


Advanced Customization
Environment (ACE)

Online Help

Notices
© Agilent Technologies, Inc. 2001-2009

No part of this manual may be reproduced
in any form or by any means (including
electronic storage and retrieval or transla-
tion into a foreign language) without prior
agreement and written consent from Agi-
lent Technologies, Inc. as governed by
United States and international copyright
laws.

Manual Part Number

Version 03.82.0000

Edition

April 10, 2009

Available in electronic format only

Agilent Technologies, Inc.
1900 Garden of the Gods Road
Colorado Springs, CO 80907 USA

Warranty

The material contained in this docu-
ment is provided “as is,” and is sub-
ject to being changed, without notice,
in future editions. Further, to the max-
imum extent permitted by applicable
law, Agilent disclaims all warranties,
either express or implied, with regard
to this manual and any information
contained herein, including but not
limited to the implied warranties of
merchantability and fitness for a par-
ticular purpose. Agilent shall not be
liable for errors or for incidental or
consequential damages in connection
with the furnishing, use, or perfor-
mance of this document or of any
information contained herein. Should
Agilent and the user have a separate
written agreement with warranty
terms covering the material in this
document that conflict with these
terms, the warranty terms in the sep-
arate agreement shall control.

Technology Licenses

The hardware and/or software described in
this document are furnished under a
license and may be used or copied only in
accordance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of
a U.S. Government prime contract or sub-
contract, Software is delivered and
licensed as “Commercial computer soft-
ware” as defined in DFAR 252.227-7014
(June 1995), or as a “commercial item” as
defined in FAR 2.101(a) or as “Restricted
computer software” as defined in FAR
52.227-19 (June 1987) or any equivalent

agency regulation or contract clause. Use,
duplication or disclosure of Software is
subject to Agilent Technologies’ standard
commercial license terms, and non-DOD
Departments and Agencies of the U.S. Gov-
ernment will receive no greater than
Restricted Rights as defined in FAR
52.227-19(c)(1-2) (June 1987). U.S. Govern-
ment users will receive no greater than
Limited Rights as defined in FAR 52.227-14
(June 1987) or DFAR 252.227-7015 (b)(2)
(November 1995), as applicable in any
technical data.

Safety Notices

CAUTION

A CAUTION notice denotes a haz-
ard. It calls attention to an operat-
ing procedure, practice, or the like
that, if not correctly performed or
adhered to, could result in damage
to the product or loss of important
data. Do not proceed beyond a
CAUTION notice until the indicated
conditions are fully understood and
met.

WARNING

A WARNING notice denotes a
hazard. It calls attention to an
operating procedure, practice, or
the like that, if not correctly per-
formed or adhered to, could result
in personal injury or death. Do not
proceed beyond a WARNING
notice until the indicated condi-
tions are fully understood and met.

Trademarks

Microsoft®, MS-DOS®, Windows®, Win-
dows 2000®, and Windows XP® are U.S.
registered trademarks of Microsoft Corpo-
ration.

Adobe®, Acrobat®, and the Acrobat
Logo® are trademarks of Adobe Systems
Incorporated.

Advanced Customization Environment (ACE) Online Help 3

Using the Advanced Customization Environment (ACE)
• Advanced Customization Environment (ACE)—At a Glance (see

page 9)

• Integrated Visual Basic for Applications (VBA) (see page 9)

• Instrument Control and Measurement Automation (see page 11)

• Data Analysis (see page 12)

• Data Visualization (see page 13)

• Linking to Other COM- Enabled PC Applications (see page 14)

• VBA Macros and VbaView Windows (see page 15)

• Creating and Running Macros (see page 17)

• Considerations When Creating a Macro (see page 19)

• Creating a New Macro (see page 20)

• Editing Macros in the VBA IDE (see page 22)

• Using Forms for Program Input/Output (see page 24)

• Running a Macro (see page 28)

• Debugging Macros in the VBA IDE (see page 29)

• Notes on Programming Macros (see page 30)

• Using Logic Analysis COM Objects in the ACE (see page 37)

• Start with AgtLA Namespace (Connect Object Not Needed) (see
page 38)

• Accessing Window and BusSignal Objects (see page 39)

• Generic and Specific Objects (see page 40)

• Getting Help on COM Objects (see page 41)

• Analyzing Data in ACE (see page 43)

• Finding Events (Using Logic Analyzer Hardware) (see page 44)

• Getting Data from the Logic Analyzer (see page 54)

• Displaying Data in VbaView Windows (see page 59)

• Adding a New VBA View "Hello World Sample" Window (see page 61)

• Understanding the Notify Function (see page 63)

• Using the VbaViewChart Object (see page 65)

• Disabling VbaView Windows (see page 75)

• Distributing VBA Code (see page 77)

• To distribute VBA code via ALA format configuration files (see
page 78)

• To distribute VBA code via XML format configuration files (see
page 79)

• To distribute individual files (for VBA Modules/Forms) (see page 80)

4 Advanced Customization Environment (ACE) Online Help

• To distribute VBA project code via .zip files (see page 81)

• Visual Basic Programming Tips (see page 89)

• Visual Basic Syntax (see page 90)

• Guidelines for C++ Programmers (see page 92)

• Common VBA Error Messages (see page 93)

See Also • "COM Automation Reference" (in the online help)

• Help inside the VBA Integrated Development Environment (IDE) (for
syntax or method calls)

• Web sites:

• "http://groups.google.com" (get answers to VBA questions)

• "http://www.msdn.com" (Microsoft knowledge base)

• Books:

• VBA Developer's Handbook by Ken Getz & Mike Gilbert, 2nd Edition

• VBA for Dummies by John Paul Mueller (Good reference for Forms)

TIP When you get a reference book, be sure the book is for Visual Basic for Applications (VBA).
VBA is not the same as VB or VB.NET. Also, don't forget about the "F1" help.

http://groups.google.com
http://www.msdn.com

Advanced Customization Environment (ACE) Online Help 5

Contents
Using the Advanced Customization Environment (ACE) 3

1 Advanced Customization Environment (ACE)—At a Glance

Instrument Control and Measurement Automation 11

Data Analysis 12

Data Visualization 13

Linking to Other COM-Enabled PC Applications 14

VBA Macros and VbaView Windows 15

2 Creating and Running Macros

Considerations When Creating a Macro 19

Creating a New Macro 20

Editing Macros in the VBA IDE 22

Using Forms for Program Input/Output 24

Example: To populate a combo box with buses/signals 26
Example: To tell if a bus/signal is valid 26
Example: To get the selected string from a combo box 27
Example: To select an item in a combo box based upon a string 27
Example: To ensure that a text box allows only numeric input 27

Running a Macro 28

Debugging Macros in the VBA IDE 29

Notes on Programming Macros 30

Example: Control Macro 30
Example: Analysis Macro 31
Example: Export Macro 32

3 Using Logic Analysis COM Objects in the ACE

Start with AgtLA Namespace (Connect Object Not Needed) 38

Accessing Window and BusSignal Objects 39

Generic and Specific Objects 40

Getting Help on COM Objects 41

6 Advanced Customization Environment (ACE) Online Help

4 Analyzing Data in ACE

Finding Events (Using Logic Analyzer Hardware) 44

Understanding the Find Method and FindResult Object 44
Using Simple Event Strings 46
Using XML Event Strings 46
Finding a Sequence of Events 50

