 4–27
Half Rate Read, Avalon-MM Interface Mode—Non-Consecutive Read . 4–28
Full Rate, Native Interface Mode—Alternate Read-Write . 4–31
User Refresh Control . 4–34
Self-Refresh and Power-Down Commands . 4–35
Auto-Precharge Commands . 4–36

Signals . 4–37

Chapter 5. Example Design Walkthrough
Creating A Simulation Testbench Environment . 5–1

Creating the Example Project . 5–1
Configuring the DDR2 SDRAM High-Performance Controller . 5–1

Understanding the Example Design and Testbench . 5–2
Testbench Description . 5–2
Running the Example Testbench from Your Simulator . 5–3

The Testbench Stages . 5–4
Memory Device Initialization . 5–4
Functional Memory Use . 5–7

Appendix A. ECC Register Description
ECC Registers . A–1
Register Bits . A–3

Additional Information
Revision History . Info–1
How to Contact Altera . Info–1
Typographic Conventions . Info–2
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

© March 2009 Altera Corporation
1. About These MegaCore Functions
Release Information
Table 1–1 provides information about this release of the DDR and DDR2 SDRAM
High-Performance Controller MegaCore® functions.

Altera® verifies that the current version of the Quartus® II software compiles the
previous version of each MegaCore function. The MegaCore IP Library Release Notes
and Errata report any exceptions to this verification. Altera does not verify
compilation with MegaCore function versions older than one release.

Device Family Support
MegaCore functions provide either full or preliminary support for target Altera
device families, as described below:

■ Full support means the MegaCore function meets all functional and timing
requirements for the device family and may be used in production designs

■ Preliminary support means the MegaCore function meets all functional
requirements, but may still be undergoing timing analysis for the device family; it
may be used in production designs with caution

Table 1–2 shows the level of support offered by the DDR and DDR2 SDRAM high-
performance controller to each of the Altera device families.

Table 1–1. DDR and DDR2 SDRAM High-Performance Controller Release Information

Item Description

Version 9.0

Release Date March 2009

Ordering Codes IP-SDRAM/HPDDR (DDR SDRAM)

IP-SDRAM/HPDDR2 (DDR2 SDRAM)

Product IDs 00BE (DDR SDRAM)

00BF (DDR2 SDRAM)

00CO (ALTMEMPHY Megafunction)

Vendor ID 6AF7

Table 1–2. Device Family Support (Part 1 of 2)

Device Family Support

Arria® GX Full

Arria II GX Preliminary

Cyclone® III Full

HardCopy® II Full

HardCopy III Preliminary

HardCopy IV E Preliminary
DDR and DDR2 SDRAM High-Performance Controller User Guide

www.altera.com/literature/rn/rn_ip.pdf
www.altera.com/literature/rn/rn_ip.pdf

1–2 Chapter 1: About These MegaCore Functions
Features
Features
■ Integrated error correction coding (ECC) function

■ Power-up calibrated on-chip termination (OCT) support for Cyclone III, Stratix III,
and Stratix IV devices

■ Full-rate and half-rate support

■ SOPC Builder ready

■ Support for ALTMEMPHY megafunction

■ Support for industry-standard DDR and DDR2 SDRAM devices; and registered
and unbuffered DIMMs

■ Optional support for self-refresh and power-down commands

■ Optional support for auto-precharge read and auto-precharge write commands

■ Optional user-controller refresh

■ Optional Avalon® Memory-Mapped (Avalon-MM) local interface

■ Optional Altera PHY interface (AFI) Controller-PHY Interface

■ Optional multiple controller clock sharing in SOPC Builder Flow

■ Easy-to-use MegaWizardTM interface

■ Support for OpenCore Plus evaluation

■ Support for the Quartus II IP Advisor

■ IP functional simulation models for use in Altera-supported VHDL and Verilog
HDL simulators

General Description
The Altera DDR and DDR2 SDRAM High-Performance Controller MegaCore
functions provide simplified interfaces to industry-standard DDR SDRAM and DDR2
SDRAM. The MegaCore functions work in conjunction with the Altera ALTMEMPHY
megafunction.

f For more information on the ALTMEMPHY megafunction, refer to the External
Memory PHY Interface Megafunction User Guide (ALTMEMPHY).

Stratix® II Full

Stratix II GX Full

Stratix III Full

Stratix IV Preliminary

Other device families No support

Table 1–2. Device Family Support (Part 2 of 2)

Device Family Support
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

www.altera.com/literature/ug/ug_altmemphy.pdf
www.altera.com/literature/ug/ug_altmemphy.pdf

Chapter 1: About These MegaCore Functions 1–3
MegaCore Verification
Figure 1–1 on page 1–3 shows a system-level diagram including the example design
that the DDR or DDR2 SDRAM High-Performance Controller MegaCore functions
create for you.

The MegaWizard Plug-In Manager generates an example design, consisting of an
example driver, and your DDR or DDR2 SDRAM high-performance controller
custom variation. The controller instantiates an instance of the ALTMEMPHY
megafunction which in turn instantiates a PLL and DLL. You can optionally
instantiate the DLL outside the ALTMEMPHY megafunction to share the DLL
between multiple instances of the ALTMEMPHY megafunction.

The example design is a fully-functional design that you can simulate, synthesize, and
use in hardware. The example driver is a self-test module that issues read and write
commands to the controller and checks the read data to produce the pass/fail and test
complete signals.

MegaCore Verification
MegaCore verification involves simulation testing. Altera has carried out extensive
random, directed tests with functional test coverage using industry-standard Denali
models to ensure the functionality of the DDR and DDR2 SDRAM high-performance
controller. In addition, Altera performs a wide variety of gate-level tests of the DDR
and DDR2 SDRAM high-performance controllers to verify the post-compilation
functionality of the controllers.

Figure 1–1. System-Level Diagram

Note for Figure 1–1:

(1) When you choose Instantiate DLL Externally, DLL is instantiated outside the controller.

DDR/DDR2
 SDRAM

Example Driver

DDR/DDR2
SDRAM Interface

Pass or Fail

Local
Interface

Example Design

Control
Logic

(Encrypted)

DDR/DDR2 SDRAM
High-Performance

Controller

ALTMEMPHY
Megafunction

DLLPLL (1)
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

1–4 Chapter 1: About These MegaCore Functions
Performance and Resource Utilization
Performance and Resource Utilization
Table 1–3 shows maximum performance results for the DDR and DDR2 SDRAM
high-performance controllers using the Quartus II software, version 9.0 with
Arria GX, Cyclone III, HardCopy II, Stratix II, Stratix II GX, Stratix III, and Stratix IV
devices.

f For more information on device performance, refer to the relevant device handbook.

Table 1–4 shows typical sizes for the DDR or DDR2 SDRAM high-performance
controller in AFI mode (including ALTMEMPHY) for Arria GX devices.

Table 1–3. Maximum Performance for Half Rate and Full Rate Controllers

Device

 System fMAX (MHz)

DDR SDRAM DDR2 SDRAM

Half Rate Full Rate Half Rate Full Rate

Arria GX 200 167 233 167

Cyclone III 167 167 200 167

HardCopy II 200 200 267 267

Stratix II 200 200 333 267

Stratix II GX 200 200 333 267

Stratix III 200 200 400 267

Stratix IV 200 200 400 267

Table 1–4. Resource Utilization in Arria GX Devices

Controller Rate
Local Data
Width (Bits)

Memory Width
(Bits)

Combinational
ALUTs

Dedicated Logic
Registers

Memory

M512 M4K

Half 32 8 1,851 1,562 4 2

64 16 1,904 1,738 4 4

256 64 2,208 2,783 5 15

288 72 2,289 2,958 4 17

Full 32 8 1,662 1,332 6 0

64 16 1,666 1,421 3 3

256 64 1738 1,939 3 9

288 72 1,758 2,026 4 9
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

Chapter 1: About These MegaCore Functions 1–5
Performance and Resource Utilization
Table 1–5 shows typical sizes for the DDR or DDR2 SDRAM high-performance
controller in AFI mode (including ALTMEMPHY) for Cyclone III devices.

Table 1–6 shows typical sizes for the DDR or DDR2 SDRAM high-performance
controller in AFI mode (including ALTMEMPHY) for Stratix II and Stratix II GX
devices.

Table 1–5. Resource Utilization in Cyclone III Devices

Controller Rate
Local Data Width

(Bits)
Memory Width

(Bits)
Combinational

ALUTs
Dedicated Logic

Registers
Memory
(M9K)

Half 32 8 2,683 1,563 3

64 16 2,905 1,760 5

256 64 4,224 2,938 17

288 72 4,478 3,135 18

Full 32 8 2,386 1,276 3

64 16 2,526 1,387 3

256 64 3,257 2,037 9

288 72 3,385 2,146 10

Table 1–6. Resource Utilization in Stratix II and Stratix II GX Devices

Controller Rate
Local Data
Width (Bits)

Memory Width
(Bits)

Combinational
ALUTs

Dedicated Logic
Registers

Memory

M512 M4K

Half 32 8 1,853 1,581 4 2

64 16 1,901 1,757 4 4

256 64 2,206 2,802 5 15

288 72 2,281 2,978 4 17

Full 32 8 1,675 1,371 6 0

64 16 1,675 1,456 3 3

256 64 1740 1,976 3 9

288 72 1,743 2,062 4 9
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

1–6 Chapter 1: About These MegaCore Functions
Performance and Resource Utilization
Table 1–7 shows typical sizes for the DDR or DDR2 SDRAM high-performance
controller in AFI mode (including ALTMEMPHY) for Stratix III devices.

Table 1–8 shows typical sizes for the DDR or DDR2 SDRAM high-performance
controller in AFI mode (including ALTMEMPHY) for Stratix IV devices.

Table 1–7. Resource Utilization in Stratix III Devices

Controller Rate
Local Data
Width (Bits)

Memory Width
(Bits)

Combinational
ALUTs

Dedicated Logic
Registers

Memory
(M9K)

Half 32 8 1,752 1,432 2

64 16 1,824 1,581 3

256 64 2,210 2,465 9

288 72 2,321 2,613 10

Full 32 8 1,622 1,351 2

64 16 1,630 1,431 2

256 64 1736 1,897 5

288 72 1,749 1,975 6

Table 1–8. Resource Utilization in Stratix IV Devices

Controller Rate
Local Data
Width (Bits)

Memory Width
(Bits)

Combinational
ALUTs

Dedicated Logic
Registers

Memory
(M9K)

Half 32 8 1,755 1,452 1

64 16 1,820 1,597 2

256 64 2,202 2,457 8

288 72 2,289 2,601 9

Full 32 8 1,631 1,369 1

64 16 1,630 1,448 1

256 64 1731 1,906 4

288 72 1,743 1,983 5
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

Chapter 1: About These MegaCore Functions 1–7
Installation and Licensing
Installation and Licensing
The DDR and DDR2 SDRAM High-Performance Controller MegaCore functions are
part of the MegaCore IP Library, which is distributed with the Quartus II software
and downloadable from the Altera website, www.altera.com.

f For system requirements and installation instructions, refer to Quartus II Installation &
Licensing for Windows and Linux Workstations.

Figure 1–2 shows the directory structure after you install the DDR and DDR2 SDRAM
High-Performance Controller MegaCore functions, where <path> is the installation
directory. The default installation directory on Windows is c:\altera\<version>; on
Linux it is /opt/altera<version>.

You need a license for the MegaCore function only when you are completely satisfied
with its functionality and performance, and want to take your design to production.

If you want to use the DDR or DDR2 SDRAM High-Performance Controller
MegaCore function, you can request a license file from the Altera web site at
www.altera.com/licensing and install it on your computer. When you request a
license file, Altera emails you a license.dat file. If you do not have Internet access,
contact your local Altera representative.

OpenCore Plus Evaluation
With Altera’s free OpenCore Plus evaluation feature, you can perform the following
actions:

■ Simulate the behavior of a megafunction (Altera MegaCore function or AMPPSM
megafunction) within your system

■ Verify the functionality of your design, as well as evaluate its size and speed
quickly and easily

■ Generate time-limited device programming files for designs that include
MegaCore functions

Figure 1–2. Directory Structure

<path>

ddr_high_perf
Contains the DDR SDRAM High-Performance Controller MegaCore function files.

doc
Contains the documentation for the DDR SDRAM High-Performance Controller MegaCore function.

lib
Contains encypted lower-level design files and other support files.

common
Contains shared components.

Installation directory.

ip
Contains the Altera MegaCore IP Library and third-party IP cores.r

altera
Contains the Altera MegaCore IP Library.
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

www.altera.com
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
www.altera.com/support/licensing/lic-index.html
www.altera.com/support/licensing/lic-index.html

1–8 Chapter 1: About These MegaCore Functions
Installation and Licensing
■ Program a device and verify your design in hardware

You need to purchase a license for the megafunction only when you are completely
satisfied with its functionality and performance, and want to take your design to
production.

f For more information on OpenCore Plus hardware evaluation using the DDR and
DDR2 SDRAM high-performance controller, refer to AN320: OpenCore Plus Evaluation
of Megafunctions.

OpenCore Plus Time-Out Behavior
OpenCore Plus hardware evaluation can support the following two modes of
operation:

■ Untethered—the design runs for a limited time

■ Tethered—requires a connection between your board and the host computer. If
tethered mode is supported by all megafunctions in a design, the device can
operate for a longer time or indefinitely

All megafunctions in a device time out simultaneously when the most restrictive
evaluation time is reached. If there is more than one megafunction in a design, a
specific megafunction’s time-out behavior may be masked by the time-out behavior
of the other megafunctions.

1 For MegaCore functions, the untethered time-out is 1 hour; the tethered time-out
value is indefinite.

Your design stops working after the hardware evaluation time expires and the
local_ready output goes low.
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

www.altera.com/literature/an/an320.pdf
www.altera.com/literature/an/an320.pdf

© March 2009 Altera Corporation
2. Getting Started
Design Flow
Figure 2–1 shows the stages for creating a system with the DDR and DDR2 SDRAM
High-Performance Controller MegaCore function and the Quartus II software. The
sections in this chapter describe each stage.

Figure 2–1. Design Flow

Specify Parameters

Select Design Flow

MegaWizard Plug-In
Manager Flow

SOPC Builder
Flow

Compile the Design

Program Device and
Implement Design

Add Constraints

Simulate the
Example Design

Specify Parameters

Simulate System

Complete SOPC
Builder System

Perform Post-Compilation
Timing Analysis
DDR and DDR2 SDRAM High-Performance Controller User Guide

2–2 Chapter 2: Getting Started
Select Flow
Select Flow
You can parameterize the DDR and DDR2 SDRAM High-Performance Controller
MegaCore function using either one of the following flows:

■ SOPC Builder flow

■ MegaWizard Plug-In Manager flow

Table 2–1 summarizes the advantages offered by the different parameterization flows.

SOPC Builder Flow
The SOPC Builder flow allows you to add the DDR and DDR2 SDRAM High-
Performance Controller MegaCore function directly to a new or existing SOPC
Builder system. You can also easily add other available components to quickly create
an SOPC Builder system with a DDR and DDR2 SDRAM High-Performance
Controller, such as the Nios II processor, external memory controllers, and
scatter/gather DMA controllers. SOPC Builder automatically creates the system
interconnect logic and system simulation environment.

f For more information about SOPC Builder, refer to volume 4 of the Quartus II
Handbook. For more information about how to use controllers with SOPC Builder,
refer to AN 517: Using High-Performance DDR, DDR2, and DDR3 SDRAM With SOPC
Builder. For more information on the Quartus II software, refer to the Quartus II Help.

Specify Parameters
To specify DDR and DDR2 SDRAM High-Performance Controller parameters using
the SOPC Builder flow, follow these steps:

1. In the Quartus II software, create a new Quartus II project with the New Project
Wizard.

2. On the Tools menu, click SOPC Builder.

3. For a new system, specify the system name and language.

4. Add DDR or DDR2 SDRAM High-Performance Controller to your system from
the System Contents tab.

1 The DDR or DDR2 SDRAM High-Performance Controller is in the
SDRAM folder under the Memories and Memory Controllers folder.

5. Specify the required parameters on all pages in the Parameter Settings tab.

Table 2–1. Advantages of the Parameterization Flows

SOPC Builder Flow MegaWizard Plug-In Manager Flow

■ Automatically-generated simulation
environment

■ Create custom components and integrate
them via the component wizard

■ All components are automatically
interconnected with the Avalon-MM interface

■ Design directly from the DDR or DDR2
SDRAM interface to peripheral device or
devices

■ Achieves higher-frequency operation
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf
http://www.altera.com/literature/an/an517.pdf
http://www.altera.com/literature/an/an517.pdf

Chapter 2: Getting Started 2–3
SOPC Builder Flow
f For detailed explanation of the parameters, refer to the “Parameter
Settings” on page 3–1.

6. Click Finish to complete the DDR and DDR2 SDRAM High-Performance
Controller MegaCore function and add it to the system.

Complete the SOPC Builder System
To complete the SOPC Builder system, follow these steps:

1. In the System Contents tab, select Nios II Processor and click Add.

2. On the Nios II Processor page, in the Core Nios II tab, select altmemddr for Reset
Vector and Exception Vector.

3. Change the Reset Vector Offset and the Exception Vector Offset to an Avalon
address that is not written to by the ALTMEMPHY megafunction during its
calibration process.

c The ALTMEMPHY megafunction performs memory interface calibration
every time it is reset, and in doing so, writes to a range of addresses. If you
want your memory contents to remain intact through a system reset, you
should avoid using these memory addresses. This step is not necessary, if
you reload your SDRAM memory contents from flash every time you reset.

To calculate the Avalon-MM address equivalent of the memory address range 0×0
to 0×1f, multiply the memory address by the width of the memory interface data
bus in bytes. For example, if your external memory data width is 8 bits in non-AFI
mode, then the Reset Vector Offset should be 0×20 and the Exception Vector
Offset should be 0x40. Refer to Table 2–2 for more Avalon-MM addresses for AFI
and non-AFI modes.