Getting Data from the Logic Analyzer 54

Understanding the GetDataBySample Method 54
Data Types for GetDataBySample 55
Getting the Entire Trace (from Beginning of Data to End of Data) 56
Example: GetTenSamples 56

5 Displaying Data in VbaView Windows

Adding a New VBA View "Hello World Sample" Window 61

Using the Hello World Sample VbaView (Text) Window 61
Viewing the VbaView Code 62

Understanding the Notify Function 63

Using the VbaViewChart Object 65

Setting the Chart Type 66
Using the AddPointArrays Method 66
Setting Titles in the Chart 66
Updating the Chart Display 66
Example: XY Scattergram 67
Example: Line Chart 68
Example: Bar Chart 69
Example: Pie Chart 73

Disabling VbaView Windows 75

6 Distributing VBA Code

To distribute VBA code via ALA format configuration files 78

To distribute VBA code via XML format configuration files 79

To distribute individual files (for VBA Modules/Forms) 80

To distribute VBA project code via .zip files 81

To export VBA project code to .zip files 82
To create VBA project code .zip files with agZip.exe 82
To import VBA project code from .zip files 86
To load VBA project code at application startup 86

Advanced Customization Environment (ACE) Online Help 7

7 Visual Basic Programming Tips

Visual Basic Syntax 90

Guidelines for C++ Programmers 92

Common VBA Error Messages 93

Index

8 Advanced Customization Environment (ACE) Online Help

 9

Advanced Customization Environment (ACE)
Online Help

1
Advanced Customization Environment
(ACE)—At a Glance

The Advanced Customization Environment (ACE) is a seamless integration
of Microsoft Visual Basic for Applications (VBA) into the Agilent Logic
Analyzer application.

Integrated Visual
Basic for

Applications
(VBA)

Visual Basic for Applications (VBA) is a fully established Microsoft
application that provides an Integrated Development Environment (IDE)
for automating tasks and customizing an application. Just as VBA is
integrated into Microsoft Excel, Word, and Access (for example), it is now
integrated into the Agilent Logic Analyzer application. VBA's seamless
integration into the Agilent Logic Analyzer application shortens the
learning curve and lets you perform automation and customization tasks
in the same environment as you perform other logic analysis tasks.

TIP VBA is not the same as VB or VB.NET. It is the same VBA that is part of Excel.

10 Advanced Customization Environment (ACE) Online Help

1 Advanced Customization Environment (ACE)—At a Glance

With the
Advanced

Customization
Environment

(ACE), You Can:

• Control the instrument and automate measurements (see page 11).

• Add data analysis customization (see page 12).

• Add data visualization windows (see page 13).

• Link to other COM- enabled PC applications (see page 14).

See Also • VBA Macros and VbaView Windows (see page 15)

Advanced Customization Environment (ACE)—At a Glance 1

Advanced Customization Environment (ACE) Online Help 11

Instrument Control and Measurement Automation

With the Advanced Customization Environment (ACE), you can create
macros that control the instrument and automate measurements. For a
quick example of a macro that runs the logic analyzer, saves the results,
and runs the logic analyzer again:

1 In the Agilent Logic Analyzer application, choose Tools>Run
Macro>RepetitiveSaveToFile.

2 In the Repetitive Run & Save dialog, select the desired options, and
click Run.

3 Click Close to close the macro dialog.

NOTE Note that the Agilent Logic Analyzer application's Run/Stop>Run Properties... dialog now
supports saving data after every acquisition during repetitive runs.

12 Advanced Customization Environment (ACE) Online Help

1 Advanced Customization Environment (ACE)—At a Glance

Data Analysis

With the Advanced Customization Environment (ACE), you can create
macros that analyze captured data. For example, a macro can run the logic
analyzer and search the captured data for the occurrence of an event too
complicated to be triggered on. For a quick example of a data analysis
macro that finds the time between two edges and places markers on
particular difference values:

1 Choose Tools>Run Macro>FindEdgesSample.

2 In the Find Edges dialog, select the desired options, and click Find.

3 Click Close to close the macro dialog.

Advanced Customization Environment (ACE)—At a Glance 1

Advanced Customization Environment (ACE) Online Help 13

Data Visualization

With the Advanced Customization Environment (ACE), you can add
VbaView windows that help visualize captured data in XY scattergrams,
bar charts, line charts, and pie charts. For a quick example of a VbaView
window that creates a bar chart of the distribution of values on a bus:

1 Choose Window>New VbaView>Distribution Sample....

2 In the Distribution Properties dialog, select the desired options, and
click OK.

The distribution of values on the specified bus are shown in the
VbaView window.

14 Advanced Customization Environment (ACE) Online Help

1 Advanced Customization Environment (ACE)—At a Glance

Linking to Other COM-Enabled PC Applications

With the Advanced Customization Environment (ACE), you can create
macros or add VbaView windows that interact with other COM- enabled PC
applications. For a quick example of a VbaView window that sends
captured data to an Internet Explorer window:

1 Choose Window>New VbaView>Export to IE Sample....

2 In the "Samples to send to Internet Explorer" dialog, select the desired
options, and click OK.

Logic analyzer data is sent to an Internet Explorer window.

Advanced Customization Environment (ACE)—At a Glance 1

Advanced Customization Environment (ACE) Online Help 15

VBA Macros and VbaView Windows

Macro = Script
Used to Automate

Tasks and
Customize

Analysis

A macro:

• Is written in Microsoft Visual Basic.

• Can optionally create a custom dialog for user input.

• Is manually run from the menu or tool bar.

• Has no data visualization capabilities.

See the samples included with the Agilent Logic Analyzer application by
choosing Tools>Run Macro>:

• FindEdges (simple find time between edges and place markers
example).

• RepetitiveSaveToFile (simple repetitive run and save example).

• SendToExcel (for sending logic analyzer data to Microsoft Excel).

• SendToPatternGeneratorModule (for sending logic analyzer data to a
pattern generator module as stimulus vectors).

VbaView =
Macro +

Visualization

A VbaView is a window that:

• Has charting capabilities.

• Is integrated into the Overview window.

• Responds to logic analyzer events.

See the samples included with the Agilent Logic Analyzer application by
choosing Window>New VbaView>:

• Bus vs Bus Sample... (simple XY scattergram chart example).

• Distribution Sample... (simple data distribution bar chart example).

• Export to IE... (simple export data to another application example).

• External Scope Web Control... (opens web control window for external
oscilloscope).

• Hello World Sample... (simple text output example).

• TimingCompare... (compares timing analyzer data with a specified
tolerance).

More on Macros A macro is a generic function that is run by: choosing
Tools>Macro>Macros..., selecting the macro (in the Macros dialog), and
clicking Run. (This Run button does not run the logic analyzer.) Macros
are generally used to start a one- time data analysis or data export. A

NOTE Note that the Agilent Logic Analyzer application's Run/Stop>Run Properties... dialog now
supports saving data after every acquisition during repetitive runs.

16 Advanced Customization Environment (ACE) Online Help

1 Advanced Customization Environment (ACE)—At a Glance

macro should be used when there is no need to graph data or respond to
events in the logic analysis system (like when a measurement is run, for
example). It is common for a macro to open a dialog (also known as a
"user form") to prompt for user- selectable options or parameters before
running the analysis or export.