4. Click Finish.

5. On the System Contents tab, expand Interface Protocols and expand Serial.

6. Select JTAG UART and click Add.

7. Click Finish.

1 If there are warnings about overlapping addresses, on the System menu,
click Auto Assign Base Addresses.

If you enable ECC and there are warnings about overlapping IRQs, on the
System menu click Auto Assign IRQs.

Table 2–2. Avalon-MM Addresses for AFI and Non-AFI mode

External Memory
Interface Width

Reset Vector Offset Exception Vector Offset

AFI Non-AFI AFI Non-AFI

8 0×40 0×20 0×60 0×40

16 0×80 0×40 0×A0 0×60

32 0×100 0×80 0×120 0×A0

64 0×200 0×100 0×220 0×120
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

2–4 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
8. For this example system, ensure all the other modules are clocked on the
altmemddr_sysclk, to avoid any unnecessary clock-domain crossing logic.

9. Click Generate.

1 Among the files generated by SOPC Builder is the Quartus II IP File (.qip).
This file contains information about a generated IP core or system. In most
cases, the .qip file contains all of the necessary assignments and
information required to process the MegaCore function or system in the
Quartus II compiler. Generally, a single .qip file is generated for each SOPC
Builder system. However, some more complex SOPC Builder components
generate a separate .qip file. In that case, the system .qip file references the
component .qip file.

10. Compile your design, refer to “Compile the Design” on page 2–13.

c If you are upgrading your Nios system design from version 8.1 or previous ,
ensure that you change the Reset Vector Offset and the Exception Vector
Offset to AFI mode.

Simulate the System
During system generation, SOPC Builder optionally generates a simulation model
and testbench for the entire system, which you can use to easily simulate your system
in any of Altera's supported simulation tools. SOPC Builder also generates a set of
ModelSim® Tcl scripts and macros that you can use to compile the testbench, IP
functional simulation models, and plain-text RTL design files that describe your
system in the ModelSim simulation software.

f For more information about simulating SOPC Builder systems, refer to volume 4 of
the Quartus II Handbook and AN 351: Simulating Nios II Systems.

MegaWizard Plug-In Manager Flow
The MegaWizard Plug-In Manager flow allows you to customize the DDR and DDR2
SDRAM High-Performance Controller MegaCore function, and manually integrate
the function into your design.

1 You can alternatively use the IP Advisor to help you start your DDR and DDR2
SDRAM High-Performance Controller MegaCore design. On the Quartus II Tools
menu, point to Advisors, and then click IP Advisor. The IP Advisor guides you
through a series of recommendations for selecting, parameterizing, evaluating, and
instantiating a DDR and DDR2 SDRAM High-Performance Controller MegaCore
function into your design. It then guides you through a complete Quartus II
compilation of your project.

f For more information about the MegaWizard Plug-In Manager and the IP Advisor,
refer to the Quartus II Help.
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf
http://www.altera.com/literature/an/an351.pdf

Chapter 2: Getting Started 2–5
MegaWizard Plug-In Manager Flow
Specify Parameters
To specify DDR or DDR2 SDRAM High-Performance Controller parameters using the
MegaWizard Plug-In Manager flow, follow these steps:

1. In the Quartus II software, create a new Quartus II project with the New Project
Wizard.

2. On the Tools menu, click MegaWizard Plug-In Manager and follow the steps to
start the MegaWizard Plug-In Manager.

1 The DDR or DDR2 SDRAM High-Performance Controller MegaCore
function is in the Interfaces folder under the Memory Controllers folder.

3. Specify the parameters on all pages in the Parameter Settings tab.

f For detailed explanation of the parameters, refer to the “Parameter
Settings” on page 3–1.

4. On the EDA tab, turn on Generate simulation model to generate an IP functional
simulation model for the MegaCore function in the selected language.

An IP functional simulation model is a cycle-accurate VHDL or Verilog HDL
model produced by the Quartus II software.

c Use the simulation models only for simulation and not for synthesis or any
other purposes. Using these models for synthesis creates a nonfunctional
design.

1 Some third-party synthesis tools can use a netlist that contains only the
structure of the MegaCore function, but not detailed logic, to optimize
performance of the design that contains the MegaCore function. If your
synthesis tool supports this feature, turn on Generate netlist.

5. On the Summary tab, select the files you want to generate. A gray checkmark
indicates a file that is automatically generated. All other files are optional.

f For more information about the files generated in your project directory,
refer to Table 2–3.

6. Click Finish to generate the MegaCore function and supporting files.

7. If you generate the MegaCore function instance in a Quartus II project, you are
prompted to add the .qip files to the current Quartus II project. When prompted to
add the .qip files to your project, click Yes. The addition of the .qip files enables
their visibility to Nativelink. Nativelink requires the .qip files to include libraries
for simulation.

1 The .qip file is generated by the MegaWizard interface, and contains
information about the generated IP core. In most cases, the .qip file contains
all of the necessary assignments and information required to process the
MegaCore function or system in the Quartus II compiler. The MegaWizard
interface generates a single .qip file for each MegaCore function.
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

2–6 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
8. After you review the generation report, click Exit to close the MegaWizard Plug-In
Manager.

Table 2–3 describes the generated files and other files (AFI mode) that may be in
your project directory. The names and types of files specified in the MegaWizard
Plug-In Manager report vary based on whether you created your design with
VHDL or Verilog HDL.

Table 2–3. Generated Files (Part 1 of 2)

Filename Description

<variation name>.bsf Quartus II symbol file for the MegaCore function
variation. You can use this file in the Quartus II block
diagram editor.

<variation name>.html MegaCore function report file.

<variation name>.v or .vhd A MegaCore function variation file, which defines a
VHDL or Verilog HDL top-level description of the
custom MegaCore function. Instantiate the entity
defined by this file inside of your design. Include this
file when compiling your design in the Quartus II
software.

<variation name>.qip Contains Quartus II project information for your
MegaCore function variations.

<variation name>.ppf This XML file describes the MegaCore pin attributes to
the Quartus II Pin Planner. MegaCore pin attributes
include pin direction, location, I/O standard
assignments, and drive strength. If you launch IP
Toolbench outside of the Pin Planner application, you
must explicitly load this file to use Pin Planner.

<variation name>_auk_ddr_hp_controller_wrapper.vo or .vho VHDL or Verilog HDL IP functional simulation model.

<variation name>_example_driver.v or .vhd Example self-checking test generator that matches
your variation.

<variation name>_example_top.v or .vhd Example top-level design file that you should set as
your Quartus II project top level. Instantiates the
example driver and the controller.

alt_mem_phy_defines.v Contains constants used in the interface. This file is
always in Verilog HDL regardless of the language you
chose in the MegaWizard Plug-In Manager.

<variation_name>_phy.html Lists the top-level files created and ports used in the
megafunction.

<variation_name>_phy.v/.vhd Top-level file of your ALTMEMPHY variation, generated
based on the language you chose in the MegaWizard
Plug-In Manager.

<variation_name>_phy.vho Contains functional simulation model for VHDL only.

<variation_name>_phy_alt_mem_phy_delay.vhd Includes a delay module for simulation. This file is only
generated if you choose VHDL as the language of your
MegaWizard Plug-In Manager output files.

<variation_name>_phy_alt_mem_phy_dq_dqs.vhd or .v Generated file that contains DQ/DQS I/O atoms
interconnects and instance. Arria II GX devices only.
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

Chapter 2: Getting Started 2–7
MegaWizard Plug-In Manager Flow
<variation_name>_phy_alt_mem_phy_dq_dqs_clearbox.txt Specification file that generates the
<variation_name>_alt_mem_phy_dq_dqs file using
the clearbox flow. Arria II GX devices only.

<variation_name>_phy_alt_mem_phy_pll.qip Quartus II IP file for the PLL that your ALTMEMPHY
variation uses that contains the files associated with
this megafunction.

<variation_name>_phy_alt_mem_phy_pll.v/.vhd The PLL megafunction file for your ALTMEMPHY
variation, generated based on the language you chose
in the MegaWizard Plug-In Manager.

<variation_name>_phy_alt_mem_phy_pll_bb.v/.cmp Black box file for the PLL used in your ALTMEMPHY
variation. Typically unused.

<variation_name>_phy_alt_mem_phy_reconfig.qip Quartus II IP file for the PLL reconfiguration block.
Only generated when targeting Arria GX, Arria II GX,
HardCopy II, Stratix II, and Stratix II GX devices.

<variation_name>_phy_alt_mem_phy_reconfig.v/.vhd PLL reconfiguration block module. Only generated
when targeting Arria GX, Arria II GX, HardCopy II,
Stratix II, and Stratix II GX devices.

<variation_name>_phy_alt_mem_phy_reconfig_bb.v/cmp Blackbox file for the PLL reconfiguration block. Only
generated when targeting Arria GX, Arria II GX,
HardCopy II, Stratix II, and Stratix II GX devices.

<variation_name>_phy_alt_mem_phy_seq.vhd Contains the sequencer used during calibration. This
file is encrypted and is always in VHDL language
regardless of the language you chose in the
MegaWizard Plug-In Manager.

<variation_name>_phy_alt_mem_phy_seq_wrapper.v/.vhd A wrapper file, for compilation only, that calls the
sequencer file, created based on the language you
chose in the MegaWizard Plug-In Manager.

<variation_name>_phy_alt_mem_phy_seq_wrapper.vo/.vho A wrapper file, for simulation only, that calls the
sequencer file, created based on the language you
chose in the MegaWizard Plug-In Manager.

<variation_name>_phy_alt_mem_phy.v Contains all modules of the ALTMEMPHY variation
except for the sequencer. This file is always in Verilog
HDL language regardless of the language you chose in
the MegaWizard Plug-In Manager.

<variation_name>_phy_bb.v/.cmp Black box file for your ALTMEMPHY variation,
depending whether you are using Verilog HDL or VHDL
language.

<variation_name>_phy_ddr_pins.tcl Contains procedures used in the
<variation_name>_report_timing.tcl file.

<variation_name>_phy_ddr_timing.sdc Contains timing constraints for your ALTMEMPHY
variation.

<variation_name>_phy_report_timing.tcl Script that reports timing for your ALTMEMPHY
variation during compilation.

<variation_name>_pin_assignments.tcl Contains I/O standard, drive strength, output enable
grouping, and termination assignments for your
ALTMEMPHY variation. If your top-level design pin
names do not match the default pin names or a
prefixed version, edit the assignments in this file.

Table 2–3. Generated Files (Part 2 of 2)

Filename Description
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

2–8 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
9. Set the <variation name>_example_top.v or .vhd file to be the project top-level
design file.

a. On the File menu, click Open.

b. Browse to <variation name>_example_top and click Open.

c. On the Project menu, click Set as Top-Level Entity.

10. Simulate the example design (refer to “Simulate the Example Design” on
page 2–8) and compile (refer to “Compile the Design” on page 2–13).

Simulate the Example Design
You can simulate the example design with the MegaWizard Plug-In Manager-
generated IP functional simulation models. The MegaWizard Plug-In Manager
generates a VHDL or Verilog HDL testbench for your example design, which is in the
testbench directory in your project directory.

You can use the IP functional simulation model with any Altera-supported VHDL or
Verilog HDL simulator. You can perform a simulation in a third-party simulation tool
from within the Quartus II software, using NativeLink.

f For more information on the testbench, refer to “Example Design” on page 4–11.

For more information on NativeLink, refer to the Simulating Altera IP in Third-Party
Simulation Tools chapter in volume 3 of the Quartus II Handbook.

Simulating Using NativeLink
To set up simulation in the Quartus II software using NativeLink, follow these steps:

1. Create a custom variation with an IP functional simulation model, refer to step 4 in
the “Specify Parameters” section on page 2–5.

2. Set the top-level entity to the example project.

a. On the File menu, click Open.

b. Browse to <variation name>_example_top and click Open.

c. On the Project menu, click Set as Top-Level Entity.

3. Set up the Quartus II NativeLink.

a. On the Assignments menu, click Settings. In the Category list, expand EDA
Tool Settings and click Simulation.

b. From the Tool name list, click on your preferred simulator.

1 Check that the absolute path to your third-party simulator executable is set.
On the Tools menu, click Options and select EDA Tools Options.

c. In NativeLink settings, select Compile test bench and click Test Benches.

d. Click New at the Test Benches page to create a testbench.
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53014.pdf
http://www.altera.com/literature/hb/qts/qts_qii53014.pdf

Chapter 2: Getting Started 2–9
MegaWizard Plug-In Manager Flow
4. On the New Test Bench Settings dialog box, do the following:

a. Type a name for the Test bench name.

b. In Top level module in test bench, type the name of the automatically
generated testbench, <variation name>_example_top_tb.

c. In Design instance in test bench, type the name of the top-level instance, dut.

d. Under Simulation period, set End simulation at to 600 µs.

e. Add the testbench files and automatically-generated memory model files. In
the File name field, browse to the location of the memory model and the
testbench, click Open and then click Add. The testbench is
<variation name>_example_top_tb.v; memory model is
<variation name>_mem_model.v.

f The auto generated generic SDRAM model may be used as a placeholder
for a specific memory vendor supplied model. For information on how to
replace the generic model with a vendor specific model, refer to “Perform
RTL/Functional Simulation (Optional)” in AN 328: Interfacing DDR2
SDRAM with Stratix II, Stratix II GX, and Arria GX Devices.

f. Select the files and click OK.

5. On the Processing menu, point to Start and click Start Analysis & Elaboration to
start analysis.

6. On the Tools menu, point to Run EDA Simulation Tool and click EDA RTL
Simulation.

1 Ensure that the Quartus II EDA Tool Options are configured correctly for
your simulation environment. On the Tools menu, click Options. In the
Category list, click EDA Tool Options and verify the locations of the
executable files.

f If your Quartus II project appears to be configured correctly but the example
testbench still fails, check the known issues on the Knowledge Database page before
filing a service request.

For a complete MegaWizard Plug-In Manager system design example containing the
DDR and DDR2 SDRAM high-performance controller MegaCore function, refer to
Chapter 5, Example Design Walkthrough.

IP Functional Simulations
For VHDL simulations with IP functional simulation models, perform the following
steps:

1. Create a directory in the <project directory>\testbench directory.
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

http://www.altera.com/support/kdb/kdb-index.jsp
http://www.altera.com/support/kdb/kdb-index.jsp
www.altera.com/literature/an/an328.pdf
www.altera.com/literature/an/an328.pdf

2–10 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
2. Launch your simulation tool from this directory and create the following libraries:

■ altera_mf

■ lpm

■ sgate

■ <device name>

■ altera

■ ALTGXB

■ <device name>_hssi

■ auk_ddr_hp_user_lib

3. Compile the files into the appropriate library (AFI mode) as shown in Table 2–4.
The files are in VHDL93 format.

Table 2–4. Files to Compile—VHDL IP Functional Simulation Models (Part 1 of 2)

Library File Name

altera_mf <QUARTUS ROOTDIR>/eda/sim_lib/altera_mf_components.vhd

<QUARTUS ROOTDIR>/eda/sim_lib/altera_mf.vhd

lpm /eda/sim_lib/220pack.vhd

/eda/sim_lib/220model.vhd

sgate eda/sim_lib/sgate_pack.vhd

eda/sim_lib/sgate.vhd

<device name> eda/sim_lib/<device name>_atoms.vhd

eda/sim_lib/<device name>_ components.vhd

eda/sim_lib/<device name>_hssi_atoms.vhd (1)

altera eda/sim_lib/altera_primitives_components.vhd

eda/sim_lib/altera_syn_attributes.vhd

eda/sim_lib/altera_primitives.vhd

ALTGXB (1) <device name>_mf.vhd

<device name>_mf_components.vhd

<device name>_hssi (1) <device name>_hssi_components.vhd

<device name>_hssi_atoms.vhd
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

Chapter 2: Getting Started 2–11
MegaWizard Plug-In Manager Flow
1 If you are targeting Stratix IV devices, you need both the Stratix IV and
Stratix III files (stratixiv_atoms and stratixiii_atoms) to simulate in your
simulator, unless you are using NativeLink.

4. Load the testbench in your simulator with the timestep set to picoseconds.

For Verilog HDL simulations with IP functional simulation models, follow these
steps:

1. Create a directory in the <project directory>\testbench directory.

2. Launch your simulation tool from this directory and create the following libraries:

■ altera_mf_ver

■ lpm_ver

■ sgate_ver

■ <device name>_ver

■ altera_ver

■ ALTGXB_ver

■ <device name>_hssi_ver

■ auk_ddr_hp_user_lib

3. Compile the files into the appropriate library as shown in Table 2–5 on page 2–12.

auk_ddr_hp_user_lib <QUARTUS ROOTDIR>/

libraries/vhdl/altera/altera_europa_support_lib.vhd

<project directory>/<variation name>_phy_alt_mem_phy_seq_wrapper.vho

<project directory>/<variation name>_auk_ddr_hp_controller_wrapper.vho

<project directory>/<variation name>_phy.vho

<project directory>/<variation name>.vhd

<project directory>/<variation name>_example_top.vhd

<project directory>/<variation name>_controller_phy.vhd

<project directory>/<variation name>_phy_alt_mem_phy_reconfig.vhd (2)

<project directory>/<variation name>_phy_alt_mem_phy_pll.vhd

<project directory>/<variation name>_phy_alt_mem_phy_seq.vhd

<project directory>/<variation name>_example_driver.vhd

<project directory>/<variation name>_ex_lfsr8.vhd

testbench/<variation name>_example_top_tb.vhd

testbench/<variation name>_mem_model.vhd

Note for Table 2–4:

(1) Applicable only for Arria GX, Arria II GX, Stratix GX, Stratix II GX and Stratix IV devices.
(2) Applicable only for Arria GX, Hardcopy II, Stratix II and Stratix II GX devices.