A macro must contain at least one module with at least one public
subroutine with no parameters. The name of the module does not have to
be any specific name. All subroutines with no parameters appear in the
Macros dialog (which appears when you choose Tools>Macro>Macros...).
Subroutines that are private or have parameters do not appear in the
Macros dialog. In general, you are not able to access VbaView window
functionality from the Macros dialog. (A public function with no
parameters can be put in the AgtVbaView module if desired, but there
generally isn't a need to do this).

More on VbaView
Windows

A VbaView window has graphing and text display capabilities. It also has
the ability to respond to events in the logic analysis system (like when a
measurement is run or when the VbaView>Properties... command is
chosen, for example). A VbaView window essentially provides a superset of
the macro capabilities plus graphing and the ability to respond to events.
Use a VbaView window whenever data is to be graphed or when text is to
be displayed. VbaView windows generally have a properties dialog that lets
you choose window options.

VbaView windows must contain a Notify function in the AgtVbaView
module (see page 63). The name "Notify" must be used for the function
and "AgtVbaView" must be used for the module. The Notify function is how
the logic analysis system tells the VbaView window about events such as a
run or when the VbaView>Properties... command is chosen. It is common
for a VbaView window to have a user form called agtProperties although
any name can be used.

 17

Advanced Customization Environment (ACE)
Online Help

2
Creating and Running Macros

In Microsoft Visual Basic for Applications (VBA), "macros" (in the online
help) are public Sub procedures (with no parameters) that can be run
from the user interface to automate an application.

Macros extend the functionality of an application. Macros can be used to
perform functions within an application or even across applications. For
example, a macro in the logic analyzer might cause an instance of
Microsoft Excel to open and copy data from the logic analyzer.

In the logic analyzer, macros generally fit into one of the categories:

• Control — For example, a macro can run the logic analyzer, save the
results, run the logic analyzer again, etc.

• Analyze — For example, a macro can run the logic analyzer and search
the captured data for the occurrence of an event too complicated to be
triggered on. If the event is not found, the logic analyzer can be run
again until the event is found.

• Export — For example, macros can export logic analyzer data to Excel,
Access, MathWorks MATLAB, the Agilent Vector Signal Analyzer,
National Instruments LabVIEW, Agilent VEE, and SysStat. A macro can
copy data from a logic analyzer directly into a pattern generator
module.

There is another category of VBA program that is not created or run like
macros:

• Graph — As a part of the added VBA functionality, graphing functions
such as XY scattergrams, bar charts, line charts, and pie charts can be
used in the VbaView window. See Displaying Data in VbaView Windows
(see page 59).

To create and run macros, see:

• Considerations When Creating a Macro (see page 19)

• Creating a New Macro (see page 20)

• Editing Macros in the VBA IDE (see page 22)

• Using Forms for Program Input/Output (see page 24)

• Example: To populate a combo box with buses/signals (see page 26)

• Example: To tell if a bus/signal is valid (see page 26)

18 Advanced Customization Environment (ACE) Online Help

2 Creating and Running Macros

• Example: To get the selected string from a combo box (see page 27)

• Example: To select an item in a combo box based upon a string (see
page 27)

• Example: To ensure that a text box allows only numeric input (see
page 27)

• Running a Macro (see page 28)

• Debugging Macros in the VBA IDE (see page 29)

• Notes on Programming Macros (see page 30)

• Example: Control Macro (see page 30)

• Example: Analysis Macro (see page 31)

• Example: Export Macro (see page 32)

See Also • VBA Macros and VbaView Windows (see page 15)

Creating and Running Macros 2

Advanced Customization Environment (ACE) Online Help 19

Considerations When Creating a Macro

Config Macros • The MyConfigMarcos project is saved with the ALA or XML format
configuration file (in other words, it is file specific).

• To access a macro in the MyConfigMacros project, you have to load the
associated configuration file.

Global Macros • The MyGlobalMacros project is saved on the logic analysis system or
host PC, not in an ALA or XML format configuration file (in other
words, it is specific to the system).

• Macros in the MyGlobalMacros project are available with any
setup/configuration.

TIP A macro needs to be stored into a Project.

A standalone macro can ONLY by stored in the MyConfigMacros or MyGlobalMacros
projects. The other projects are either read only or are not appropriate.

20 Advanced Customization Environment (ACE) Online Help

2 Creating and Running Macros

Creating a New Macro

1 Run the Agilent Logic Analyzer application.

2 Choose Tools>Macro>Macros... or press the ALT+F8 keyboard shortcut.

3 In the Macros dialog, use the Macros in drop- down to select the project
in which the macro should be created.

Choose between:

• MyConfigMacros — the macro will be saved with the ALA or XML
format logic analyzer configuration file.

• MyGlobalMacros — the macro will be saved in "My Documents\Agilent
Technologies\Logic Analyzer\Vba Files\MyGlobalMacros.alv" when you
exit the Agilent Logic Analyzer application and loaded automatically
the next time you start the application.

4 In the Macros dialog, enter the desired macro name, and click Create.

5 In the VBA IDE, enter the program (see Notes on Programming Macros
(see page 30)).

Creating and Running Macros 2

Advanced Customization Environment (ACE) Online Help 21

6 Close the VBA IDE window.

See Also • VBA Macros and VbaView Windows (see page 15)

22 Advanced Customization Environment (ACE) Online Help

2 Creating and Running Macros

Editing Macros in the VBA IDE

The VBA IDE looks like:

In the VBA IDE, you can:

• Edit code. The text editor has Intellisense, which means that menus
appear when typing.

• Debug macros:

• Step through code.

• Display the value of a variable.

• Get a stack trace.

TIP Type "AgtLA" and the rest is magic.

Creating and Running Macros 2

Advanced Customization Environment (ACE) Online Help 23

See Debugging Macros in the VBA IDE (see page 29).

The VBA IDE is basically the same as the one used in Microsoft Excel,
except it has knowledge of the logic analysis system COM model.

24 Advanced Customization Environment (ACE) Online Help

2 Creating and Running Macros

Using Forms for Program Input/Output

1 Create a macro as you would normally (see Creating a New Macro (see
page 20)).

2 In the VBA IDE, choose Insert>UserForm.

3 In the Properties window, rename the UserForm from "UserForm1" to
the desired form name, and change the Caption property to the desired
form dialog title.

4 Click in the form to open the Toolbox.

Creating and Running Macros 2

Advanced Customization Environment (ACE) Online Help 25

5 Drag controls from the Toolbox to the form. Position the controls, name
them, and change the Caption and any other properties you desire.

6 In the Project window, right- click on the form and choose View Code.

7 In the Code window under "(General)", select the control you want to
add code for, and enter the code for the form.

For more examples of code used in UserForms, see:

• Example: To populate a combo box with buses/signals (see page 26)

• Example: To tell if a bus/signal is valid (see page 26)

26 Advanced Customization Environment (ACE) Online Help

2 Creating and Running Macros

• Example: To get the selected string from a combo box (see page 27)

• Example: To select an item in a combo box based upon a string (see
page 27)

• Example: To ensure that a text box allows only numeric input (see
page 27)

8 In the Project window, right- click on the module and choose View
Code.

9 Enter the module code that operates on the entered form values.

See Also • Creating a New Macro (see page 20)

• Notes on Programming Macros (see page 30)

• The VBA IDE's online help.