Table 2–4. Files to Compile—VHDL IP Functional Simulation Models (Part 2 of 2)

Library File Name
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

2–12 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
1 If you are targeting Stratix IV devices, you need both the Stratix IV and
Stratix III files (stratixiv_atoms and stratixiii_atoms) to simulate in your
simulator, unless you are using NativeLink

4. Configure your simulator to use transport delays, a timestep of picoseconds, and
to include all the libraries in Table 2–5.

Table 2–5. Files to Compile—Verilog HDL IP Functional Simulation Models

Library File Name

altera_mf_ver <QUARTUS ROOTDIR>/eda/sim_lib/altera_mf.v

lpm_ver /eda/sim_lib/220model.v

sgate_ver eda/sim_lib/sgate.v

<device name>_ver eda/sim_lib/<device name>_atoms.v

eda/sim_lib/<device name>_hssi_atoms.v (1)

altera_ver eda/sim_lib/altera_primitives.v

ALTGXB_ver (1) <device name>_mf.v

<device name>_hssi_ver (1) <device name>_hssi_atoms.v

auk_ddr_hp_user_lib <QUARTUS ROOTDIR>/

libraries/vhdl/altera/altera_europa_support_lib.v

alt_mem_phy_defines.v

<project directory>/<variation name>_phy_alt_mem_phy_seq_wrapper.vo

<project directory>/<variation name>_auk_ddr_hp_controller_wrapper.vo

<project directory>/<variation name>.v

<project directory>/<variation name>_example_top.v

<project directory>/<variation name>_phy.v

<project directory>/<variation name>_controller_phy.v

<project directory>/<variation name>_phy_alt_mem_phy_reconfig.v (2)

<project directory>/<variation name>_phy_alt_mem_phy_pll.v

<project directory>/<variation name>_phy_alt_mem_phy.v

<project directory>/<variation name>_example_driver.v

<project directory>/<variation name>_ex_lfsr8.v

testbench/<variation name>_example_top_tb.v

testbench/<variation name>_mem_model.v

Notes for Table 2–5:

(1) Applicable only for Arria GX, Arria II GX, Stratix GX, Stratix II GX and Stratix IV devices.
(2) Applicable only for Arria GX, Hardcopy II, Stratix II and Stratix II GX devices.
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

Chapter 2: Getting Started 2–13
Compile the Design
Compile the Design
To use the Quartus II software to compile the example design and perform post-
compilation timing analysis, follow these steps:

1. Set up the TimeQuest timing analyzer:

a. On the Assignments menu, click Timing Analysis Settings, select Use
TimeQuest Timing Analyzer during compilation, and click OK.

b. Add the Synopsys Design Constraints (.sdc) file,
<variation name>_phy_ddr_timing.sdc, to your project. On the Project menu,
click Add/Remove Files in Project and browse to select the file.

c. Add the .sdc file for the example top-level design,
<variation name>_example_top.sdc, to your project. This file is only required if
you are using the example as the top-level design.

2. Use one of the following procedures to specify I/O standard assignments for pins:

■ If you have a single DDR or DDR2 SDRAM interface, and your top-level pins have
default naming shown in the example design, run
<variation name>_pin_assignments.tcl.

■ If your design contains pin names that do not match the design, edit the
<variation name>_pin_assignments.tcl file before you run the script. Follow these
steps:

a. Open <variation name>_pin_assignments.tcl file.

b. Based on the flow you are using, set the sopc_mode value to Yes or No.

■ SOPC Builder System flow:

if {![info exists sopc_mode]} {set sopc_mode YES}

■ MegaWizard Plug-In Manager flow:

if {![info exists sopc_mode]} {set sopc_mode NO}

c. Type your preferred prefix in the pin_prefix variable. For example, to add
the prefix my_mem, do the following:

if {![info exists set_prefix}{set pin_prefix “my_mem_”}

After setting the prefix, the pin names are expanded as shown in the following:

■ SOPC Builder System flow:

my_mem_cs_n_from_the_<your instance name>

■ MegaWizard Plug-In Manager flow:

my_mem_cs_n[0]

3. Set the top-level entity to the top-level design.

a. On the File menu, click Open.

b. Browse to your SOPC Builder system top-level design or <variation
name>_example_top if you are using MegaWizard Plug-In Manager, and click
Open.

c. On the Project menu, click Set as Top-Level Entity.
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

2–14 Chapter 2: Getting Started
Program Device and Implement the Design
4. Assign the DQ and DQS pin locations.

a. You should assign pin locations to the pins in your design, so the Quartus II
software can perform fitting and timing analysis correctly.

b. Use either the Pin Planner or Assignment Editor to assign the clock source pin
manually. Also choose which DQS pin groups should be used by assigning
each DQS pin to the required pin. The Quartus II Fitter then automatically
places the respective DQ signals onto suitable DQ pins within each group.

1 When assigning pins in your design, ensure that you set an appropriate I/O
standard for the non-memory interfaces, such as the clock source and the
reset inputs. For example, for DDR SDRAM select 2.5 V and for DDR2
SDRAM select 1.8 V. Also select in which bank or side of the device you
want the Quartus II software to place them.

5. For Stratix III and Stratix IV designs, if you are using advanced I/O timing, specify
board trace models in the Device & Pin Options dialog box. If you are using any
other device and not using advanced I/O timing, specify the output pin loading
for all memory interface pins.

6. Select your required I/O driver strength (derived from your board simulation) to
ensure that you correctly drive each signal or ODT setting and do not suffer from
overshoot or undershoot.

7. To compile the design, on the Processing menu, click Start Compilation.

f To attach the SignalTap® II logic analyzer to your design, refer to AN 380: Test DDR or
DDR2 SDRAM Interfaces on Hardware Using the Example Driver.

Program Device and Implement the Design
After you have compiled the example design, you can perform RTL simulation (refer
to “Simulate the Example Design” on page 2–8) or program your targeted Altera
device to verify the example design in hardware.

To implement your design based on the example design, replace the example driver
in the example design with your own logic.
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

http://www.altera.com/literature/an/an380.pdf
http://www.altera.com/literature/an/an380.pdf

© March 2009 Altera Corporation
3. Parameter Settings
Memory Settings
The Memory Settings page provides the same options as the ALTMEMPHY
megafunction Memory Settings page.

f For more information on the memory settings, refer to the External Memory PHY
Interface Megafunction User Guide (ALTMEMPHY).

PHY Settings
Board skew is the skew across all the memory interface signals, which includes clock,
address, command, data, mask, and strobe signals.

f For more information on the PHY settings, refer to the External Memory PHY Interface
Megafunction User Guide (ALTMEMPHY).

Controller Settings
Table 3–1 shows the options provided in the Controller Settings page.

Table 3–1. Controller Settings

Parameter Range Description

Enable error detection and
correction logic

On or off Turn on to add the optional error correction coding (ECC) to the design,
refer to “Error Correction Coding (ECC)” on page 4–7.

Enable user auto-refresh
controls

On or off Turn on for user control of the refreshes, refer to “User Refresh Control”
on page 4–34.

Enable auto-precharge
control

On or off Turn on if you need fast random access, refer to “Auto-Precharge
Commands” on page 4–36

Enable power down controls On or off Turn on to enable the controller to allow you to place the external
memory device in a power-down mode, refer to “Self-Refresh and
Power-Down Commands” on page 4–35

Enable self-refresh controls On or off Turn on to enable the controller to allow you to place the external
memory device in a self-refresh mode, refer to “Self-Refresh and Power-
Down Commands” on page 4–35

Local Interface Protocol Native or Avalon
Memory-Mapped

Specifies the local side interface between the user logic and the memory
controller. The Avalon Memory-Mapped (MM) interface allows you to
easily connect to other Avalon-MM peripherals.

Controller/Phy Interface
Protocol

AFI or non-AFI Specifies the controller/PHY interface. Refer to the External Memory
PHY Interface Megafunction User Guide (ALTMEMPHY) for more
information.

Multiple Controller Clock
Sharing

On or off This option is only in SOPC Builder Flow. Turn on if you want to improve
your system efficiency when your system has multiple controllers. Refer
to the External Memory PHY Interface Megafunction User Guide
(ALTMEMPHY) for more information.
DDR and DDR2 SDRAM High-Performance Controller User Guide

http://www.altera.com/literature/ug/ug_altmemphy.pdf
http://www.altera.com/literature/ug/ug_altmemphy.pdf
www.altera.com/literature/ug/ug_altmemphy.pdf
www.altera.com/literature/ug/ug_altmemphy.pdf
www.altera.com/literature/ug/ug_altmemphy.pdf
www.altera.com/literature/ug/ug_altmemphy.pdf
http://www.altera.com/literature/ug/ug_altmemphy.pdf
http://www.altera.com/literature/ug/ug_altmemphy.pdf

3–2 Chapter 3: Parameter Settings
Controller Settings
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

© March 2009 Altera Corporation
4. Functional Description
The DDR and DDR2 SDRAM high-performance controllers instantiate encrypted
control logic and the ALTMEMPHY megafunction. The controller accepts read and
write requests from the user on its local interface, using either the Avalon-MM
interface protocol or the native interface protocol. It converts these requests into the
necessary SDRAM commands, including any required bank management commands.
Each read or write request on the Avalon-MM or native interface maps to one
SDRAM read or write command. Since the controller uses a memory burst length of 4,
read and write requests are always of length 1 on the local interface if the controller is
in half-rate mode. In full-rate mode, the controller accepts requests of size 1 or 2 on
the local interface. Requests of size 2 on the local interface produce better throughput
as whole memory burst is used.

The bank management logic in the controller keeps a row open in every bank in the
memory system. For example, a controller configured for a double-sided, 4-bank DDR
or DDR2 SDRAM DIMM keeps an open row in each of the 8 banks. The controller
allows you to request an auto-precharge read or auto-precharge write, allowing
control over whether to keep that row open after the request. You can achieve
maximum efficiency when you issue reads and writes to the same bank, with the last
access to that bank being an auto-precharge read or write. The controller does not do
any access reordering.

f For more information on the ALTMEMPHY megafunction, refer to the External
Memory PHY Interface Megafunction User Guide (ALTMEMPHY).
DDR and DDR2 SDRAM High-Performance Controller User Guide

www.altera.com/literature/ug/ug_altmemphy.pdf
www.altera.com/literature/ug/ug_altmemphy.pdf

4–2 Chapter 4: Functional Description
Block Description
Block Description
Figure 4–1 shows a block diagram of the DDR or DDR2 SDRAM high-performance
controller in non-AFI mode.

Figure 4–2 shows a block diagram of the DDR or DDR2 SDRAM high-performance
controller architecture.

Figure 4–1. DDR and DDR2 SDRAM High-Performance Controller (Non-AFI) Block Diagram

Note to Figure 4–1:

(1) DDR2 SDRAM high-performance controller only.

local_addr
local_be

local_burstbegin
local_read_req

local_refresh_req
local_size

local_wdata
local_write_req

local_powerdn_req
local_self_rfsh_req

mem_a
mem_ba
mem_cas_n
mem_cke
mem_cs_n
mem_dq
mem_dqs
mem_dm
mem_odt (1)
mem_ras_n
mem_we_n

local_init_done
local_rdata

local_rdata_valid
local_ready

local_refresh_ack
local_wdata_req

local_powerdn_ack
local_self_rfsh_ack

Control
Logic

(Encrypted)

DDR/DDR2 SDRAM High-
Performance Controller

ALTMEMPHY
Megafunction

Figure 4–2. DDR and DDR2 SDRAM High-Performance Controller Architecture Block Diagram

Timer
Logic

Initialization
State Machine

Command
FIFO

ALTMEMPHY
Interface

Avalon-MM or Native
Slave Interface

Write Data
FIFO

Bank
Management

Logic

Write Data
Tracking Logic

Address and
Command

Decode

PHY Interface
Logic

Main State
Machine
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

Chapter 4: Functional Description 4–3
Block Description
The blocks in Figure 4–2 on page 4–2 are described in the following sections.

Command FIFO
This FIFO allows the controller to buffer up to four consecutive read or write
commands. It is built from logic elements, and stores the address, read or write flag,
and burst count information. If this FIFO fills up, the local_ready signal to the user
is deasserted until the main state machine takes a command from the FIFO.

Write Data FIFO
The write data FIFO holds the write data from the user until the main state machine
can send it to the ALTMEMPHY megafunction (which does not have a write data
buffer). In Avalon-MM interface mode, the user logic presents a write request,
address, burst count, and one or more beats of data at the same time. The write data
beats are placed into the FIFO until they are needed. In native interface mode, the user
logic presents a write request, address, and burst count. The controller then requests
the correct number of write data beats from the user via the local_wdata_req
signal, and the user logic must return the write data in the clock cycle after the write
data request signal.

This FIFO is sized to be deeper than the command FIFO to prevent it from filling up
and interrupting streaming writes.

Write Data Tracking Logic
This logic keeps track of how many beats of write data are in the FIFO. In native
interface mode, this logic manages how much more data to request from the user
logic and issues the local_wdata_req signal.

Main State Machine
This state machine decides what DDR commands to issue based on inputs from the
command FIFO, the bank management logic, and the timer logic.

Bank Management Logic
The bank management logic keeps track the current state of each bank. It can keep a
row open in every bank in your memory system. The state machine uses the
information provided by this logic to decide whether it needs to issue bank
management commands before it reads or writes to the bank. The controller always
leaves the bank open unless the user requests an auto-precharge read or write. The
periodic refresh process also causes all the banks to be closed.

Timer Logic
The timer logic tracks whether the required minimum number of clock cycles has
passed since the last relevant command was issued. For example, the timer logic
records how many cycles have elapsed since the last activate command so that the
state machine knows it is safe to issue a read or write command (tRCD). The timer logic
also counts the number of clock cycles since the last periodic refresh command and
sends a high priority alert to the state machine if the number of clock cycles has
expired.
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

4–4 Chapter 4: Functional Description
Block Description
Initialization State Machine
The initialization state machine issues the appropriate sequence of command to
initialize the memory devices. It is specific to DDR and DDR2 as each memory type
requires a different sequence of initialization commands.

If you select the AFI mode, then the ALTMEMPHY megafunction is responsible for
initializing the memory. If you select the non-AFI mode, then the controller is
responsible for initializing the memory.

Address and Command Decode
When the state machine wants to issue a command to the memory, it asserts a set of
internal signals. The address and command decode logic turns these into the DDR-
specific RAS/CAS/WE commands.

PHY Interface Logic
When the main state machine issues a write command to the memory, the write data
for that write burst has to be fetched from the write data FIFO. The relationship
between write command and write data depends on the memory type, ALTMEMPHY
megafunction interface type, CAS latency, and the full-rate or half-rate setting. The
PHY interface logic adjusts the timing of the write data FIFO read request signal so
that the data arrives on the external memory interface DQ pins at the correct time.

ODT Generation Logic
The ODT generation logic (not shown) calculates when and for how long to enable the
ODT outputs. It also decides which ODT bit to enable, based on the number of chip
selects in the system.

■ 1 DIMM (1 or 2 Chip Selects)

In the case of a single DIMM, the ODT signal is only asserted during writes. The
ODT signal on the DIMM at mem_cs[0] is always used, even if the write
command on the bus is to mem_cs[1]. In other words, mem_odt[0] is always
asserted even if there are two ODT signals.

■ 2 or more DIMMs

In the multiple DIMM case, the appropriate ODT bit is asserted for both read and
writes. The ODT signal on the adjacent DIMM is enabled as shown.

Low Power Mode Logic
The low power mode logic (not shown) monitors the local_powerdn_req and
local_self_rfsh_req request signals. This logic also informs the user of the
current low power state via the local_powerdn_ack and local_self_rfsh_ack
acknowledge signals.

If a write/read is happening to: ODT enabled:

mem_cs[0]or cs[1] mem_odt[2]

mem_cs[2] or cs[3] mem_odt[0]

mem_cs[4] or cs[5] mem_odt[6]

mem_cs[6] or cs[7] mem_odt[4]
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

Chapter 4: Functional Description 4–5
Block Description
Control Logic
Bus commands control SDRAM devices using combinations of the mem_ras_n,
mem_cas_n, and mem_we_n signals. For example, on a clock cycle where all three
signals are high, the associated command is a no operation (NOP). A NOP command
is also indicated when the chip select signal is not asserted. Table 4–1 shows the
standard SDRAM bus commands.

The DDR and DDR2 SDRAM high-performance controllers must open SDRAM banks
before they access addresses in that bank. The row and bank to be opened are
registered at the same time as the active (ACT) command. The DDR and DDR2
SDRAM high-performance controllers close the bank and open it again if they need to
access a different row. The precharge (PCH) command closes only a bank.

The primary commands used to access SDRAM are read (RD) and write (WR). When
the WR command is issued, the initial column address and data word is registered.
When a RD command is issued, the initial address is registered. The initial data
appears on the data bus 2 to 3 clock cycles later (3 to 5 for DDR2 SDRAM). This delay
is the column address strobe (CAS) latency and is due to the time required to read the
internal DRAM core and register the data on the bus. The CAS latency depends on the
speed of the SDRAM and the frequency of the memory clock. In general, the faster the
clock, the more cycles of CAS latency are required. After the initial RD or WR
command, sequential reads and writes continue until the burst length is reached or a
burst terminate (BT) command is issued. DDR and DDR2 SDRAM devices support
burst lengths of 2, 4, or 8 data cycles. The auto-refresh command (ARF) is issued
periodically to ensure data retention. This function is performed by the DDR or DDR2
SDRAM high-performance controller.

The load mode register command (LMR) configures the SDRAM mode register. This
register stores the CAS latency, burst length, and burst type.

f For more information, refer to the specification of the SDRAM that you are using.

Latency
There are two types of latency that you must consider for memory controller
designs—read and write latencies. We define the read and write latencies as follows.

■ Read latency is the time it takes for the read data to appear at the local interface
after you assert the read request signal to the controller.

Table 4–1. Bus Commands

Command Acronym ras_n cas_n we_n

No operation NOP High High High

Active ACT Low High High

Read RD High Low High

Write WR High Low Low

Burst terminate BT High High Low

Precharge PCH Low High Low

Auto refresh ARF Low Low High

Load mode register LMR Low Low Low
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

4–6 Chapter 4: Functional Description
Block Description
■ Write latency is the time it takes for the write data to appear at the memory
interface after you assert the write request signal to the controller.

Latency calculations are made with the following assumptions:

■ Reading and writing to the rows that are already open

■ The local_ready signal is asserted high (no wait states)

■ No refresh cycles occur before transaction

■ The latency is defined using the local side frequency and absolute time (ns)

1 For the half rate controller, the local side frequency is half the memory interface
frequency; for the full rate controller, it is equal to the memory interface frequency.

Altera defines the read and write latencies in terms of the local interface clock
frequency and by the absolute time for the memory controllers.

Table 4–2 shows the read and write latency derived from the write and read latency
definitions for half and full rate DDR2 SDRAM high-performance controller and for
Arria GX, Cyclone III, Stratix II, Stratix III, and Stratix IV devices.

Table 4–2. Typical Latency

Device Controller Rate
Frequency

(MHz)
Controller
Latency

Latency
Type

Total Latency

Local Clock
Cycles

Time
(ns)

Arria GX Half 233 5 Read 18 151

Write 11 91

Full 167 4 Read 20 120

Write 10 60

Cyclone III Half 200 5 Read 18 175

Write 11 105

Full 167 4 Read 20 120

Write 10 60

Stratix II Half 333 5 Read 18 105

Write 11 63

Full 200 4 Read 20 100

Write 10 50

Stratix III Half 400 5 Read 21 111

Write 13 65

Full 267 4 Read 21 85

Write 12 44

Stratix IV Half 400 5 Read 21 111

Write 13 65

Full 267 4 Read 21 85

Write 12 44
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

Chapter 4: Functional Description 4–7
Block Description
1 The exact latency depends on your precise configuration. You should obtain precise
latency from simulation, but this figure may vary in hardware because of the
automatic calibration process.

f Refer to the Latency section in chapter 1 of the External Memory PHY Interface
Megafunction User Guide (ALTMEMPHY) for more detailed information.

Error Correction Coding (ECC)
The optional ECC comprises an encoder and a decoder-corrector, which can detect
and correct single-bit errors and detect double-bit errors. The ECC uses an 8-bit ECC
for each 64-bit message. The ECC has the following features:

■ Hamming code ECC that encodes every 64-bits of data into 72-bits of codeword
with 8-bits of Hamming code parity bits

■ Latency:

■ Maximum of 1 or 2 clock delay during writes

■ Minimum 1 or 3 clock delay during reads

■ Detects and corrects all single-bit errors. Also the ECC sends an interrupt when
the user-defined threshold for a single-bit error is reached.

■ Detects all double-bit errors. Also, the ECC counts the number of double-bit errors
and sends an interrupt when the user-define threshold for double-bit error is
reached.

■ Accepts partial writes

■ Creates forced errors to check the functioning of the ECC

■ Powers up in a sensible state
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

http://www.altera.com/literature/ug/ug_altmemphy.pdf
http://www.altera.com/literature/ug/ug_altmemphy.pdf

4–8 Chapter 4: Functional Description
Block Description
Figure 4–3 shows the ECC block diagram.

The ECC comprises the following blocks:

■ The encoder—encodes the 64-bit message to a 72-bit codeword

■ The decoder-corrector—decodes and corrects the 72-bit codeword if possible

■ The ECC controller—controls multiple encoder and decoder-correctors, so that the
ECC can handle different bus widths. Also, it controls the following functions of
the encoder and decoder-corrector:

■ Interrupts:

■ Detected and corrected single-bit error

■ Detected double-bit error

■ Single-bit error counter threshold exceeded

■ Double-bit error counter threshold exceeded

■ Configuration registers:

■ Single-bit error detection counter threshold

■ Double-bit error detection counter threshold

■ Capture status for first encountered error or most recent error

■ Enable deliberate corruption of ECC for test purposes

■ Status registers:

■ Error address

■ Error type: single-bit error or double-bit error

■ Respective byte error ECC syndrome

■ Error signal—an error signal corresponding to the data word is provided with
the data and goes high if a double-bit error that cannot be corrected occurs in
the return data word.

Figure 4–3. ECC Block Diagram

Decoder-
Corrector

ECC
Controller

Encoder

Write
Message

N x 64 Bits

ECC

Write
Codeword
N x 72 Bits

Read
Message

N x 64 Bits

32 Bits

Read
Codeword
N x 72 Bits

N x 72 Bits DDR or DDR2
SDRAM

Memory
Controller

To Local
Interface

From Local
Interface

To and From
Local Interface
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

Chapter 4: Functional Description 4–9
Block Description
■ Counters:

■ Detected and/or corrected single-bit errors

■ Detected double-bit errors

f For more information on the ECC registers, refer to Appendix A, ECC Register
Description.

The ECC can instantiate multiple encoders, each running in parallel, to encode any
width of data words assuming they are integer multiples of 64.

The ECC operates between the local (native or Avalon-MM interface) and the
memory controller.

The ECC has an N × 64-bit (where N is an integer) wide interface, between the local
interface and the ECC, for receiving and returning data from the local interface. This
interface can be a native interface or an Avalon-MM slave interface, you select the
type of interface in the MegaWizard interface.

The ECC has a second interface between the local interface and the ECC, which is a
32-bit wide Avalon-MM slave to control and report the status of the operation of the
ECC controller.

The encoded data from the ECC is sent to the memory controller using a N × 72-bit
wide Avalon-MM master interface, which is between the ECC and the memory
controller.

When testing the DDR SDRAM high-performance controller, you can turn off the
ECC.

Interrupts
The ECC issues an interrupt signal when one of the following scenarios occurs:

■ The single-bit error counter reaches the set maximum single-bit error threshold
value.

■ The double-bit error counter reaches the set maximum double-bit error threshold
value.

The error counters increment every time the respective event occurs for all N parts of
the return data word. This incremented value is compared with the maximum
threshold and an interrupt signal is sent when the value is equal to the maximum
threshold. The ECC clears the interrupts when you write a 1 to the respective status
register. You can mask the interrupts from either of the counters using the control
word.

Partial Writes
The ECC supports partial writes. Along with the address, data, and burst signals, the
Avalon-MM interface also supports a signal vector that is responsible for byte-enable.
Every bit of this signal vector represents a byte on the data-bus. Thus, a 0 on any of
these bits is a signal for the controller not to write to that particular location—a partial
write.
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

4–10 Chapter 4: Functional Description
Block Description
For partial writes, the ECC performs the following steps:

■ Stalls further read or write commands from the Avalon-MM interface when it
receives a partial write condition.

■ Simultaneously sends a self-generated read command, for the partial write
address, to the memory controller.

■ Upon receiving a return data from the memory controller for the particular
address, the ECC decodes the data, checks for errors, and then sends it to the ECC
controller.

■ The ECC controller merges the corrected or correct dataword with the incoming
information.

■ Sends the updated dataword to the encoder for encoding and then sends to the
memory controller with a write command.

■ Releases the stall of commands from the Avalon-MM interface, which allows it to
receive new commands.

The following corner cases can occur:

■ A single-bit error during the read phase of the read-modify-write process. In this
case, the single-bit error is corrected first, the single-bit error counter is
incremented and then a partial write is performed to this corrected decoded data
word.

■ A double-bit error during the read phase of the read-modify-write process. In this
case, the double-bit error counter is incremented and an interrupt is sent through
the Avalon-MM interface. The new write word is not written to its location. A
separate field in the interrupt status register highlights this condition.

Partial Bursts
Some DIMMs do not have the DM pins and so do not support partial bursts. A
minimum of four words must be written to the memory at the same time. In cases of
partial burst write, the ECC offers a mechanism similar to the partial write.

In cases of partial bursts, the write data from the native interface is stored in a 64-bit
wide FIFO buffer of maximum burst size depth, while in parallel a read command of
the corresponding addresses is sent to the DIMM. Further commands from the native
interface are stalled until the current burst is read, modified, and written back to the
memory controller.

ECC Latency
Using the ECC results in the following latency changes:

■ Local Burst Length 1

■ Local Burst Length 2

Local Burst Length 1

For a local burst length of 1, the write latency increases by one clock cycle; the read
latency increases by one clock cycle (including checking and correction).

A partial write results in a read followed by write in the ECC controller, so latency
depends on the time the controller takes to fetch the data from the particular address.
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

Chapter 4: Functional Description 4–11
Example Design
Table 4–3 shows the relationship between burst lengths and rate.

Local Burst Length 2

For a local burst length of 2, the write latency increases by two clock cycles; the read
latency increases by one clock cycle (including checking and correction).

A partial write results in a read followed by write in the ECC controller, so latency
depends on the time the controller takes to fetch the data from the particular address.

For a single-bit error, the automatic correction of memory takes place without stalling
the read cycle (if enabled), which stalls further commands to the ECC controller,
while the correction takes place.

Example Design
The MegaWizard Plug-In Manager helps you create an example design that shows
you how to instantiate and connect the DDR or DDR2 SDRAM high-performance
controller. The example design consists of the DDR or DDR2 SDRAM high-
performance controller, some driver logic to issue read and write requests to the
controller, a PLL to create the necessary clocks, and a DLL (Stratix series only). The
example design is a working system that you can compile and use for both static
timing checks and board tests.

Figure 4–4 shows the testbench and the example design.

Table 4–3. Burst Lengths and Rates

Local Burst Length Rate Memory Burst Length

1 Half 4

2 Full 4

Figure 4–4. Testbench and Example Design

Example
Driver

clock_source

test_complete

pnf

Example Design

Testbench

DDR SDRAM
DIMM Model

Board Delay Model

DLL

DDR SDRAM
High-Performance

Controller

ALTMEMPHY
Megafunction

PLL
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

4–12 Chapter 4: Functional Description
Example Design
Table 4–4 describes the files that are associated with the example design and the
testbench.

There are two Altera-generated memory models available—associative-array memory
model and full-array memory model.

The associative-array memory model (<variation name>_mem model.v) allocates
reduced set of memory addresses with a default depth of 2,048 or 2K address spaces.
This allocation allows for a larger memory array compilation and simulation which
enables you to easily reconfigure the depth of the associate array.

The full-array memory model (<variation name>_mem model_full.v) allocates
memory for all addresses accessible by the DDR cores. This allocation makes it
impossible to simulate large memory (more than 2K address spaces) designs, because
simulators need more memory than what is available on a typical system.

1 The memory model, <variation name>_test_component.v/vhd, used in SOPC Builder
designs, is actually a variation of the full-array memory model. To ensure your
simulation works in SOPC Builder, use memory model with less than 512-Mbit
capacity.

Example Driver
The example driver is a self-checking test pattern generator for the memory interface.
It uses a state machine to write and read from the memory to verify that the interface
is operating correctly.

It performs the following tests and loops back the tests indefinitely:

■ Sequential addressing writes and reads

The state machine writes pseudo-random data generated by a linear feedback shift
register (LFSR) to a set of incrementing row, bank, and column addresses. The
state machine then resets the LFSR, reads back the same set of addresses, and
compares the data it receives against the expected data. You can adjust the length
and pattern of the bursts that are written by changing the MAX_ROW, MAX_BANK,
and MAX_COL constants in the example driver source code, and the entire memory
space can be tested by adjusting these values. You can skip this test by setting the
test_seq_addr_on signal to logic zero.

Table 4–4. Example Design and Testbench Files

Filename Description

<variation name>_example_top_tb.v or .vhd Testbench for the example design.

<variation name>_example_top.v or .vhd Example design.

<variation name>_mem_model.v or .vhd Memory model.

<variation name>_example_driver.v or .vhd Example driver.

<variation name> .v or .vhd Top-level description of the custom MegaCore function.

<variation name>.qip Contains Quartus II project information for your MegaCore
function variations.
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

Chapter 4: Functional Description 4–13
Example Design
■ Incomplete write operation

The state machine issues a series of write requests that are less than the maximum
burst size supported by your controller variation. The addresses are then read
back to ensure that the controller has issued the correct signals to the memory.
This test is only applicable in full-rate mode, when the local burst size is two. You
can skip this test by setting the test_incomplete_writes_on signal to logic
zero.

■ Byte enable/data mask pin operation

The state machine issues two sets of write commands, the first of which clears a
range of addresses. The second set of write commands has only one byte enable bit
asserted. The state machine then issues a read request to the same addresses and
the data is verified. This test checks if the data mask pins are operating correctly.
You can skip this test by setting the test_dm_pin_on signal to logic zero.

■ Address pin operation

The example driver generates a series of write and read requests starting with an
all-zeros pattern, a walking-one pattern, a walking-zero pattern, and ending with
an all-zeros pattern. This test checks to make sure that all the individual address
bits are operating correctly. You can skip this test by setting the
test_addr_pin_on signal to logic zero.

■ Low-power mode operation

The example driver requests the controller to place the memory into power-down
and self-refresh states, and hold it in those states for the amount of time specified
by the COUNTER_VALUE signal. You can vary this value to adjust the duration the
memory is kept in the low-power states. This test is only available if your
controller variation enables the low-power mode option.

The example driver has four outputs that allow you to observe which tests are
currently running and if the tests are passing. The pass not fail (pnf) signal goes low
once one or more errors occur and remains low. The pass not fail per byte
(pnf_per_byte) signal goes low when there is incorrect data in a byte but goes back
high again once correct data is observed in the following byte. The test_status
signal indicates the test that is currently running, allowing you to determine which
test has failed. The test_complete signal goes high for a single clock cycle at the
end of the set of tests.

Table 4–5 shows the bit mapping for each test status.

Table 4–5. Test Status[] Bit Mapping

Bit Test

0 Sequential address test

1 Incomplete write test

2 Data mask pin test

3 Address pin test

4 Power-down test

5 Self-refresh test

6 Auto precharge test
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

4–14 Chapter 4: Functional Description
Interfaces and Signals
Interfaces and Signals
This section describes the following topics:

■ “Interface Description”

■ “Signals” on page 4–37

Interface Description
This section describes the following local-side interface requests. You can use the half-
rate and full-rate modes with both Avalon-MM and native interface modes.

■ “Full Rate Write, Avalon-MM Interface Mode” on page 4–14

■ “Full Rate Write, Native Interface Mode—Non-Consecutive Write” on page 4–17

■ “Half Rate Write, Avalon-MM Interface Mode” on page 4–20

■ “Half Rate Write, Native Interface Mode” on page 4–22

■ “Full Rate Read, Avalon-MM Interface Mode” on page 4–25

■ “Half Rate Read, Native Interface Mode” on page 4–27

■ “Half Rate Read, Avalon-MM Interface Mode—Non-Consecutive Read” on
page 4–28

■ “Full Rate, Native Interface Mode—Alternate Read-Write” on page 4–31

■ “User Refresh Control” on page 4–34

■ “Self-Refresh and Power-Down Commands” on page 4–35

■ “Auto-Precharge Commands” on page 4–36

Full Rate Write, Avalon-MM Interface Mode
Figure 4–5 on page 4–15 shows write accesses with a controller in full-rate mode and
using the Local Interface Protocol option set to Avalon Memory-Mapped interface.
The figure shows three back-to-back write requests, each of burst size 2 to sequential
addresses. In full-rate mode, the controller allows you to use burst size 1 or 2. To
achieve the highest throughput, you should use bursts of size 2, which correspond to
a complete memory burst of 4. Bursts of size 1 on the local interface are only half as
efficient because each request still corresponds to a memory burst of size 4 but only of
half of the data is used.
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

Chapter 4: Functional Description 4–15
Interfaces and Signals
Figure 4–5. Full Rate Write, Avalon-MM Interface

Note to Figure 4–5:

(1) DDR Command and Mem Command show the command that the command signals are issuing.

phy_clk

Local Interface

local_address

local_size

local_ready

2

local_write_req

local_wdata

local_be

ddr_a

ddr_ba

control_wdata_valid

control_wdata

control_be

ddr_cs_n

DDR Command (1)

control_dqs_burst

local_burstbegin

mem_clk

mem_addr

mem_ba
mem_cs_n

Mem Command (1)

mem_dm

mem_dq

mem_dqs

PHY - Memory Interface

00 02 04

AA BB CC DD FFEE

FF

04 00 0800

NOP WR NOP WR WRNOP NOP

AA BB CC DD FFEE

04 00 08 0000

NOP WR NOP WR WRNOP NOP

0

A A B B C C DD E E F F

Controller - PHY Interface (Non-AFI)

FF

00

0

[1] [2] [3] [4] [5] [7][6]

local_read_req
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

4–16 Chapter 4: Functional Description
Interfaces and Signals
The following sequence corresponds with the numbered items in Figure 4–5 on
page 4–15.

1. The user logic requests the first write, by asserting the local_write_req signal,
and the size and address for this write. In this example, the request is a burst of
length 2 (4 on the memory side) to chip select 1. The local_ready signal is
asserted, which indicates that the controller has accepted this request, and the user
logic can request another read or write in the following clock cycle. If the
local_ready signal was not asserted, the user logic must keep the write request,
size, and address signals asserted until the local_ready signal is registered
high.

f Refer to Avalon Interface Specifications for more details.

1 local_be is active high while mem_dm is active low.

To map local_wdata and local_be to mem_dq and mem_dm, consider the
following full rate example with 32-bit wide local_wdata and 16-bit wide
mem_dq.

These values map to:

2. The user logic requests a second write to a sequential address of size 2 (4 on the
memory side). The local_ready signal remains asserted, which indicates that
the controller has accepted the request. The address increments by the local burst
size.

3. The user logic requests a third write to a sequential address, again of size 2. The
controller is able to buffer up to four requests so the local_ready signal stays
high and the request is accepted.