Example: To populate a combo box with buses/signals

Dim i As Integer
Me.cmbXAxisBusSignal.Clear

For i = 0 To myWindow.BusSignals.Count - 1
Me.cmbXAxisBusSignal.AddItem myWindow.BusSignals(i).Name

Next i
Me.cmbYAxisBusSignal.ListIndex = 0

Example: To tell if a bus/signal is valid

Private Function IsBusSignalValid(ByVal strBuSignal As String) _
As Boolean

Dim myData As AgtLA.SampleBusSignalData

On Error GoTo busSignalNotValid

Creating and Running Macros 2

Advanced Customization Environment (ACE) Online Help 27

IsBusSignalValid = True
Set myData = myWindow.BusSignals(strXAxisBusSignal).BusSignalData
Exit Function

busSignalNotValid:
IsBusSignalValid = False

End Function

Example: To get the selected string from a combo box

strXAxisBusSignal = _
Me.cmbXAxisBusSignal.List(Me.cmbXAxisBusSignal.ListIndex)

Example: To select an item in a combo box based upon a string

Private Sub SetComboBoxValue(ByRef cmbControl As ComboBox, _
ByVal strValue As String)

Dim i As Integer
Dim bFound As Boolean

i = 0
Do While Not (cmbControl.List(i) <> strValue)
i = i + 1

Loop

If (cmbControl.List(i) = strValue) Then
cmbControl.ListIndex = i

Else
'A ListIndex of -1 means no item is selected
cmbControl.ListIndex = -1

End If
End Sub

Example: To ensure that a text box allows only numeric input

Private Sub txtEndSample_KeyPress(ByVal KeyAscii As _
MSForms.ReturnInteger)

' Cancel any non-numeric keys.
If KeyAscii < vbKey0 Or KeyAscii > vbKey9 Then
KeyAscii = 0

End If
End Sub

28 Advanced Customization Environment (ACE) Online Help

2 Creating and Running Macros

Running a Macro

• In the Agilent Logic Analyzer application, choose Tools>Run
Macro>(name of macro).

Or:

1 In the Agilent Logic Analyzer application, choose
Tools>Macro>Macros... or press the ALT+F8 keyboard shortcut.

2 In the Macros dialog, select the macro you want to run, and click Run.

Or:

• In the VBA IDE, press F5.

See Also • VBA Macros and VbaView Windows (see page 15)

Creating and Running Macros 2

Advanced Customization Environment (ACE) Online Help 29

Debugging Macros in the VBA IDE

To add a
breakpoint

• Click to the left of a line of code to set a breakpoint.

To "watch" a
variable

1 When a macro is running, choose Debug>Add Watch... from the VBA
IDE's main menu.

2 In the Add Watch dialog, enter the variable expression you want to
watch, and click OK.

30 Advanced Customization Environment (ACE) Online Help

2 Creating and Running Macros

Notes on Programming Macros

• To make a macro available via the Tools>Macros> menu, the macro
must be public (not private) and have no parameters.

• The root object of the entire logic analyzer instrument is AgtLA. This
object is used for accessing both logic analyzer sub- objects (like
Modules and Windows) and also for logic analyzer specific data types.

• For example, to run the logic analyzer:

AgtLA.Run
AgtLA.WaitComplete(999)

• To extract data from the logic analyzer, see the "GetDataBySample
Method" (in the online help).

• To create forms for user input or display of results, see Using Forms for
Program Input/Output (see page 24).

• For a brief description of the differences between a VbaView and a
Macro and when to use each, see VBA Macros and VbaView Windows
(see page 15).

• For information about Visual Basic syntax, see Visual Basic Syntax (see
page 90).

• For simple macro examples, see:

• Example: Control Macro (see page 30)

• Example: Analysis Macro (see page 31)

• Example: Export Macro (see page 32)

For more detailed macro examples, see the FindEdges,
RepetitiveSaveToFile, SendToExcel, and SendToPatternGeneratorModule
macros that are shipped with the Agilent Logic Analyzer application.

Example: Control Macro

Option Explicit ' Must define all variables.

Sub RunNTimes()

Dim nCompletedRuns As Integer
Dim i As Integer
Dim strFile As String

' Use a loop to go through each of the runs.

NOTE This way of accessing the instrument object is different than when controlling the logic
analyzer remotely using COM automation. Please keep this in mind when referring to the
examples in the "COM Automation" (in the online help) online help.

Creating and Running Macros 2

Advanced Customization Environment (ACE) Online Help 31

nCompletedRuns = 0
For i = 1 To 5

AgtLA.Run
AgtLA.WaitComplete (999)

'Given a file type, do the requested save
strFile = "c:\LA\Data\RunNTimes" + VBA.LTrim(VBA.Str(i)) + ".ala"
Call AgtLA.Save(strFile) ' This tells the logic analyzer to save.
AgtLA.Modules(0).WaitComplete (99)

nCompletedRuns = nCompletedRuns + 1
MsgBox (VBA.Str(nCompletedRuns) + " run(s) completed.")

Next i

End Sub

Example: Analysis Macro

Option Explicit ' Must define all variables.

' This finds the first occurrence of a rising edge on bit 0
' of My Bus 1 from the beginning of the data.

Public Sub SimpleFind()

Dim myWindow As AgtLA.Window
Dim theFindResult As AgtLA.FindResult
Dim strEvent As String
Dim dTimeFound As Double

' Set the window object.
Set myWindow = AgtLA.Windows("Waveform-1")

' Get the XML based string representing the edge.
strEvent = "<Event>" + _

"<BusSignal Name='My Bus 1' Bit='0' " + _
"Operator='Rising Edge' />" + _
"</Event>"

' Invoke the find command.
Set theFindResult = myWindow.Find(strEvent, _

1, _
"F", _
"Beginning Of Data", _
"Present")

' Get the time where the result was found.
If (theFindResult.Found) Then dTimeFound = theFindResult.TimeFound

End Sub

32 Advanced Customization Environment (ACE) Online Help

2 Creating and Running Macros

Example: Export Macro

When exporting data to another application, you need to make sure the
VBA project references that application's object library:

1 In the VBA IDE's Project Explorer window, select the VBA project your
macro is in (or select a Form or Module in the project).

2 Choose Tools>References....

3 In the References dialog, check the object library of the application you
are exporting data to.

For example, the object library for Internet Explorer is "Microsoft
Internet Controls".

4 Click OK.

Example Option Explicit ' Must define all variables.

Public myIEApp As SHDocVw.InternetExplorer ' This is IE application.
Public myModule As AgtLA.Module
Public nExportToIEStartSample As Long ' Starting sample.
Public nExportToIEEndSample As Long ' Ending sample.
Public ExportToIELogicAnalyzerData As Collection ' Data collected

' from LA.

Sub ExportDataToIE()

Dim strHTML As String
Dim nSample As Long
Dim myData As AgtLA.SampleBusSignalData

On Error GoTo noData

nExportToIEStartSample = -10
nExportToIEEndSample = 10
Set myModule = AgtLA.Modules(0)
Set myData = myModule.BusSignals(0).BusSignalData
nSample = myData.StartSample ' If error, there is no data.

Call CreateIEObject ' Create the new IE object if one isn't
' already available.