4. The controller issues the necessary memory command and address signals to the
ALTMEMPHY megafunction for it to send to the memory device.

5. The controller asserts the control_wdata_valid signal to indicate to the
ALTMEMPHY megafunction that valid write data and write data masks are
present on the inputs to the ALTMEMPHY megafunction.

6. The controller asserts the control_dqs_burst signals to control the timing of
the DQS signal that the ALTMEMPHY megafunction issues to the memory.

f Refer to the “Handshake Mechanism Between Write Commands and
Write Data” section of the External Memory PHY Interface Megafunction
User Guide (ALTMEMPHY) for more details of this interface.

7. The ALTMEMPHY megafunction issues the write command and sends the write
data and write DQS to the memory.

local_wdata = <22334455> <667788AA> <BBCCDDEE>

local_be = <1100> <0110> <1010>

mem_dq = <4455> <2233> <88AA> <6677> <DDEE> <BBCC>

mem_dm = <1 1> <0 0> <0 1> <1 0> <0 1> <0 1>
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

http://www.altera.com/literature/ug/ug_altmemphy.pdf
http://www.altera.com/literature/ug/ug_altmemphy.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 4: Functional Description 4–17
Interfaces and Signals
Full Rate Write, Native Interface Mode—Non-Consecutive Write
Figure 4–6 on page 4–18 shows write accesses with a controller in full-rate mode and
using the Local Interface Protocol setting set to Native interface. The figure shows
non-consecutive write-to-write requests, each of burst size 2 to sequential addresses.

In full-rate mode, the controller allows you to use burst size 1 or 2. To achieve the
highest throughput, you should use bursts of size 2, which correspond to a complete
memory burst of 4. Bursts of size 1 on the local interface are only half as efficient
because each request still corresponds to a memory burst of size 4 but only half of the
data is used.
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

4–18 Chapter 4: Functional Description
Interfaces and Signals

Figure 4–6. Full Rate Write, Native Interface Mode—Non-Consecutive Write

Note to Figure 4–6:

(1) DDR Command and Mem Command show the command that the command signals are issuing.

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [13][12]

phy_clk

Controller-PHY Interface (Non-AFI)

PHY Memory Interface

mem_clk

Local Interface

local_address

local_size

local_ready

local_write_req

local_wdata_req

local_wdata

local_be

0 4 802 804 806 808 80A 000

2

AA BB CC DD EE FF GG HH II JJ KK LL

3

ddr_a

ddr_ba

ddr_cs_n[0]

DDR Command (1)

control_wdata_val[0]

control_dqs_burst[0]

control_wdata

control_be

08 00 04 00 04 00 08 00 0C 00 10 00 14

WR PCH ACT WR WR WR WR WR

1 AA BB CC DD

3

mem_addr

mem_ba

mem_cs_n

Mem Command (1)

mem_dm[0]

mem_dq

mem_dqs[0]

0 8 00 04 00 04 00 08 00 0C 00 10

WR PCH ACT WR WR WR WR

0 A A B B 0 C C D D

FF HHGGEE
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

Chapter 4: Functional Description 4–19
Interfaces and Signals
The following sequence corresponds with the numbered items Figure 4–6 on
page 4–18.

1. The user logic initiates the first write by asserting local_write_req signal, and
the size and address for this write. In this example, the request is a burst length of
2 to local address 0x000004. This local address is mapped to the following
memory address in full-rate mode.

mem_row_address = 0x0000

mem_col_address = 0x0004<<1 = 0x0008

mem_bank_address = 0x00

The local_ready signal is asserted, which indicates that the controller has
accepted this request, and the user logic can request another read or write in the
following clock cycle. If the local_ready signal is not asserted, the user logic
must keep the write request, size, and address signals asserted until the
local_ready signal is registered high.

2. The user logic initiates a second write to a different memory row within the same
bank. The request for the second write is a burst length is 2 to local address
0x000004. In this example, the user logic continues to request subsequent writes
to addresses 0x000804, 0x000806, 0x000808 and 0x00080A. The starting
address, 0x000802 is mapped to the following memory address in full-rate mode.

mem_row_address = 0x0004

mem_col_address = 0x0002<<1 = 0x0004

mem_bank_address = 0x00

3. In native mode, the controller requests write data and byte enables by asserting
local_wdata_req signal. The local_wdata and local_be signals must be
asserted within one clock cycle after the local_wdata_req signal. In this
example, the controller also continues to request write data for the subsequent
writes. The user logic must be able to supply the write data for the entire burst
when it requests a write.

First write local_wdata = <AA> <BB> to local_address = 0x000004

Second write local_wdata = <CC> <DD> to local_address = 0x000802

4. The controller continues to accept commands until the command queue is full.
When the command queue is full, the controller deasserts the local_ready
signal indicating that it has not accepted the command.

5. As the local_ready is deasserted for one clock cyle, the user logic keeps the
write_req, local_address, local_size, and local_wdata signals for two
clock cycles until the local_ready signal is asserted again.

6. The controller issues the first write memory command and column address
(0x0008) to the ALTMEMPHY megafunction for it to send to the memory device.

7. The controller asserts the control_wdata_valid signal to indicate to the
ALTMEMPHY megafunction that valid write data and write data masks are
present on the inputs to the ALTMEMPHY megafunction.

8. The controller asserts the control_dqs_burst signals to control the timing of
the DQS signal that the ALTMEMPHY megafunction issues to the memory.
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

4–20 Chapter 4: Functional Description
Interfaces and Signals
1 Refer to the "Handshake Mechanism Between Write Commands and Write
Data" section of the External Memory PHY Interface Megafunction User Guide
(ALTMEMPHY) for more details of this interface.

9. The ALTMEMPHY megafunction issues the write command and sends the write
data and write DQS to the memory.

10. The controller issues a PCH command to close current memory row (0x0000) and
allow the second write to a different memory row (0x0004).

11. The controller, then issues an ACT command to open next memory row (0x0004).

12. The controller also issues the next write memory command and column address
(0x0004) to the ALTMEMPHY megafunction for it to send to the memory device.

13. The ALTMEMPHY megafunction issues the PCH commands to the memory.

14. The ALTMEMPHY megafunction issues the ACT commands to the memory.

Half Rate Write, Avalon-MM Interface Mode
Figure 4–7 on page 4–21 shows write accesses with a controller in half-rate mode and
using the Local Interface Protocol option set to Avalon Memory-Mapped interface.
The figure shows three back-to-back write requests of the same burst size. In half-rate
mode, the controller allows you to use burst size 1, which corresponds to a complete
memory burst of 4.
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

http://www.altera.com/literature/ug/ug_altmemphy.pdf
http://www.altera.com/literature/ug/ug_altmemphy.pdf

Chapter 4: Functional Description 4–21
Interfaces and Signals
Figure 4–7. Half Rate Write, Avalon-MM Interface Mode

Note to Figure 4–7:

(1) DDR Command and Mem Command show the command that the command signals are issuing.

phy_clk

Local Interface

Controller - PHY Interface (Non-AFI)

PHY Memory Interface

local_size

local_ready

local_burstbegin

local_write_req

local_wdata_valid

ddr_ba

DDR Command (1) WR NOP

control_wdata_valid

control_dqs_burst[0]

control_be

local_be

mem_clk

mem_ba

mem_cs_n

Mem Command (1) WR

A A A A B B B B C C C C D D D D E E E E

WR WR WR WR

mem_dq

mem_dqs[0]

local_address 00040000 0008 0010000C 0000

ddr_a 00040000 0008

FFFF

000C

control_wdata AAAA BBBB CCCC DDDD EEEE

ddr_cs_n

mem_addr 00040000 0008 0010

0010

000C

local_wdata AAAA BBBB CCCC DDDD EEEE

[3] [4][1] [5][2]
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

4–22 Chapter 4: Functional Description
Interfaces and Signals
The following sequence corresponds with the numbered items in Figure 4–7 on
page 4–21.

1. The user logic requests the first write, by asserting the local_write_req signal,
and the size and address for this write. In this example, the request is a burst of
length 1 (4 on the memory side) to chip select 1. The local_ready signal is
asserted, which indicates that the controller has accepted this request, and the user
logic can request another read or write in the following clock cycle. If the
local_ready signal was not asserted, the user logic must keep the write request,
size, and address signals asserted until the local_ready signal is registered
high.

f Refer to Avalon Interface Specifications for more details.

1 local_be is active high while mem_dm is active low.

2. The controller issues the necessary memory command and address signals to the
ALTMEMPHY megafunction for it to send to the memory device.

3. The controller asserts the control_wdata_valid signal to indicate to the
ALTMEMPHY megafunction that valid write data and write data masks are
present on the inputs to the ALTMEMPHY megafunction.

4. The controller asserts the control_dqs_burst signals to control the timing of
the DQS signal that the ALTMEMPHY megafunction issues to the memory.

f Refer to the “Handshake Mechanism Between Write Commands and
Write Data” section of the External Memory PHY Interface Megafunction
User Guide (ALTMEMPHY) for more details of this interface.

5. The ALTMEMPHY megafunction issues the write command and sends the write
data and write DQS to the memory.

Half Rate Write, Native Interface Mode
Figure 4–8 on page 4–23 shows write accesses with a controller in half-rate mode and
using the Local Interface Protocol setting set to Native interface. The figure shows
three back-to-back write requests, each of burst length 1 to sequential addresses. Each
request on the native interface maps directly to a single write burst of the length of 4
on the memory side because the controller is in half-rate mode. In half-rate, the ratio
between the width of the local interface write data bus and the memory data bus is
4:1.
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/ug/ug_altmemphy.pdf
http://www.altera.com/literature/ug/ug_altmemphy.pdf

Chapter 4: Functional Description 4–23
Interfaces and Signals
Figure 4–8. Half Rate Write, Native Interface Mode

Note to Figure 4–8:

(1) DDR Command and Mem Command show the command that the command signals are issuing.

phy_clk

Local Interface

local_address

local_size

local_ready

00 01 02

1

local_write_req

local_wdata_req

BBAA DDCC FFEElocal_wdata

FF FF FFlocal_be

ddr_a

ddr_ba

control_wdata_valid

BBAA DDCC FFEEcontrol_wdata

FF FF FFcontrol_be

00 04 08

ddr_cs_n

DDR Command (1) NOPWRNOP

control_dqs_burst

00 04 08

NOPWRNOP

00

mem_clk
mem_addr

mem_ba

mem_cs_n

 Mem Command (1)

mem_dm

mem_dqs
mem_dq A A B B C C D D E E F F

PHY Memory Interface

Controller - PHY Interface (Non-AFI)

[1] [2] [3] [8][4] [5] [6] [7]

0

0

local_read_req
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

4–24 Chapter 4: Functional Description
Interfaces and Signals
The following sequence corresponds with the numbered items in Figure 4–8 on
page 4–23.

1. The user logic requests the first write by asserting the local_write_req signal,
and the size and address for this write. In this example, the request is a burst of
length 1 (4 on the memory side) address 0. The local_ready signal is asserted,
which indicates that the controller has accepted this request, and the user logic can
request another read or write in the following clock cycle. If the local_ready
signal was not asserted, the user logic must keep the write request, size, and
address signals asserted until the local_ready signal is registered high.

These values map to::

2. The user logic requests a second write to a sequential address of size 1 (4 on the
memory side). The local_ready signal remains asserted, which indicates that
the controller has accepted the request. The address increments by the local burst
size.

3. The controller requests the write data and byte enables for the write from the user
logic. The write data and byte enables must be presented in the clock cycle after
the request. In this example, the controller also continues to request write data for
the subsequent writes. The user logic must be able to supply the write data for the
entire burst when it requests a write.

4. The user logic to a sequential address, again of size 1. The controller is able to
buffer up to four requests so the local_ready signal stays high and the request
is accepted.

5. The controller issues the necessary memory command and address signals to the
ALTMEMPHY megafunction for it to send to the memory device.

6. The controller asserts the control_wdata_valid signal to indicate to the
ALTMEMPHY megafunction that valid write data and write data masks are
present on the inputs to the ALTMEMPHY megafunction.

7. The controller asserts the control_dqs_burst signals to control the timing of
the DQS signal that the ALTMEMPHY megafunction issues to the memory.

f Refer to the “Handshake Mechanism Between Write Commands and
Write Data” section of the External Memory PHY Interface Megafunction
User Guide (ALTMEMPHY) for more details of this interface.

8. The ALTMEMPHY megafunction issues the write command and sends the write
data and write DQS to the memory.

local_wdata = <22334455> <667788AA> <BBCCDDEE>

local_be = <1100> <0110> <1010>

mem_dq = <55> <44> <33> <22> <AA> <88> <77> <66> <EE> <DD> <CC> <BB>

mem_dm = <1> <1> <0> <0> <1> <0> <0> <1> <1> <0> <1> <1>
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

http://www.altera.com/literature/ug/ug_altmemphy.pdf
http://www.altera.com/literature/ug/ug_altmemphy.pdf

Chapter 4: Functional Description 4–25
Interfaces and Signals
Full Rate Read, Avalon-MM Interface Mode
Figure 4–9 shows three consecutive read requests of the same burst size. In full-rate
mode, the controller allows you to use burst size 1 or 2. To achieve the highest
throughput, you bursts of 2, which correspond to a complete memory burst of 4.
Bursts of size 1 on the local interface are only half as efficient because each request still
corresponds to a memory burst of size 4 but only of half of the data is used.

The following sequence corresponds with the numbered items in Figure 4–9.

1. The user logic requests the first read by asserting the read request signal, the burst
begin signal, the burst size and address for this read. In this example, the request is
a burst of length 2 (4 on the memory side). The local_ready signal is asserted,
which indicates that the controller has accepted this request, and the user logic can
request another read or write in the following clock cycle. If the local_ready
signal was not asserted, the user logic must keep the read request, size, and
address signals asserted. The burst begin signal does not need to be held asserted
if the ready signal is not asserted.

f Refer to Avalon Interface Specifications for more details.

Figure 4–9. Full Rate Read, Avalon-MM Interface Mode

Note to Figure 4–9:

(1) DDR Command and Mem Command show the command that the command signals are issuing.

local_size

local_burstbegin

local_read_req

local_ready

local_rdata_valid

ddr_a

ddr_ba

control_doing_read

ddr_cs_n

DDR Command (1)

mem_clk

mem_addr

mem_ba

mem_cs_n

Mem Command (1)
mem_dq

mem_dqs

PHY - Memory Interface

Local Interface

phy_clk

local_address

04 00 08

RDNOP NOP NOPRD NOP RD

E E FFDDCBA CBA

local_rdata

0

Controller - PHY Interface (Non-AFI)

2

00 02 04

AA BB FFCC DD EE

control_rdata_valid

control_rdata AA BB FFCC DD EE

0400 00 0800

0

RDNOP NOP NOPRD NOP RD

0000

[1] [2] [3] [8][4] [5] [6] [7]

local_write_req
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

4–26 Chapter 4: Functional Description
Interfaces and Signals
2. The user logic requests a second read to a different address, again of size 2 (4 on
the memory side). The controller is able to buffer up to four requests so the
local_ready signal stays high and the request is accepted.

3. The user logic requests a third read to a different address, of size 2 (4 on the
memory side). The local_ready signal remains asserted, which indicates that
the controller has accepted the request.

4. The controller issues the necessary memory command and address signals to the
ALTMEMPHY megafunction for it to send to the memory device.

5. The controller asserts the control_doing_rd signal to indicate to the
ALTMEMPHY megafunction how many clock cycles of read data it should expect.
The ALTMEMPHY megafunction uses the control_doing_rd signal to enable
its capture registers for the expected duration of the memory burst.

f Refer to the “Handshake Mechanism Between Read Commands and
Read Data” section of the External Memory PHY Interface Megafunction
User Guide (ALTMEMPHY) for more details of this interface.

6. The ALTMEMPHY megafunction issues the read commands to the memory and
captures the read data from the memory.

7. The ALTMEMPHY megafunction returns data to the controller after
resynchronizing it to the phy_clk domain by asserting the
control_rdata_valid signal when there is valid read data on the
control_rdata bus.

8. The controller returns the read data to the user by asserting the
local_rdata_valid signal when there is valid read data on the local_rdata
bus. If Enable error correction and detection logic is disabled, there is no delay
between the control_rdata and the local_rdata buses. If there is ECC logic
in the controller, there is one or three clock cycles of delay between the
control_rdata and local_rdata buses.
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

http://www.altera.com/literature/ug/ug_altmemphy.pdf
http://www.altera.com/literature/ug/ug_altmemphy.pdf

Chapter 4: Functional Description 4–27
Interfaces and Signals
Half Rate Read, Native Interface Mode
Figure 4–10 on page 4–27 shows three consecutive read requests of the same burst
size. In half-rate mode, the controller allows you to use burst size 1, which
corresponds to a complete memory burst of 4.

The following sequence corresponds with the numbered items in Figure 4–10.

1. The user logic requests the first read by asserting the read request signal, the burst
size and address for this read. In this example, the request is a burst of length 1 (4
on the memory side). The local_ready signal is asserted, which indicates that
the controller has accepted this request, and the user logic can request another
read or write in the following clock cycle. If the local_ready signal was not
asserted, the user logic must keep the read request, size, and address signals
asserted.

2. The user logic requests a second read to a different address, again of size 1 (4 on
the memory side). The controller is able to buffer up to four requests so the
local_ready signal stays high and the request is accepted.

Figure 4–10. Half Rate Read, Native Interface Mode

Note to Figure 4–10:

(1) DDR Command and Mem Command show the command that the command signals are issuing.

phy_clk

Local Interface

local_address

local_size 1

local_read_req

local_rdata

ddr_a

ddr_ba 0

control_doing_read

control_rdata

ddr_cs_n

DDR Command (1)

mem_clk

mem_addr

mem_ba

mem_cs_n

Mem Command (1)

mem_dq

mem_dqs

PHY Memory Interface

BBAA DDCC FFEE

00 0201

local_ready

local_rdata_valid

00 04 08

NOP RD NOP

BBAA DDCC FFEE

control_rdata_valid

00 04 08

0

NOP RD NOP

A A B B C C DD E E F F

Controller - PHY Interface (Non-AFI)

[1] [2] [3] [8][4] [5] [6] [7]

local_write_req
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

4–28 Chapter 4: Functional Description
Interfaces and Signals
3. The user logic requests a third read to a different address, of size 1 (4 on the
memory side). The local_ready signal remains asserted, which indicates that
the controller has accepted the request.

4. The controller issues the necessary memory command and address signals to the
ALTMEMPHY megafunction for it to send to the memory device.

5. The controller asserts the control_doing_rd signal to indicate to the
ALTMEMPHY megafunction how many clock cycles of read data it should expect.
The ALTMEMPHY megafunction uses the control_doing_rd signal to enable
its capture registers for the expected duration of the memory burst.

f Refer to the “Handshake Mechanism Between Read Commands and
Read Data” section of the External Memory PHY Interface Megafunction
User Guide (ALTMEMPHY) for more details of this interface.

6. The ALTMEMPHY megafunction issues the read commands to the memory and
captures the read data from the memory.

7. The ALTMEMPHY megafunction returns data to the controller after
resynchronizing it to the phy_clk domain by asserting the
control_rdata_valid signal when there is valid read data on the
control_rdata bus.

8. The controller returns the read data to the user by asserting the
local_rdata_valid signal when there is valid read data on the local_rdata
bus. If Enable error correction and detection logic is disabled, there is no delay
between the control_rdata and the local_rdata buses. If there is ECC logic
in the controller, there is one or three clock cycles of delay between the
control_rdata and local_rdata buses.

Half Rate Read, Avalon-MM Interface Mode—Non-Consecutive Read
Figure 4–11 on page 4–29 shows three consecutive read requests of the same burst
size. In half-rate mode, the controller allows you to use burst size 1, which
corresponds to a complete memory burst of 4.
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

http://www.altera.com/literature/ug/ug_altmemphy.pdf
http://www.altera.com/literature/ug/ug_altmemphy.pdf

Chapter 4: Functional Description 4–29
Interfaces and Signals
Figure 4–11. Half Rate Read, Avalon-MM Interface Mode—Non-Consecutive Read

Note to Figure 4–11:

(1) DDR Command and Mem Command show the command that the command signals are issuing.

phy_clk

Local Interface

Controller - PHY Interface (Non-AFI)

local_address

local_size

local_read_req

local_ready

local_rdata_valid

local_rdata

ddr_a

ddr_ba

ddr_cs_n

DDR Command (1)

control_doing_rd[0]

control_rdata

control_rdata_valid

control_be

PHY Memory Interface

mem_clk

mem_addr

mem_ba

mem_cs_n

Mem Command (1)

mem_dq

mem_dqs[0]

4 802 804 806 808 0

1

BBAA EEDD GGFF IIHH

0 10 0 8 0 8 10 18 20 28 0

0 RD PCH ACT RD

FF

RD RD RD RD

BBAA

10 0 8 0 8 10 18 20 28 0

PCH ACT NOP

0 A A BB 0 D D E E F F G G H H I I J J K K LL 0

80A

RD RD RDRD

[2] [3] [4] [5] [9] [11] [13] [8] [16][1]

[6] [10] [12] [14] [7] [15]

RDRD

GGFF IIHHEEDD

local_burstbegin
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

4–30 Chapter 4: Functional Description
Interfaces and Signals
The following sequence corresponds with the numbered items in Figure 4–11.

1. The user logic requests the first read by asserting local_read_req signal, and
the size and address for this read. In this example, the request is a burst length of 1
to local address 0x000004. This local address is mapped to the following memory
address in half-rate mode:

mem_row_address = 0x0000

mem_col_address = 0x0004<<2 = 0x0010

mem_bank_address = 0x00

2. The user logic initiates a second read to a different memory row within the same
bank. The request for the second write is a burst length of 1. In this example, the
user logic continues to request subsequent reads to addresses 0x000804,
0x000806, 0x000808, and 0x00080A. The controller continues to accept
commands until the command queue is full. When the command queue is full, the
controller deasserts the local_ready signal. The starting address 0x000804 is
mapped to the following memory address in half-rate mode:

mem_row_address = 0x0008

mem_col_address = 0x0002<<2 = 0x0008

mem_bank_address = 0x00

3. When the command queue is full, the controller deasserts the local_ready
signal to indicate that the controller has not accepted the command. The user logic
must keep the read request, size, and address signal until the local_ready
signal is asserted again.

4. The controller issues the first read memory command and address signals to the
ALTMEMPHY megafunction for it to send to the memory device.

5. The controller asserts the control_doing_rd signal to indicate to the
ALTMEMPHY megafunction the number of clock cycles of read data it must
expect for the first read. The ALTMEMPHY megafunction uses the
control_doing_rd signal to enable its capture registers for the expected
duration of memory burst.

1 Refer to the "Handshake Mechanism Between Read Commands and Read
Data" section of the External Memory PHY Interface Megafunction User Guide
(ALTMEMPHY) for more details of this interface.

6. The ALTMEMPHY megafunction issues the first read command to the memory
and captures the read data from the memory.

7. The ALTMEMPHY megafunction returns the first data read to the controller after
resynchronizing the data to the phy_clk domain, by asserting the
control_rdata_valid signal when there is valid read data on the
control_rdata bus.
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

http://www.altera.com/literature/ug/ug_altmemphy.pdf
http://www.altera.com/literature/ug/ug_altmemphy.pdf

Chapter 4: Functional Description 4–31
Interfaces and Signals
8. The controller returns the first read data to the user by asserting the
local_rdata_valid signal when there is valid read data on the local_rdata
bus. If Enable error correction and detection logic is disabled, there is no delay
between the control_rdata and the local_rdata buses. If there is ECC logic
in the controller, there is one or three clock cycles of delay between the
control_rdata and local_rdata buses.

9. The controller issues a PCH command to close current memory row (0x0000) and
allow the second read to a different memory row (0x0008).

10. The ALTMEMPHY megafunction issues the PCH commands to the memory.

11. The controller issues an ACT command to open the next memory row (0x0008).

12. The ALTMEMPHY megafunction issues the ACT commands to the memory.

13. The controller issues the second read memory command and column address
(0x0008) to the ALTMEMPHY megafunction for it to send to the memory device.

14. The ALTMEMPHY megafunction issues the read commands to the memory.

15. The controller returns the second read data to the user by asserting the
local_rdata_valid signal when there is valid read data on the local_rdata
bus.

Full Rate, Native Interface Mode—Alternate Read-Write
Figure 4–12 on page 4–32 shows read, write, read, write operation in full-rate mode
and using the Local Interface Protocol setting set to Native interface.
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

4–32 Chapter 4: Functional Description
Interfaces and Signals
Figure 4–12. Full Rate, Read-Write (Size 1), Read-Write (Size 2) Native Interface Mode

Note to Figure 4–12:

(1) DDR Command and Mem Command show the command that the command signals are issuing.

phy_clk

Local Interface

local_address

local_size

local_ready

local_rdata_valid

local_read_req

local_rdata

local_write_req

local_wdata_req

local_wdata

0 2 4 000000

1 2 1

AABB CCDD EEFF

00FF FFFF

Controller-PHY Interface (Non-AFI)

ddr_a

ddr_ba

ddr_cs_n[0]

DDR Command (1)

control_doing_rd[0]

control_rdata

control_rdata_valid

control_be

0000 4

RD NOP WR NOP RD NOP WR NOP

0000 8 0000 000010

control_dqs_burst[0]

FFFF 0FF FFFF

3

PHY Memory Interface

mem_clk

mem_addr

mem_ba

cs_n[0]

Mem Command (1)

mem_dm[0]

mem_dq

mem_dqs[0]

0

0

8

0000 4 0000 8 0000 0000

0

10

RD NOP WR NOP RD NOP WR NOP

[18][24][17][16][5][4] [12]

control_wdata

control_wdata_valid

000 AABB CCDD

[19][23][6][22][15][7][14][11][10][2][21][9] [3][20][13][8][1]
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

Chapter 4: Functional Description 4–33
Interfaces and Signals
The following sequence corresponds with the numbered items in Figure 4–12 on
page 4–32.

1. The user logic requests the first read by asserting the read request signal. In this
example, the request is a burst length of 1. The local_ready signal is asserted,
which indicates that the controller has accepted this request, and the user logic can
request another read or write in the following clock cycle.

2. The controller issues the first memory read command and address signals to the
ALTMEMPHY megafunction for it to send to the memory device.

3. The controller asserts the control_doing_rd signal to indicate to the
ALTMEMPHY megafunction how many clock cycles of read data it should expect.
The ALTMEMPHY megafunction uses the control_doing_rd signal to enable
its capture registers for the expected duration of the memory burst.

f Refer to the “Handshake Mechanism Between Read Command and Read
Data” section of the External Memory PHY Interface Megafunction User
Guide (ALTMEMPHY) for more details of this interface.

4. The ALTMEMPHY megafunction issues the first read commands to the memory
and captures the read data from the memory.

5. The memory returns the first read data to the ALTMEMPHY megafunction
(0xFF00).

6. The ALTMEMPHY megafunction returns the data to the controller by asserting
control_rdata_valid.

7. The controller returns the first read data to the user logic by asserting the
local_rdata_valid signal when there is a valid read data on the
local_rdata bus.

8. The user logic requests the first write by asserting the write request signal. In this
example, the request is a burst length of 1.

9. In native interface mode, the controller requests write data and byte enables from
the user logic by asserting local_wdata_req. The local_wdata (0xAABB) and
local_be signals must be presented within 1 clock cycle after the
local_wdata_req is asserted.

10. The controller issues the first memory write command and address signals to the
ALTMEMPHY megafunction for it to send to the memory device.

11. The controller asserts the control_wdata_valid signal to indicate to the
ALTMEMPHY megafunction that valid write data and write data masks are
present on the inputs to the ALTMEMPHY megafunction.

12. The ALTMEMPHY megafunction issues the write command and sends the first
write data and write DQS to the memory.

13. The user logic requests the second read by asserting the read request signal. In this
example, the request is a burst length of 2.

14. The controller issues the second memory read command and address signals to
the ALTMEMPHY megafunction for it to send to the memory device.

15. The controller asserts the control_doing_rd signal to indicate to the
ALTMEMPHY megafunction how many clock cycles of read data it should expect.
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

http://www.altera.com/literature/ug/ug_altmemphy.pdf
http://www.altera.com/literature/ug/ug_altmemphy.pdf

4–34 Chapter 4: Functional Description
Interfaces and Signals
16. The ALTMEMPHY megafunction issues the second read command to the memory
and captures the read data from the memory.

17. The memory returns the second read data to the ALTMEMPHY megafunction.

18. The ALTMEMPHY megafunction returns data to the controller by asserting the
control_rdata_valid signal.

19. The controller returns the second read data to user by asserting the
local_rdata_valid signal when there is a valid read data on the
local_rdata bus.

20. The user logic requests the second write by asserting the write request signal. In
this example, the request is a burst length of 2.

21. In native interface mode, the controller requests write data and byte enables from
the user logic by asserting local_wdata_req. The local_wdata (0xCCDD) and
local_be signals must be presented one clock cycle after local_wdata_req is
asserted.

22. The controller issues the second memory write command and address signals to
the ALTMEMPHY megafunction for it to send to the memory device.

23. The controller asserts the control_wdata_valid signal to indicate to the
ALTMEMPHY megafunction that valid write data and write data masks are
present on the inputs to the ALTMEMPHY megafunction.

24. The ALTMEMPHY megafunction issues the second write command and sends the
second write data and write DQS to the memory.

User Refresh Control
Figure 4–13 shows the user refresh control interface. This feature allows you to control
when the controller issues refreshes to the memory. This feature allows better control
of worst case latency and allows refreshes to be issued in bursts to take advantage of
idle periods.

Figure 4–13. User Refresh Control

Note to Figure 4–13:

(1) DDR Command shows the command that the command signals are issuing.

clk

reset_n

local_refresh_req

local_refresh_ack

ddr_cs_n

ddr_cke

ddr_a

ddr_ba

DDR Command (1)

ddr_ras_n

ddr_cas_n

ddr_we_n

FF 00 FF 00 FF 00 FF00

FF

0000 0400 00000400

0

NOP PCH NOP ARF NOP ARF NOPARF

Controller Interface

Local Interface

[1] [2] [4][3]
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

Chapter 4: Functional Description 4–35
Interfaces and Signals
The following sequence corresponds with the numbered items in Figure 4–13.

1. The user logic asserts the refresh request signal to indicate to the controller that it
should perform a refresh. The read and write requests signal do not need to be
interrupted or paused in any way. If the user logic asserts refresh_req, the
controller stops taking commands from its internal queue and services the refresh
first (although the controller may have to wait a few cycles until it is legal to do the
precharge-all command that comes before the refresh).

1 Refresh requests are higher priority requests that go straight past the
command queue. If the read and write queue is not yet full, the controller
accepts more commands and holds them until it starts to read or write
again. As soon as the refresh operation is completed, the controller
continues processing the commands in the queue.

2. The controller asserts the refresh acknowledge signal to indicate that it has sent a
refresh command to the ALTMEMPHY megafunction. The exact time that the
refresh command occurs on the memory interface depends on the ALTMEMPHY
megafunction command output latency. This signal is still available even if the
Enable user auto-refresh controls option is not turned on, allowing the user logic
to track when the controller issues refreshes.

3. The user logic keeps the refresh request signal asserted to indicate that it wishes to
perform another refresh request.

The controller again asserts the refresh acknowledge signal to indicate that it has
issued a refresh. At this point the user logic deasserts the refresh request signal and
the controller continues with the reads and writes in its buffers.

Self-Refresh and Power-Down Commands
This feature allows you to direct the controller to put the external memory device into
a low-power state. There are two possible low-power states: self-refresh and power
down. The controller supports both and manages the necessary memory timings to
ensure that the data in the memory is maintained at all times.

The local interface input pins (local_powerdn_req, and local_self_rfsh_req)
allow you to direct the controller to place the memory device in power-down or self-
refresh mode, respectively. The local interface output pins (local_powerdn_ack,
and local_self_rfsh_ack) allow the controller to acknowledge the request and
also indicate the current state of the memory.

If either local_powerdn_ack or local_self_rfsh_ack signal is asserted, the
memory is in the relevant low-power mode. Both pairs of signals follow the same
basic protocol as shown in Figure 4–14 and Figure 4–15 on page 4–36. The self-refresh
pair of signals follows the same timing and behavior as the power-down pair. The
only difference is that the local_refresh_ack signal is not asserted in self-refresh
mode as the controller does not refresh the memory when the memory is in self-
refresh mode.

You must not assert both request signals at the same time. Undefined behavior occurs
if both local_powerdn_req and local_self_rfsh_req are asserted
simultaneously.
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

4–36 Chapter 4: Functional Description
Interfaces and Signals
Auto-Precharge Commands
The auto-precharge read and auto-precharge write commands allow you to indicate
to the memory device that this read or write command is the last access to the
currently open row. The memory device automatically closes (auto-precharges) the
page it is currently accessing so that the next access to the same bank is quicker. This
command is particularly useful for applications that require fast random accesses.

Request an auto-precharge by asserting the local_autopch input at the same time
you assert the local_read_req or local_write_req signal. The timing and rules
of the local_autopch input follow the basic Avalon-MM interface specifications
(refer to Avalon Interface Specifications). You can assert it anytime, but once you have
asserted it, the signal must stay asserted until the local_ready signal is high, which
indicates that the current request has been accepted.

Figure 4–14. Power-Down Mode

Notes to Figure 4–14:

(1) The user synchronously asserts the request signal to indicate that the controller should put the memory into the power-down state as soon as
possible.

(2) Once the controller is able to issue the correct commands to put the memory into the power-down state, it responds by asserting the acknowledge
signal.

(3) If you direct the controller to hold the memory in power-down mode for longer than a refresh cycle, the controller wakes the memory briefly to
issue a refresh command at the required time. The local_refresh_ack signal indicates that this has happened - it is asserted for one clock
cycle at approximately the same time as the refresh command is issued. If Enable user auto-refresh controls is turned on, you must issue refresh
requests via the local_refresh_req input at the appropriate time, even if you have also requested power-down mode.

(4) The controller holds the memory in power-down mode until you deassert the request signal.
(5) The controller deasserts the acknowledge signal once it has released the memory from the power-down state and once the required timing

parameters are met.

Figure 4–15. Self-Refresh Mode

Notes to Figure 4–15:

(1) You synchronously assert the request signal to indicate that the controller should put the memory into the self-refresh state as soon as possible.
(2) Once the controller is able to issue the correct commands to put the memory into the self-refresh state, it responds by asserting the acknowledge

signal.
(3) The controller holds the memory in self-refresh mode until you deassert the request signal.
(4) The controller deasserts the acknowledge signal once it has released the memory from the self-refresh state and once the required timing

parameters are met.

clk

local_powerdn_req

local_powerdn_ack

local_refresh_ack

(1)

(2)

(3)

(4)

(5)

clk

local_self_rfsh_req

local_self_rfsh_ack

(1)

(2)

(3)

(4)
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 4: Functional Description 4–37
Interfaces and Signals
1 If your MegaCore variation is configured to support local burst sizes greater than one,
note that local_autopch is ignored unless you request a complete burst. It is not
possible to auto-precharge a partial burst to the memory.

Signals
Table 4–6 shows the clock and reset signals.