Call GetLogicAnalyzerData ' Get the data from the logic analyzer.

strHTML = "<HTML><TITLE>Exporting Data to IE</TITLE><H1>Export" + _
"ing Data to External Applications</H1>"

strHTML = strHTML + "<P>The data below was exported from the " + _
"logic analyzer to Windows Internet "

strHTML = strHTML + "Explorer using the Advanced Customization " + _
"Environment. This example "

strHTML = strHTML + "demonstrates how to easily launch and " + _
"export data to other PC "

strHTML = strHTML + "applications from within the logic " + _
"analyzer application."

strHTML = strHTML + "<P>"
strHTML = strHTML + "Here's the requested data from your last run."

Creating and Running Macros 2

Advanced Customization Environment (ACE) Online Help 33

strHTML = strHTML + "<P>"
strHTML = strHTML + "<TABLE BORDER>"
strHTML = strHTML + GetHeaderString

'Go through the data acquired from the logic analyzer and display it.
'We obtain the data row by row.
For nSample = nExportToIEStartSample To nExportToIEEndSample
strHTML = strHTML + GetRowString(nSample)

Next nSample
strHTML = strHTML + "</TABLE>"
strHTML = strHTML + "</HTML>"

myIEApp.Document.Body.innerHTML = strHTML

Exit Sub

noData:
MsgBox ("There is no data. Press Run button; then, run macro again.")

End Sub

' This subroutine creates a new IE object, but only if one is needed.
' The IE object is a new instance of the Internet Explorer application.
Private Sub CreateIEObject()

If (IsIEAlreadyRunning() = False) Then
Set myIEApp = CreateObject("InternetExplorer.Application")
myIEApp.GoHome

' Wait until page loading complete before continuing.
While myIEApp.ReadyState <> READYSTATE_COMPLETE

DoEvents
Wend

myIEApp.Visible = True
End If

End Sub

Private Function IsIEAlreadyRunning() As Boolean
On Error GoTo invalidIE

' First, check to see if the IE app variable is empty.
If (IsEmpty(myIEApp)) Then
IsIEAlreadyRunning = False
Exit Function

End If

' Now, see if it is nothing.
If (myIEApp Is Nothing) Then
IsIEAlreadyRunning = False
Exit Function

End If

If (myIEApp.Visible = False) Then
IsIEAlreadyRunning = False
Exit Function

End If
IsIEAlreadyRunning = True
Exit Function

34 Advanced Customization Environment (ACE) Online Help

2 Creating and Running Macros

invalidIE:
IsIEAlreadyRunning = False

End Function

' We need to keep all of the logic analyzer data in memory at one time,
' so we store it to a collection called ExportToIELogicAnalyzerData.
' This collection contains arrays of strings; one array for each Bus
' or Signal in this window.
Private Sub GetLogicAnalyzerData()

Dim myBusSignal As AgtLA.BusSignal
Dim strArray() As String

' Clear out the old data (if any).
Set ExportToIELogicAnalyzerData = New Collection

For Each myBusSignal In myModule.BusSignals
' This is where we get the data and save it to a collection.
Call GetStringDataArray(myBusSignal, strArray) ' Get the data.
ExportToIELogicAnalyzerData.Add (strArray) ' Save to collection

' of strings.
Next

End Sub

' This is where we get the data for a specific bus or signal and
' place it into a a string array so that we can add it to our web
' page later.
Private Sub GetStringDataArray(ByVal myBusSignal As AgtLA.BusSignal, _

ByRef strArray() As String)
Dim i As Integer
Dim myData As AgtLA.SampleBusSignalData
Dim nArray() As Double
Dim nDataRowCount As Long
Dim nBitWidth As Integer

nBitWidth = myBusSignal.BitSize

Set myData = myBusSignal.BusSignalData

' Make sure that the nExportToIEStartSample and nExportToIEEndSample
' are within bounds.
If (nExportToIEStartSample < myData.StartSample) Then
nExportToIEStartSample = myData.StartSample

End If
If (nExportToIEEndSample > myData.EndSample) Then
nExportToIEEndSample = myData.EndSample

End If

' Extract the bus/signal data.
' In this case, we extract all data as a string.
strArray = myData.GetDataBySample(nExportToIEStartSample, _

nExportToIEEndSample, AgtDataStringHex, nDataRowCount)
End Sub

' This gets the list of bus and signal names formated as an HTML
' table header.

Creating and Running Macros 2

Advanced Customization Environment (ACE) Online Help 35

Private Function GetHeaderString() As String
Dim strHeader As String
Dim myBusSignal As AgtLA.BusSignal

' Get the names of each of the buses and signals.
strHeader = "<TR>"
For Each myBusSignal In myModule.BusSignals
strHeader = strHeader + "<TH>" + myBusSignal.Name + "</TH>"

Next
strHeader = strHeader + "</TR>"
GetHeaderString = strHeader

End Function

' Given a sample number, get the HTML formatted string corresponding
' to that row.
Private Function GetRowString(ByVal nSampleNumber As Long) As String

Dim strArray() As String
Dim nRow As Long
Dim i As Integer
Dim strRow As String

nRow = nSampleNumber - nExportToIEStartSample

strRow = "<TR>"
For i = 1 To ExportToIELogicAnalyzerData.Count
strArray = ExportToIELogicAnalyzerData(i)
strRow = strRow + "<TD>" + strArray(nRow) + "</TD>"

Next i
strRow = strRow + "</TR>"
GetRowString = strRow

End Function

36 Advanced Customization Environment (ACE) Online Help

2 Creating and Running Macros

 37

Advanced Customization Environment (ACE)
Online Help

3
Using Logic Analysis COM Objects in
the ACE

• Start with AgtLA Namespace (Connect Object Not Needed) (see
page 38)

• Accessing Window and BusSignal Objects (see page 39)

• Generic and Specific Objects (see page 40)

• Getting Help on COM Objects (see page 41)

38 Advanced Customization Environment (ACE) Online Help

3 Using Logic Analysis COM Objects in the ACE

Start with AgtLA Namespace (Connect Object Not Needed)

• Start with the AgtLA namespace:

AgtLA.Run
AgtLA.Modules("My 1690D-1")

• No Connect object is needed in VBA because it is integrated into the
Agilent Logic Analyzer application.

 Integrated VBA External VB

AgtLA.Run Dim myConnect As AgtLA.Connect
Dim myInst As AgtLA.Instrument

Set myConnect = CreateObject("AgtLA.Connect")
Set myInst = myConnect.Instrument("myLAHostna
me")
myInst.Run

Using Logic Analysis COM Objects in the ACE 3

Advanced Customization Environment (ACE) Online Help 39

Accessing Window and BusSignal Objects

Hierarchy of Window and BusSignal objects:

• "Windows" (in the online help) — Collection of all windows.

• "Window" (in the online help) — Specific instance of a window such
as Waveform- 1.

• "BusSignals" (in the online help) — Collection of all buses and
signals in this window.

• "BusSignal" (in the online help) — Specific instance of a bus or
signal such as My Bus 1.

To access Window and BusSignal objects:

• Define variables using "Dim":

Dim theWindow As AgtLA.Window
Dim theBusSignal As AgtLA.BusSignal

• Using AgtLA as a starting point, obtain the objects:

Set theWindow = AgtLA.Windows("Waveform-1")
Set theBusSignal = theWindow.BusSignals("My Bus 1")

Result is two variables, one with Waveform- 1 and one with My Bus 1.

Notice that we used "Set" because we are setting the value of an object.