Table 4–6. Clock and Reset Signals (Part 1 of 2)

 Name Direction Description

global_reset_n Input The asynchronous reset input to the controller. All other reset signals
are derived from resynchronized versions of this signal. This signal
holds the complete ALTMEMPHY megafunction, including the PLL, in
reset while low.

pll_ref_clk Input The reference clock input to PLL.

phy_clk Output The system clock that the ALTMEMPHY megafunction provides to the
user. All user inputs to and outputs from the DDR high-performance
controller must be synchronous to this clock.

reset_phy_clk_n Output The reset signal that the ALTMEMPHY megafunction provides to the
user. It is asserted asynchronously and deasserted synchronously to
phy_clk clock domain.

aux_full_rate_clk Output An alternative clock that the ALTMEMPHY megafunction provides to
the user. This clock always runs at the same frequency as the external
memory interface. In half-rate mode, this clock is twice the frequency
of the phy_clk and can be used whenever a 2x clock is required. In
full-rate mode, this clock is driven by the same PLL output as the
phy_clk signal.

aux_half_rate_clk Output An alternative clock that the ALTMEMPHY megafunction provides to
the user. This clock always runs at half the frequency as the external
memory interface. In full-rate mode, this clock is half the frequency of
the phy_clk and can be used, for example to clock the user side of a
half-rate bridge. In half-rate mode, this clock is driven by the same
PLL output as the phy_clk signal.

dll_reference_clk Output Reference clock to feed to an externally instantiated DLL.

reset_request_n Output Reset request output that indicates when the PLL outputs are not
locked. Use this signal as a reset request input to any system-level
reset controller you may have. This signal is always low while the PLL
is locking, and so any reset logic using it is advised to detect a reset
request on a falling edge rather than by level detection.

soft_reset_n Input Edge detect reset input intended for SOPC Builder use or to be
controlled by other system reset logic. It is asserted to cause a
complete reset to the PHY, but not to the PLL used in the PHY.

oct_ctl_rs_value Input ALTMEMPHY signal that specifies the serial termination value. Should
be connected to the ALT_OCT megafunction output
seriesterminationcontrol.
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

4–38 Chapter 4: Functional Description
Interfaces and Signals
oct_ctl_rt_value Input ALTMEMPHY signal that specifies the parallel termination value.
Should be connected to the ALT_OCT megafunction output
parallelterminationcontrol.

dqs_delay_ctrl_import Input Allows the use of DLL in another ALTMEMPHY instance in this
ALTMEMPHY instance. Connect the export port on the
ALTMEMPHY instance with a DLL to the import port on the other
ALTMEMPHY instance.

Table 4–6. Clock and Reset Signals (Part 2 of 2)

 Name Direction Description
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

Chapter 4: Functional Description 4–39
Interfaces and Signals
Table 4–7 on page 4–39 shows the DDR and DDR2 SDRAM high-performance
controller local interface signals.

Table 4–7. Local Interface Signals (Part 1 of 4)

Signal Name Direction Description

local_address[] Input Memory address at which the burst should start.

■ Full rate controllers

The width of this bus is sized using the following equation:

For one chip select:

width = bank bits + row bits + column bits – 1

For multiple chip selects:

width = chip bits + bank bits + row bits + column bits – 1

If the bank address is 2 bits wide, row is 13 bits wide and column is 10 bits
wide, then the local address is 24 bits wide. To map local_address to
bank, row and column address:

local_address[23:22] = bank address [1:0]

local_address[21:9] = row address [13:0]

local_address [8:0] = col_address[9:1]

The least significant bit (LSB) of the column address (multiples of four) on the
memory side is ignored, because the local data width is twice that of the
memory data bus width.

■ Half rate controllers

The width of this bus is sized using the following equation:

For one chip select:

width = bank bits + row bits + column bits – 2

For multiple chip selects:

width = chip bits + bank bits + row bits + column bits – 2

If the bank address is 2 bits wide, row is 13 bits wide and column is 10 bits
wide, then the local address is 23 bits wide. To map local_address to
bank, row and column address:

local_address is 23 bits wide

local_address[22:21] = bank address

local_address[20:8] = row address [13:0]

local_address [7:0] = col_address[9:2]

Two LSBs of the column address on the memory side are ignored, because the
local data width is four times that of the memory data bus width.

1 You can get the information on address mapping from the
<variation_name>_example_top.v or vhd file.
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

4–40 Chapter 4: Functional Description
Interfaces and Signals
local_be[] Input Byte enable signal, which you use to mask off individual bytes during writes.
local_be is active high; mem_dm is active low.

To map local_wdata and local_be to mem_dq and mem_dm, consider
a full-rate design with 32-bit local_wdata and 16-bit mem_dq.

Local_wdata = < 22334455 >< 667788AA >< BBCCDDEE >

Local_be = < 1100 >< 0110 >< 1010 >

These values map to:

Mem_dq = <4455><2233><88AA><6677><DDEE><BBCC>

Mem_dm = <1 1 ><0 0 ><0 1 ><1 0 ><0 1 ><0 1 >

local_burstbegin Input Avalon burst begin strobe, which indicates the beginning of an Avalon burst.
This signal is only available when the local interface is an Avalon-MM interface
and the memory burst length is greater than 2. Unlike all other Avalon-MM
signals, the burst begin signal does not stay asserted if local_ready is
deasserted.

For write transactions, assert this signal at the beginning of each burst transfer
and keep this signal high for one cycle per burst transfer, even if the slave has
deasserted local_ready. After the slave deasserts local_ready, the
master keeps all the write request signals asserted until local_ready
becomes high again.

For read transactions, assert this signal for one clock cycle when read request
is asserted and the local_address from which the data should be read is
given to the memory. After the slave deasserts local_ready
(waitrequest_n in Avalon), the master keeps all the read request signals
asserted until local_ready becomes high again.

local_read_req Input Read request signal.

You cannot assert read request and write request signal at the same time.

local_refresh_req Input User controlled refresh request. If Enable user auto-refresh controls is turned
on, local_refresh_req becomes available and you are responsible for
issuing sufficient refresh requests to meet the memory requirements. This
option allows complete control over when refreshes are issued to the memory
including ganging together multiple refresh commands. Refresh requests take
priority over read and write requests unless they are already being processed.

local_size[] Input Controls the number of beats in the requested read or write access to memory,
encoded as a binary number. The range of values depend on the memory burst
length and whether you select full or half rate in the wizard.

If you select a memory burst length 4 and half rate, the local burst length is 1
and so local_size should always be driven with 1.

If you select a memory burst length 4 and full rate, the local burst length is 2
and you should set the local_size to either 1 or 2 for each read or write
request.

local_wdata[] Input Write data bus. The width of local_wdata is twice that of the memory data
bus for a full rate controller; four times the memory data bus for a half rate
controller.

Table 4–7. Local Interface Signals (Part 2 of 4)

Signal Name Direction Description
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

Chapter 4: Functional Description 4–41
Interfaces and Signals
local_write_req Input Write request signal.

You cannot assert read request and write request signal at the same time.

local_init_done Output When the memory initialization, training, and calibration are complete, the
ALTMEMPHY sequencer asserts the ctrl_usr_mode_rdy signal to the
memory controller, which then asserts this signal to indicate that the memory
interface is ready to be used.

Read and write requests are still accepted before local_init_done is
asserted, however they are not issued to the memory until it is safe to do so.

This signal does not indicate that the calibration is successful. To find out if the
calibration is successful, look for the calibration signal,
resynchronization_successful or postamble_successful
(for Stratix IV).

local_rdata[] Output Read data bus. The width of local_rdata is twice that of the memory data
bus for a full rate controller; four times the memory data bus for a half rate
controller.

local_rdata_error Output Asserted if the current read data has an error. This signal is only available if the
Enable error detection and correction logic is turned on.

local_rdata_valid Output Read data valid signal. The local_rdata_valid signal indicates that
valid data is present on the read data bus.

local_ready Output The local_ready signal indicates that the DDR or DDR2 SDRAM high-
performance controller is ready to accept request signals. If local_ready
is asserted in the clock cycle that a read or write request is asserted, that
request has been accepted. The local_ready signal is deasserted to
indicate that the DDR or DDR2 SDRAM high-performance controller cannot
accept any more requests. The controller is able to buffer four read or write
requests.

local_refresh_ack Output Refresh request acknowledge, which is asserted for one clock cycle every time
a refresh is issued. Even if the Enable user auto-refresh controls option is not
selected, local_refresh_ack still indicates to the local interface that the
controller has just issued a refresh command.

local_wdata_req Output Write data request signal, which indicates to the local interface that it should
present valid write data on the next clock edge. This signal is only required
when the controller is operating in Native interface mode.

local_autopch_req Input User control of precharge. If Enable auto precharge control is turned on,
local_autopch_req becomes available and you can request the
controller to issue an auto-precharge write or auto-precharge read command.
These commands cause the memory to issue a precharge command to the
current bank at the appropriate time without an explicit precharge command
from the controller. This is particularly useful if you know the current read or
write is the last one you intend to issue to the currently open row. The next
time you need to use that bank, the access could be quicker as the controller
does not need to precharge the bank before activating the row you wish to
access.

Table 4–7. Local Interface Signals (Part 3 of 4)

Signal Name Direction Description
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

4–42 Chapter 4: Functional Description
Interfaces and Signals
Table 4–8 shows the DDR and DDR2 SDRAM interface signals.

local_powerdn_req Input User control of the power down feature. If Enable power down controls option
is enabled, you can request that the controller place the memory devices into a
power-down state as soon as it can without violating the relevant timing
parameters and responds by asserting the local_powerdn_ack signal.
You can hold the memory in the power-down state by keeping this signal
asserted. The controller brings the memory out of the power-down state to
issue periodic auto-refresh commands to the memory at the appropriate
interval if you hold it in the power-down state. You can release the memory
from the power-down state at any time by deasserting the
local_powerdn_ack signal once it has successfully brought the memory
out of the power-down state.

local_powerdn_ack Output Power-down request acknowledge signal. This signal is asserted and
deasserted in response to the local_powerdn_req signal from the user.

local_self_rfsh_req Input User control of the self-refresh feature. If Enable self-refresh controls option
is enabled, you can request that the controller place the memory devices into a
self-refresh state by asserting this signal. The controller places the memory in
the self-refresh state as soon as it can without violating the relevant timing
parameters and responds by asserting the local_self_rfsh_ack
signal. You can hold the memory in the self-refresh state by keeping this signal
asserted. You can release the memory from the self-refresh state at any time
by deasserting the local_self_rfsh_req signal and the controller
responds by deasserting the local__self_rfsh_ack signal once it has
successfully brought the memory out of the self-refresh state.

local_self_rfsh_ack Output Self refresh request acknowledge signal. This signal is asserted and
deasserted in response to the local_self_rfsh_req signal from the
user.

Table 4–7. Local Interface Signals (Part 4 of 4)

Signal Name Direction Description

Table 4–8. DDR and DDR2 SDRAM Interface Signals (Part 1 of 2)

Signal Name Direction Description

mem_dq[] Bidirectional Memory data bus. This bus is half the width of the local read and write data
busses.

mem_dqs[] Bidirectional Memory data strobe signal, which writes data into the DDR or DDR2 SDRAM and
captures read data into the Altera device.

mem_clk (1) Bidirectional Clock for the memory device.

mem_clk_n (1) Bidirectional Inverted clock for the memory device.

mem_a[] Output Memory address bus.

mem_ba[] Output Memory bank address bus.

mem_cas_n Output Memory column address strobe signal.

mem_cke[] Output Memory clock enable signals.

mem_cs_n[] Output Memory chip select signals.

mem_dm[] Output Memory data mask signal, which masks individual bytes during writes.

mem_odt[] Output Memory on-die termination control signal (DDR2 SDRAM only).

mem_ras_n Output Memory row address strobe signal.
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

Chapter 4: Functional Description 4–43
Interfaces and Signals
Table 4–9 shows the ECC controller signals.

mem_we_n Output Memory write enable signal.

Note to Table 4–8:

(1) The mem_clk signals are output only signals from the FPGA. However, in the Quartus II software they must be defined as bidirectional (INOUT)
I/Os to support the mimic path structure that the ALTMEMPHY megafunction uses.

Table 4–8. DDR and DDR2 SDRAM Interface Signals (Part 2 of 2)

Signal Name Direction Description

Table 4–9. ECC Controller Signals

Signal Name Direction Description

ecc_addr[] Input Address for ECC controller.

ecc_be[] Input ECC controller byte enable.

ecc_interrupt Output Interrupt from ECC controller.

ecc_rdata[] Output Return data from ECC controller.

ecc_read_req Input Read request for ECC controller.

ecc_wdata[] Input ECC controller write data.

ecc_write_req Input Write request for ECC controller.
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

4–44 Chapter 4: Functional Description
Interfaces and Signals
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

© March 2009 Altera Corporation
5. Example Design Walkthrough
The design example in this chapter shows you how to use a DDR2 SDRAM high-
performance controller in non-AFI mode with a Cyclone III device, and half-rate
implementation on a Windows-based system. The principles in this design example
are the same for any other mode of the Altera DDR and DDR2 SDRAM high-
performance ALTMEMPHY-based memory controllers.

Creating A Simulation Testbench Environment
The Megawizard Plug-In Manager automatically generates an example testbench.
This flow is used as the simplest way to create a complete testbench, including an
example driver, a memory controller, ALTMEMPHY megafunction, and a memory
model.

1 The DDR and DDR2 SDRAM High-Performance Controller MegaCore functions
include the ability to generate an example testbench, whereas the megafunctions such
as ALTMEMPHY do not.

Creating the Example Project
Follow the “MegaWizard Plug-In Manager Flow” on page 2–4 to create an example
project targeting your chosen device family. This example uses the EP3C40F48C6
device. However, as the example only uses the Quartus II software to generate the
MegaCore variation and launch ModelSim-AE, the specific device is not important.

The example project is created in Verilog HDL although you can substitute with
VHDL. Most memory vendors provide their memory models in Verilog HDL.
ModelSim-AE only simulates a single HDL language at a time. The Altera “generic”
memory model is more memory efficient in Verilog HDL.

Configuring the DDR2 SDRAM High-Performance Controller
Once you have created the example project, launch the Megawizard Plug-In Manager
and follow these steps:

1. Expand the Memory Controllers folder under the Interfaces folder.

2. Click DDR2 SDRAM High-Performance Controller.

3. In the Memory Settings tab on the Parameter Settings page, under General
Settings set the following values:

a. Set the Device family to Cyclone III. (This should already be default.)

b. Set the Speed grade to 6.

c. Select 100 MHz for PLL reference clock frequency.

d. Select 200 MHz for Memory clock frequency.

e. Select Half for Local interface clock frequency.
DDR and DDR2 SDRAM High-Performance Controller User Guide

5–2 Chapter 5: Example Design Walkthrough
Understanding the Example Design and Testbench
4. Under Show in ‘Memory Presets’ List, set the following values:

a. Select Micron for Memory Vendor.

b. Select Discrete Device for Memory format.

c. Set Maximum memory frequency to 333.333 MHz.

5. Under Memory Presets, select Micron MT47H64M8CB-3.

6. Click Modify parameters and in the Preset Editor page, select 1 pair for the
Outlook clock pairs from FPGA.

1 When specifying the PLL reference clock frequency and Memory clock
frequency, it is important to set values that result in small M and N values
within the PLL. For example, setting 133.33 MHz, 266.66 MHz, 333.33 MHz,
or 166.67 MHz may result in smaller M and N values compared to setting
133.0 MHz, 267.0 MHz, 333.0 MHz, or 167.0 MHz

7. In the Controller Settings tab on the Parameter Settings page, under
Controller/Phy Interface Protocol, select non-AFI.

f Refer to the ALTPLL Megafunction User Guide for further information on PLL.

Understanding the Example Design and Testbench
The MegaWizard Plug-In Manager helps you create an example design that shows
how to instantiate and connect both the DDR or DDR2 SDRAM high-performance
controller, and the ALTMEMPHY megafunction. This example allows you to quickly
create a working design.

The MegaCore function uses this example design in a testbench by connecting it to a
generic memory model and providing the required clock_source and
global_reset_n stimulus automatically.

Testbench Description
The example design consists of the following blocks or components:

■ ALTMEMPHY megafunction

■ memory controller

■ example driver

The respective DDR and DDR2 SDRAM high-performance controllers provide a
complete example of how to connect the ALTMEMPHY megafunction to a third party
controller. Refer to the “Integrating with Your Own Controller” section of the External
Memory PHY Interface Megafunction User Guide (ALTMEMPHY) for further
information.

The generated example driver uses a simple LFSR structure to write data to the
attached memory device (or model) and, read it back to perform a comparison
between the read and write data. The example driver can be used as a placeholder for
a customer specific design. It can also be used to check if your memory interface is
working in hardware.
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

www.altera.com/literature/ug/ug_altpll.pdf
www.altera.com/literature/ug/ug_altmemphy.pdf
www.altera.com/literature/ug/ug_altmemphy.pdf

Chapter 5: Example Design Walkthrough 5–3
Understanding the Example Design and Testbench
f For further information refer to AN 380: Test DDR or DDR2 SDRAM Interfaces on
Hardware Using the Example Driver.

The auto-generated generic SDRAM model may be used as a placeholder for a
specific memory vendor supplied model. For information on how to replace the
generic model with a vendor specific model, refer to “Perform RTL/Functional
Simulation (Optional)” in AN 328: Interfacing DDR2 SDRAM with Stratix II, Stratix II
GX, and Arria GX Devices.

Figure 5–1 on page 5–3 shows the testbench and the example design for non-AFI
mode.

Running the Example Testbench from Your Simulator
After you generate the testbench, you can run it directly from your simulation tool.

1 Before running a simulation directly from your simulation tool, you must run the
simulation once from the Quartus II software to generate the *.do ModelSim file. To
do this, click Run EDA Simulation Tool on the Tools menu and select EDA RTL
Simulation.