Other Ways to
Access Objects

• Accessing by index:

Set theModule = AgtLA.Modules(0)

• Using a string variable instead of a string constant:

Dim strWindow As String
strWindow = "Waveform-1"
Set myWindow = AgtLA.Windows(strWindow)

40 Advanced Customization Environment (ACE) Online Help

3 Using Logic Analysis COM Objects in the ACE

Generic and Specific Objects

Hierarchy of generic and specific objects:

• "Modules" (in the online help) — Collection of all modules in the system.

• "Module" (in the online help) — Generic object that covers both logic
analyzer and pattern generator modules.

• "AnalyzerModule" (in the online help) — Logic analyzer module
specific object.

• "PattgenModule" (in the online help) — Pattern generator module
specific object.

About generic and specific objects:

• Generic object Module contains the properties and methods that are
common to both logic analyzer and pattern generator modules.

• Properties such as "Name" apply to both.

• There are separate objects for analyzer modules and pattern generator
modules:

• AnalyzerModule contains logic analyzer specific properties and
methods such as GetDataBySample, but it also has access to all of
the generic properties and methods in Module.

• PattgenModule contains pattern generator specific methods such as
InsertLine, but it also has access to all of the generic properties and
methods in Module.

• If you know what type of object you have, use the specific objects like
AnalyzerModule and PattgenModule.

• If you don't know what type of object you have, use the generic object
such as Module.

• You can start by using a generic object, and, depending upon the
type, use the more specific objects:

' Start generic:
Dim theModule As AgtLA.Module
Set theModule = AgtLA.Modules(0)

Dim theAnalyzerModule As AgtLA.AnalyzerModule
If (theModule.Type = "Analyzer") Then

' Once you know the type, use the more specific objects.
Set theAnalyzerModule = theModule

End If

Dim thePattgenModule As AgtLA.PattgenModule
If (theModule.Type = "Pattgen") Then

' Once you know the type, use the more specific objects.
Set thePattgenModule = theModule

End If

Using Logic Analysis COM Objects in the ACE 3

Advanced Customization Environment (ACE) Online Help 41

Getting Help on COM Objects

• In the VBA IDE, choose Help>Agilent Logic Analyzer Object
Reference....

• Highlight the word you want to learn more about, and press the F1 key.

42 Advanced Customization Environment (ACE) Online Help

3 Using Logic Analysis COM Objects in the ACE

 43

Advanced Customization Environment (ACE)
Online Help

4
Analyzing Data in ACE

When analyzing data in the Advanced Customization Environment (ACE),
there are two ways to access the data you're interested in:

• Use the Find method to only find the events of interest.

This is much faster if events of interest are sparse. Also, this is
hardware accelerated if you are connected to logic analyzer hardware.

• Use the GetDataBySample or GetDataByTime methods to downloads
chunks of data.

This is much faster if almost all the captured data is needed. It is
faster to download 1 M of data than to do 500,000 Finds.

Some examples of analyzing data:

• Use TimingZoom data to verify timing of a bus.

• Find incomplete transactions.

• Analyze bus utilization.

For more information on analyzing data, see:

• Finding Events (Using Logic Analyzer Hardware) (see page 44)

• Understanding the Find Method and FindResult Object (see page 44)

• Using Simple Event Strings (see page 46)

• Using XML Event Strings (see page 46)

• Finding a Sequence of Events (see page 50)

• Getting Data from the Logic Analyzer (see page 54)

• Understanding the GetDataBySample Method (see page 54)

• Data Types for GetDataBySample (see page 55)

• Getting the Entire Trace (from Beginning of Data to End of Data)
(see page 56)

• Example: GetTenSamples (see page 56)

44 Advanced Customization Environment (ACE) Online Help

4 Analyzing Data in ACE

Finding Events (Using Logic Analyzer Hardware)

To find "My Bus 1 = h11":

Public Sub FindMethod()
Dim strStartingTime As String
Dim myWindow As AgtLA.Window
Dim theFindResult As AgtLA.FindResult

Set myWindow = AgtLA.Windows("Waveform-1")

' Find from beginning of data.
' The event string varies.
Set theFindResult = myWindow.Find("My Bus 1 = h11", _

1, _
"F", _
"Beginning Of Data", _
"Present")

End Sub

For more information, see:

• Understanding the Find Method and FindResult Object (see page 44)

• Using Simple Event Strings (see page 46)

• Using XML Event Strings (see page 46)

• Shortcut to Code Development: Secret to Creating XML Strings (see
page 47)

• Finding a Sequence of Events (see page 50)

• Creating a Sequential Search (see page 51)

• Example: Sequential Find (see page 52)

• Debugging a Sequential Find (see page 52)

Understanding the Find Method and FindResult Object

Find Method Set theFindResult = myWindow.Find("My Bus 1 = h04", _ ' Event string.
1, _ ' Occurrence.
"F", _ ' Forward or Backward.
"Beginning Of Data", _
"Present>", _
"10 ns")

This Find method call is the same as the Find shown below in the Agilent
Logic Analyzer interface.

Analyzing Data in ACE 4

Advanced Customization Environment (ACE) Online Help 45

FindResult Object The FindResult object returned by the Find method has the following
properties:

The following example shows how some of the FindResult properties are
used:

Set theFindResult = myWindow.Find("My Bus 1 = h08", _
1, _
"F", _
"Beginning Of Data", _
"Present")

If (theFindResult.Found) Then
MsgBox "Found at " + theFindResult.TimeFoundString

Else
MsgBox "Not found"

End If

Event Strings Can either be:

• Simple:

"My Bus 1=h04"

These are best for very simple events (see Using Simple Event Strings
(see page 46)).

• XML:

Properties Description

"Found" (in the online
help)

Gets the found status.

"OccurrencesFound" (in
the online help)

Gets the number of occurrences found.

"SubrowFound" (in the
online help)

Gets the subrow number if found on a subrow.

"TimeFound" (in the online
help)

Gets the time found as a double.

"TimeFoundString" (in the
online help)

Gets the time found as a string.

46 Advanced Customization Environment (ACE) Online Help

4 Analyzing Data in ACE

"<Event><BusSignal Name='My Bus 1' Bit='0' Operator='Rising Edge'/>
</Event>"

These provide more power at the cost of using XML tags (see Using
XML Event Strings (see page 46)).

Using Simple Event Strings

Example:

"My Bus 1=h04 And Sig1=eR"

• You can use "And" and "Or". Note that these are case sensitive – "AND"
won't work!

Precede each value with the base (such as h04):

Use e for edges (such as eR):

Using XML Event Strings

<Event>
<And>

<BusSignal Name='Sig1' Bit='All' Operator='High'/>
<BusSignal Name='ADDR' Bit='All' Operator='Equals' Value='hXX'/>

TIP Simple event string programming rules:

• Precede each value with a base.

• Use "e" for edges.

Prefix Base Example

h hexadecimal h04

o octal o3

b binary b10110

d decimal d99

Value Type Example

X don't care eX

R rising edge eR

F falling edge eF

E either edge eE

Analyzing Data in ACE 4

Advanced Customization Environment (ACE) Online Help 47

</And>
</Event>

• XML event strings are more complicated but provide much greater
power.

• Put the entire event within <Event>…</Event>.

• Each pair of bus/signal names needs an <And>…</And> or <Or>…</Or>.