You can follow these steps to run the simulation from your simulation tool:

1. Launch ModelSim-Altera.

2. On the File menu, click Change Directory.

3. Select <your project name>/simulation/modelsim and click OK.

4. On the Tools menu, click Execute Macro.

5. Select <your project name>_run_msim_rtl_verilog.do and click OK.

Figure 5–1. Example Testbench Block Diagram for non-AFI mode.

pnf_per_byte

pnf

Example Design / dut

Example Testbench

D
D

R
 S

D
R

A
M

 M
odel

High-Performance Controller

Encrypted
Calibration Logic

E
xam

ple
D

river

Clock
and

Reset

PLL

DLL

Encrypted
Memory

Controller

Addr
and
Cmd
Path

Write
Path

Read
Path

ALTMEMPHYtest_complete

global_reset_n

clock_source

mem_*

local_*
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

www.altera.com/literature/an/an328.pdf
www.altera.com/literature/an/an328.pdf
www.altera.com/literature/an/an380.pdf
www.altera.com/literature/an/an380.pdf

5–4 Chapter 5: Example Design Walkthrough
The Testbench Stages
6. ModelSim-AE includes all Altera device libraries; so a .do script for ModelSim-AE
does not compile these libraries. NativeLink includes the relevant libraries for
other simulators.

f Refer to Simulation and Verification Support Resources if you use other
Altera-supported RTL simulation tools.

The Testbench Stages
Before the user logic (example driver) can read or write to the local interface, the
external SDRAM must first be initialized and calibrated. Following power-up or a
reset event, the following stages of operation take place. Table 5–1 indicates where
each stage takes place, depending on the controller/PHY interface selected.

The following sections discuss the stages that take place in the controller.

f For more information for operations that take place in the PHY, refer to the External
Memory PHY Interface Megafunction User Guide (ALTMEMPHY).

Memory Device Initialization
In non-AFI mode, memory devices must be initialized before functional use. The
exact sequence is different for DDR2 and DDR. The memory controller sets the
operating parameters of the memory based on the parameters you specify in the
MegaWizard interface. This parameter is fixed at generation time and is not
dynamically editable via the local interface.

Figure 5–2 on page 5–6 shows the memory initialization stage which is dominated by
the NOP command where tINIT is 200 µs. The controller automatically skips tINIT in
simulation.

The exact sequence of commands differs between the various external memory
families (refer to the respective the device datasheets for further information). For this
DDR2 SDRAM example, the following sequence applies:

1. Issue NOP commands for 200 µs, programmable via tINIT parameter.

2. Assert mem_cke (high).

3. Issue a PCH, then wait for 400 ns after tINIT (400 ns is derived from dividing tINIT
counter by 500).

4. Issue an LMR command to ELMR register 2 = 0.

5. Issue an LMR command to ELMR register 3 = 0.

Table 5–1. Stages of Operation

Stages of Operation AFI Mode Non-AFI Mode

PLL initialization and lock PHY PHY

Memory device initialization PHY Controller

Interface training and calibration PHY PHY

Functional memory use Controller Controller
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

http://www.altera.com/support/software/simulation/sof-qts-simulation.html
http://www.altera.com/literature/ug/ug_altmemphy.pdf
http://www.altera.com/literature/ug/ug_altmemphy.pdf

Chapter 5: Example Design Walkthrough 5–5
The Testbench Stages
6. Issue an LMR command to ELMR register to enable the memory DLL and set
Drive strength, AL, RTT, DQS#, RDQS, OE.

7. Issue an LMR command to MR register to reset DLL and set operating parameters.

8. Issue a PCH.

9. Issue an ARF.

10. Issue another ARF.

11. Issue an LMR command to MR register to set operating parameters.

12. Issue an LMR command to ELMR register to set default OCD and parameters. 200
clock cycles after DLL reset, the memory is initialized.

In Figure 5–2, the expected waveform view of the initialization phase is directly
following the NOP of 200 µs. Steps 2 to 9 are expanded to increase detail. Initialization
is complete by the second yellow cursor. Additional signals are added to simplify
debugging.
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

5–6
Chapter 5:

Exam
ple Design W

alkthrough
The Testbench Stages

DDR and DDR2 SDRAM
 High-Perform

ance Controller User Guide
©

 M
arch 2009

Altera Corporation
Figure 5–2. Simulation Initialization Phase

Chapter 5: Example Design Walkthrough 5–7
The Testbench Stages
Functional Memory Use
Once training and calibration are complete, the ALTMEMPHY sequencer asserts
seq_cal_complete (AFI mode) or ctrl_usr_mode_rdy (non-AFI mode) to the
memory controller, which is then copied to the local interface as the signal
local_init_done. Local interface read and write transactions can now occur.

In the example testbench, the example driver now performs 16 writes followed by 16
reads to incremental address locations spanning column, row and bank locations
using LFSR pattern based on the address being written.

Adding the following controller signals to your simulation provides you more
information on the example driver operation:

clock_source

global_reset_n

test_complete

pnf

pnf_per_byte

mem_local_init_done

mem_local_ready

mem_local_addr

mem_local_col_addr

mem_local_cs_addr

mem_local_read_req

mem_local_rdata

mem_local_rdata_valid

mem_local_write_req

mem_local_wdata

mem_local_be

mem_local_size

mem_local_wdata_req (Native interface only)

mem_local_burstbegin (Avalon-MM interface only)

f For external memory interface signals, refer to the External Memory PHY Interface
Megafunction User Guide (ALTMEMPHY).

You can use the example driver to test a custom controller and ALTMEMPHY
megafunction combination. The driver performs a series of writes to the external
memory, followed by a series of reads to the same locations, and compares the read
and write data.

This comparison results in dynamic “pass not fail per byte” (pnf_per_byte)
signals, and a latched combined pass not fail (pnf, 1=pass 0=fail) signal. Each
completed series of writes and reads is signaled via the test_complete signal, and
then the test repeats.

1 The example testbench stops when either test_complete is asserted or when
200,000 mem_clk cycles after the tINIT time.
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

www.altera.com/literature/ug/ug_altmemphy.pdf
www.altera.com/literature/ug/ug_altmemphy.pdf

5–8 Chapter 5: Example Design Walkthrough
The Testbench Stages
Figure 5–3 on page 5–9 shows the series of writes followed by reads on both the local
and memory interfaces, together with the test complete signals.

As the data written to the memory is simply an LFSR pattern, the example driver is
able to generate expected read data from the memory to compare with that previously
written to the same address. The data on the read data bus should match that on the
write data bus during the read process.
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

Chapter 5:
Exam

ple Design W
alkthrough

5–9
The Testbench Stages

©
 M

arch 2009
Altera Corporation

DDR and DDR2 SDRAM
 High-Perform

ance Controller User Guide
Figure 5–3. Functional Memory Use Stage

5–10 Chapter 5: Example Design Walkthrough
The Testbench Stages
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

© March 2009 Altera Corporation
A. ECC Register Description
This appendix describes the ECC registers and the register bits.

ECC Registers
Table A–1 shows the ECC registers.

Table A–1. ECC Registers (Part 1 of 2)

Name Address
Size
(Bits) Attribute Default Description

Control word specifications 00 32 R/W 0000000F This register contains all commands for
the ECC functioning.

Maximum single-bit error
counter threshold

01 32 R/W 00000001 The single-bit error counter increments
(when a single-bit error occurs) until the
maximum threshold, as defined by this
register. When this threshold is crossed,
the ECC generates an interrupt.

Maximum double-bit error
counter threshold

02 32 R/W 00000001 The double-bit error counter increments
(when a double-bit error occurs) until the
maximum threshold, as defined by this
register. When this threshold is crossed,
the ECC generates an interrupt.

Current single-bit error
count

03 32 RO 00000000 The single-bit error counter increments
(when a single-bit error occurs) until the
maximum threshold. You can find the
value of the count by reading this status
register.

Current double-bit error
count

04 32 RO 00000000 The double-bit error counter increments
(when a double-bit error occurs) until the
maximum threshold. You can find the
value of the count by reading this status
register.

Last or first single-bit error
error address

05 32 RO 00000000 This status register stores the last single-
bit error error address. It can be cleared
using the control word clear. If bit 10 of
the control word is set high, the first
occurred address is stored.

Last or first double-bit error
error address

06 32 RO 00000000 This status register stores the last
double-bit error error address. It can be
cleared using the control word clear. If bit
10 of the control word is set high, the
first occurred address is stored.
DDR and DDR2 SDRAM High-Performance Controller User Guide

A–2
ECC Registers
Last single-bit error error
data

07 32 RO 00000000 This status register stores the last single-
bit error error data word. As the data
word is an Nth multiple of 64, the data
word is stored in a 2N-deep, 32-bit wide
FIFO buffer with the least significant 32-
bit sub word stored first. It can be cleared
individually by using the control word
clear.

Last single-bit error
syndrome

08 32 RO 00000000 This status register stores the last single-
bit error syndrome, which specifies the
location of the error bit on a 64-bit data
word. As the data word is an Nth multiple
of 64, the syndrome is stored in a N deep,
8-bit wide FIFO buffer where each
syndrome represents errors in every 64-
bit part of the data word. The register
gets updated with the correct syndrome
depending on which part of the data word
is shown on the last single-bit error error
data register. It can be cleared
individually by using the control word
clear.

Last double-bit error error
data

09 32 RO 00000000 This status register stores the last
double-bit error error data word. As the
data word is an Nth multiple of 64, the
data word is stored in a 2N deep, 32-bit
wide FIFO buffer with the least significant
32-bit sub word stored first. It can be
cleared individually by using the control
word clear.

Interrupt status register 0A 5 RO 00000000 This status register stores the interrupt
status in four fields (refer to Table A–3).
These status bits can be cleared by
writing a 1 in the respective locations.

Interrupt mask register 0B 5 WO 00000001 This register stores the interrupt mask in
four fields (refer to Table A–4).

Single-bit error location
status register

0C 32 R/W 00000000 This status register stores the occurrence
of single-bit error for each 64-bit part of
the data word in every bit (refer to
Table A–5). These status bits can be
cleared by writing a 1 in the respective
locations.

Double-bit error location
status register

0D 32 R/W 00000000 This status register stores the occurrence
of double-bit error for each 64-bit part of
the data word in every bit (refer to
Table A–6). These status bits can be
cleared by writing a 1 in the respective
locations.

Table A–1. ECC Registers (Part 2 of 2)

Name Address
Size
(Bits) Attribute Default Description
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

A–3
Register Bits
Register Bits
Table A–2 shows the control word specification register.

Table A–3 shows the interrupt status register.

Table A–4 shows the interrupt mask register.

Table A–2. Control Word Specification Register

Bit Name Direction Description

0 Count single-bit error Decoder-corrector When 1, count single-bit errors.

1 Correct single-bit error Decoder-corrector When 1, correct single-bit errors.

2 Double-bit error enable Decoder-corrector When 1, detect all double-bit errors and
increment double-bit error counter.

3 Reserved N/A Reserved for future use.

4 Clear all status registers Controller When 1, clear counters single-bit error and
double-bit error status registers for first and last
error address.

5 Reserved N/A Reserved for future use.

6 Reserved N/A Reserved for future use.

7 Counter clear on read Controller When 1, enables counters to clear on read
feature.

8 Corrupt ECC enable Controller When 1, enables deliberate ECC corruption
during encoding, to test the ECC.

9 ECC corruption type Controller When 0, creates single-bit errors in all ECC
codewords; when 1, creates double-bit errors in
all ECC codewords.

10 First or last error Controller When 1, stores the first error address rather
than the last error address of single-bit error or
double-bit error.

11 Clear interrupt Controller When 1, clears the interrupt.

Table A–3. Interrupt Status Register

Bit Name Description

0 Single-bit error When 1, single-bit error occurred.

1 Double-bit error When 1, double-bit error occurred.

2 Maximum single-bit error When 1, single-bit error maximum threshold
exceeded.

3 Maximum double-bit error When 1, double-bit error maximum threshold
exceeded.

4 Double-bit error during read-
modify-write

When 1, double-bit error occurred during a read
modify write condition. (partial write).

Others Reserved Reserved.
© March 2009 Altera Corporation DDR and DDR2 SDRAM High-Performance Controller User Guide

A–4
Register Bits
Table A–5 shows the single-bit error location status register.

Table A–6 shows the double-bit error location status register.

Table A–4. Interrupt Mask Register

Bit Name Description

0 Single-bit error When 1, masks single-bit error.

1 Double-bit error When 1, masks double-bit error.

2 Maximum single-bit error When 1, masks single-bit error maximum
threshold exceeding condition.

3 Maximum double-bit error When 1, masks double-bit error maximum
threshold exceeding condition.

4 Double-bit error during read-
modify-write

 When 1, masks interrupt when double-bit error
occurs during a read-modify-write condition.
(partial write).

Others Reserved Reserved.

Table A–5. Single-Bit Error Location Status Register

Bit Name Description

Bits N – 1 down to 0 Interrupt When 0, no single-bit error; when 1, single-bit
error occurred in this 64-bit part.

Others Reserved Reserved.

Table A–6. Double-Bit Error Location Status Register

Bit Name Description

Bits N-1 down to 0 Cause of Interrupt When 0, no double-bit error; when 1, double-
bit error occurred in this 64-bit part.

Others Reserved Reserved.
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation

© March 2009 Altera Corporation
Additional Information
Revision History
The following table shows the revision history for this user guide.

How to Contact Altera
For the most up-to-date information about Altera products, see the following table.

Date Version Changes Made

March 2009 9.0 ■ Updated device support for Arria II GX, HardCopy III and HardCopy IV E.

■ Updated information on new features.

■ Updated new half rate write waveform for Avalon-MM Interface.

■ Added new chapter—Chapter 5, Example Design Walkthrough.

■ Removed Appendix B and Appendix C.

November 2008 8.1 ■ Updated new read and write waveforms.

■ Updated section on Example Driver.

■ Added new section on DDR/DDR2 SDRAM High-Performance Controller Architecture.

■ Added new section on Simulating With Other Simulators - VHDL/Verilog HDL IP
Functional Simulation.

May 2008 8.0 ■ Updated new read and write waveforms.

■ Added new simulation appendix (Appendix B).

■ Added more detailed latency information (Appendix C).

■ Added Stratix IV support.

October 2007 7.2 ■ Corrected half rate and full rate information.

■ Corrected local_wdata_req, mem_clk, and mem_clk_n description.

■ Updated typical latency numbers.

May 2007 7.1 ■ Updated device support.

■ Added description of ECC.

■ Added Appendix A.

December 2006 7.0 Added Cyclone III support.

December 2006 6.1 First release.

Contact (Note 1)
Contact
Method Address

Technical support Website www.altera.com/support

Technical training Website www.altera.com/training

Email custrain@altera.com

Altera literature services Email literature@altera.com

Non-technical support (General) Email nacomp@altera.com
DDR and DDR2 SDRAM High-Performance Controller User Guide
Preliminary

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
mailto:literature@altera.com
mailto:nacomp@altera.com

Info–2 Additional Information
Typographic Conventions
Typographic Conventions
The following table shows the typographic conventions that this document uses.

(Software Licensing) Email authorization@altera.com

Note:

(1) You can also contact your local Altera sales office or sales representative.

Contact (Note 1)
Contact
Method Address

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicates command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box.

bold type Indicates directory names, project names, disk drive names, file names, file name
extensions, and software utility names. For example, \qdesigns directory, d: drive,
and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicates document titles. For example, AN 519: Stratix IV Design Guidelines.

Italic type Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicates keyboard keys and menu names. For example, Delete key and the Options
menu.

“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. Active-low signals are denoted by suffix n. For example,
resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

1., 2., 3., and
a., b., c., and so on.

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

r The angled arrow instructs you to press Enter.

f The feet direct you to more information about a particular topic.
DDR and DDR2 SDRAM High-Performance Controller User Guide © March 2009 Altera Corporation
Preliminary

mailto:authorization@altera.com

	Contents
	1. About These MegaCore Functions
	Release Information
	Device Family Support
	Features
	General Description
	MegaCore Verification
	Performance and Resource Utilization
	Installation and Licensing
	OpenCore Plus Evaluation
	OpenCore Plus Time-Out Behavior

	2. Getting Started
	Design Flow
	Select Flow
	SOPC Builder Flow
	Specify Parameters
	Complete the SOPC Builder System
	Simulate the System

	MegaWizard Plug-In Manager Flow
	Specify Parameters
	Simulate the Example Design
	Simulating Using NativeLink
	IP Functional Simulations

	Compile the Design
	Program Device and Implement the Design

	3. Parameter Settings
	Memory Settings
	PHY Settings
	Controller Settings

	4. Functional Description
	Block Description
	Command FIFO
	Write Data FIFO
	Write Data Tracking Logic
	Main State Machine
	Bank Management Logic
	Timer Logic
	Initialization State Machine
	Address and Command Decode
	PHY Interface Logic
	ODT Generation Logic
	Low Power Mode Logic
	Control Logic
	Latency
	Error Correction Coding (ECC)
	Interrupts
	Partial Writes
	Partial Bursts
	ECC Latency

	Example Design
	Example Driver

	Interfaces and Signals
	Interface Description
	Full Rate Write, Avalon-MM Interface Mode
	Full Rate Write, Native Interface Mode-Non-Consecutive Write
	Half Rate Write, Avalon-MM Interface Mode
	Half Rate Write, Native Interface Mode
	Full Rate Read, Avalon-MM Interface Mode
	Half Rate Read, Native Interface Mode
	Half Rate Read, Avalon-MM Interface Mode-Non-Consecutive Read
	Full Rate, Native Interface Mode-Alternate Read-Write
	User Refresh Control
	Self-Refresh and Power-Down Commands
	Auto-Precharge Commands

	Signals

	5. Example Design Walkthrough
	Creating A Simulation Testbench Environment
	Creating the Example Project
	Configuring the DDR2 SDRAM High-Performance Controller

	Understanding the Example Design and Testbench
	Testbench Description
	Running the Example Testbench from Your Simulator

	The Testbench Stages
	Memory Device Initialization
	Functional Memory Use

	A. ECC Register Description
	ECC Registers
	Register Bits

	Additional Information
	Revision History
	How to Contact Altera
	Typographic Conventions