• Operators include: Rising Edge, Falling Edge, Either Edge, Range, etc.

Example:

strEvent = "<Event><BusSignal Name='My Bus 1' Bit='All' " + _
"Operator='Equals' Value='h01'/></Event>"

See Also • Shortcut to Code Development: Secret to Creating XML Strings (see
page 47)

Shortcut to Code Development: Secret to Creating XML Strings

TIP Note the use of single quotes instead of double quotes because double quotes are used for
strings in Visual Basic.

TIP The easy way to specify an XML find event string is:

1 Use the Advanced Trigger dialog to create the equivalent trigger.

2 Select Store... to save it to an XML file.

3 Open up the XML file in Notepad and cut- and- paste it into your
program.

48 Advanced Customization Environment (ACE) Online Help

4 Analyzing Data in ACE

To create an XML event string:

1 In the Agilent Logic Analyzer application, create the equivalent trigger
in the Advanced Trigger dialog.

2 Click Store....

3 In the Store Trigger dialog, click Save to file..., and save the trigger to
a file.

4 Open the trigger XML file in Notepad (not Internet Explorer because of
its double quoted attribute values).

5 Copy the XML Event string.

Analyzing Data in ACE 4

Advanced Customization Environment (ACE) Online Help 49

6 In the VBA IDE, paste the XML event string into a string variable.

(Red means there is an error.)

7 If you happen to have an XML event string with double quoted attribute
values, convert double quotes to single quotes.

a Highlight the entire event string.

b Choose Edit>Replace....

c Replace " with '.

TIP • Do not copy <Step>, <Action>, <Trigger>, or anything except <Event>.

• Only <Event> will work even though some of these tags are similar to
parameters in the Find Method.

• Example: Don't use <Occurrence> even though the Find Method has
an Occurrence parameter.

50 Advanced Customization Environment (ACE) Online Help

4 Analyzing Data in ACE

8 Put double quotes around each line, and use the "+" operator to
concatenate lines.

9 Use line extension " _" to extend the line.

10 Use the string variable in the Find method.

The resulting XML event string in code looks like:

Notice that the XML Event String is on three lines. Each line is within
double quotes. All lines except the last end in "+ _" for concatenation and
extension.

Finding a Sequence of Events

Just as you can set up a trigger on a sequence of events (see the XML
example below), you can also find a sequence of events in the Advanced
Customization Environment (ACE).

<File Content='Logic Analyzer Trigger Specification'>
<Trigger Mode='Timing'>

<Step Number='1'>
<If>

<Event ParensNeeded='F'>
<BusSignal Name='My Bus 1' Bit='0'

Operator='Rising Edge'/>
</Event>

<Occurrence Value='1' Mode='Eventual'/>
<Action>

<Goto Step='Next'/>
</Action>

</If>
</Step>
<Step Number='2'>

Analyzing Data in ACE 4

Advanced Customization Environment (ACE) Online Help 51

<If>
<Event ParensNeeded='F'>

<BusSignal Name='Sig1' Bit='All'
Operator='Falling Edge'/>

</Event>
<Occurrence Value='1' Mode='Eventual'/>
<Action>

<TriggerAction Operator='Fill Memory'/>
</Action>

</If>
</Step>

</Trigger>
</File>

To find a sequence of events, see:

• Creating a Sequential Search (see page 51)

• Example: Sequential Find (see page 52)

• Debugging a Sequential Find (see page 52)

Creating a Sequential Search

When finding A followed by B:

• 1st find is often started from "Beginning Of Data".

• 2nd find starts with the "Found" marker because it starts searching at
the point that the 1st find ended.

Watch out for this:

• 1st find matches at sample #10.

• 2nd find has an event that is also matched by sample #10.

TIP • Only use an Event string. Nothing else will work!

• Copy each event string individually. (Strings that begin with <Event>
and end with </Event>.)

• Nothing else will work — not an occurrence, not an if, not a step, not a
sequence, …

52 Advanced Customization Environment (ACE) Online Help

4 Analyzing Data in ACE

2nd find stays on sample 10 instead of finding the next occurrence.

Example: Sequential Find

Public Sub SequentialFind()
Dim strStartingTime As String
Dim myWindow As AgtLA.Window
Dim theFindResult As AgtLA.FindResult

Set myWindow = AgtLA.Windows("Waveform-1")

' Find from beginning of data.
Set theFindResult = myWindow.Find("MyBus1=h08", _

1, _
"F", _
"Beginning Of Data", _
"Present")

If (theFindResult.Found) Then strStartingTime = _
theFindResult.TimeFoundString

' Find starting at the Found marker.
Set theFindResult = myWindow.Find("MyBus1=h15", _

1, _
"F", _
"Found", _
"Present")

' Verify if we haven't moved from the 2nd find.
If (theFindResult.Found And strStartingTime = _

theFindResult.TimeFoundString) Then
Set theFindResult = myWindow.FindNext

End If

If (theFindResult.Found) Then
MsgBox "Found them at " + strStartingTime + " and " + _

theFindResult.TimeFoundString
Else
MsgBox "Found failed"

End If

FindEdge = theFindResult.Found
End Sub

Debugging a Sequential Find

• Place a marker on each event after you find it.

TIP To avoid creating an infinite loop that continues to find the same sample:

1 In the 2nd find result, check that the found time is not the same as the
found time for the 1st find result.

2 If the found times are the same, do a "Find Next".

Analyzing Data in ACE 4

Advanced Customization Environment (ACE) Online Help 53

• The last event always gets the Found marker, so you don't have to place
a marker on it.

' AgtLA.Markers.Add markerName, textColor, backgroundColor,
' timePosition:
AgtLA.Markers.Add "My New Marker", vbWhite, vbBlue, nPos

54 Advanced Customization Environment (ACE) Online Help

4 Analyzing Data in ACE

Getting Data from the Logic Analyzer

Hierarchy of objects with sample data:

• "Windows" (in the online help)

• "Window" (in the online help)

• "BusSignals" (in the online help)

• "BusSignal" (in the online help)

• "BusSignalData" (in the online help) — Generic object for all
data.

• "SampleBusSignalData" (in the online help) — Specific object
for sample data.

The SampleBusSignalData object is currently the only type of bus/signal
data available, so always use the SampleBusSignalData object instead of
the BusSignalData object.

Dim myWindow As AgtLA.Window
Dim myBusSignalData As AgtLA.SampleBusSignalData

Set myWindow = AgtLA.Windows("Waveform-1")
Set myBusSignalData = myWindow.BusSignals("My Bus 1").BusSignalData

For more information on getting data from the logic analyzer, see:

• Understanding the GetDataBySample Method (see page 54)

• Data Types for GetDataBySample (see page 55)

• Getting the Entire Trace (from Beginning of Data to End of Data) (see
page 56)

• Example: GetTenSamples (see page 56)

Understanding the GetDataBySample Method

The GetDataBySample method has the following parameters and returns
the number of rows:

Parameters Definition

object An expression that evaluates to an "SampleBusSignalData" (in the
online help) object.

StartSample A Long containing the first sample to upload.

EndSample A Long containing the last sample to upload. EndSample must be
greater than or equal to StartSample.

DataType Specifies the type of data to return. See Data Types for
GetDataBySample (see page 55).

Analyzing Data in ACE 4

Advanced Customization Environment (ACE) Online Help 55

For example:

Dim myWindow As AgtLA.Window
Dim myBusData As AgtLA.SampleBusSignalData
Dim nNumDataRows As Long
Dim dArray() As Double

Set myWindow = AgtLA.Windows("Waveform-1")
Set myBusData = myWindow.BusSignals("My Bus 1").BusSignalData

dArray = myBusData.GetDataBySample(0, 10, AgtDataDouble, nNumDataRows)
' ^ ^ ^ ^ ^
' | | | | |
' object StartSample EndSample DataType NumRowsRet

Data Types for GetDataBySample

Possible GetSampleByData method data types and the associated Visual
Basic data types are shown below.

• Use the smallest data type you can to save space.

• AgtDataRaw cannot be manipulated by VBA and is essentially useless to
VBA. (It is useful for Visual Studio C++ users.)

• For buses wider than 96 bits, break them into two buses or use String.

See Also • "DataTypes and Return Values" (in the online help)

Returns Definition

NumRowsRet A Long initialized by this method to the number of rows being
returned in the array.

AgtDataType Max Channels VB Data Type

AgtDataLong 31 Long

AgtDataDouble 52 Double

AgtDataDecimal 96 Variant

AgtDataTime n/a Double

AgtDataStringHex 128 String

AgtDataStringDec 128 String

AgtDataRaw 128 Variant (Not for VBA!)

56 Advanced Customization Environment (ACE) Online Help

4 Analyzing Data in ACE

Getting the Entire Trace (from Beginning of Data to End of Data)

To get the data from the beginning sample to the end sample, use the
BusSignalData object's StartSample and EndSample properties as the
StartSample and EndSample parameters in the GetDataBySample method.

Set myBusSignalData = myWindow.BusSignals("My Bus 1").BusSignalData

' Getting Entire Trace!
dArray = myBusSignalData.GetDataBySample(myBusSignalData.StartSample, _

myBusSignalData.EndSample, AgtDataDouble, nNumDataRows)

Example: GetTenSamples

Public Sub GetTenSamples()
Dim myWindow As AgtLA.Window
Dim myBusSignalData As AgtLA.SampleBusSignalData
Dim nNumDataRows As Long

Dim dArray() As Double ' Place to keep our data.

' Get the objects we need.
Set myWindow = AgtLA.Windows("Waveform-1")
Set myBusSignalData = _

myWindow.BusSignals("My Bus 1").BusSignalData

' Get the data from the logic analyzer.
dArray= myBusSignalData.GetDataBySample(0, 10, AgtDataDouble, _

nNumDataRows)

Dim i As Integer
Dim nCount As Integer

' This loop iterates through all ten samples.
For i = 0 To nNumDataRows -1
' dArray(i) is the value of the sample.
' We use Hex to convert it to a hex string, but dArray(i) is the
' value itself.
MsgBox "Value of My Bus 1 at Sample " + VBA.Str(i) + " was " + _

TIP To avoid memory overflow, get your data in chunks.

Memory overflow depends on the amount of data requested and the data type chosen:

• For the double data type, use less than 4 M samples.

• The 4 M samples limit is the total for all buses you keep in memory at
once (for example, for 2 buses, use only 2 M samples).

• For the string data types, use less than 10,000 samples.

To process data, get the data a chunk at a time and process it.

• Generally, there is no reason to have 64 M of samples in memory at
one time.

Analyzing Data in ACE 4

Advanced Customization Environment (ACE) Online Help 57

Hex(dArray(i))
Next i

End Sub

58 Advanced Customization Environment (ACE) Online Help

4 Analyzing Data in ACE

 59

Advanced Customization Environment (ACE)
Online Help

5
Displaying Data in VbaView Windows

The VbaView window works with the integrated Microsoft Visual Basic for
Applications (VBA) to provide custom data visualization charts. The
VbaView window is a data window like Waveform or Listing, except that it
requires VBA code to display data.

There are events in the Agilent Logic Analyzer user interface that (in
many cases) the VbaView window should respond to. These events include
a logic analyzer run, a screen update, and clicking on items in the
VbaView menu. You program the VbaView window by writing VBA code
that responds to these events; this code belongs in the "Notify" function
within the "AgtVbaView" module. (It is not necessary to create macros
when programming the VbaView window.)

• Adding a New VBA View "Hello World Sample" Window (see page 61)

• Using the Hello World Sample VbaView (Text) Window (see page 61)

• Viewing the VbaView Code (see page 62)

60 Advanced Customization Environment (ACE) Online Help

5 Displaying Data in VbaView Windows

• Understanding the Notify Function (see page 63)

• Using the VbaViewChart Object (see page 65)

• Setting the Chart Type (see page 66)

• Using the AddPointArrays Method (see page 66)

• Setting Titles in the Chart (see page 66)

• Updating the Chart Display (see page 66)

• Example: XY Scattergram (see page 67)

• Example: Line Chart (see page 68)

• Example: Bar Chart (see page 69)

• Example: Pie Chart (see page 73)

• Disabling VbaView Windows (see page 75)

Displaying Data in VbaView Windows 5

Advanced Customization Environment (ACE) Online Help 61

Adding a New VBA View "Hello World Sample" Window

The purpose of the Hello World Sample VbaView window is to give you a
short cut to creating a VbaView window. To add a new Hello World Sample
VbaView window:

1 In the Agilent Logic Analyzer application, choose Window>New
VbaView>Hello World Sample....

Next • Using the Hello World Sample VbaView (Text) Window (see page 61)

See Also • VBA Macros and VbaView Windows (see page 15)

Using the Hello World Sample VbaView (Text) Window

1 Choose VbaView>Redraw.

2 Choose VbaView>Properties....

3 Choose Run/Stop>Run (or press the F5 keyboard shortcut).

Note that events in the logic analysis system cause text to be written to
the VbaView window.

Next • Viewing the VbaView Code (see page 62)

62 Advanced Customization Environment (ACE) Online Help

5 Displaying Data in VbaView Windows

Viewing the VbaView Code

1 Choose VbaView>View Code... (or press the ALT+F11 keyboard
shortcut).

See Also • Understanding the Notify Function (see page 63)

TIP "AgtVbaView" is a reserved word for Module name. "Notify" is a reserved word for
Function name. Nothing else will work, so don't change the names.

Displaying Data in VbaView Windows 5

Advanced Customization Environment (ACE) Online Help 63

Understanding the Notify Function

The Notify function that must be present in VbaView window code is
called with the following parameters:

Function Notify(strWindowName As String, _
strCommand As String, _
ByRef varCommandParm As Variant) As Variant

• StrWindowName is the name of the VbaView, such as "Hello World
Sample- 1".

• strCommand is what happened in the logic analysis system.

• varCommandParm is an optional parameter that is declared ByRef,
which means a parameter value can be sent to and received from the
Notify function. The definition of this parameter is strCommand
specific.

Notify Commands
(strCommand)

The Notify function receives the following commands from the logic
analysis system and calls functions to respond to them if needed. For
example, when an Update command is received, the VbaView should
update itself based upon the current data.

strCommand varCommandParm What makes it happen

New — Creating a new VbaView window.

Show — Making VbaView window visible, such as
switching to a VbaView window from another
window. This is only used when controlling an
external application to make it visible. See the
Export to IE Sample VbaView window.

Delete — Deleting a VbaView window.

Redraw — Choosing VbaView>Redraw.

Update Boolean (output) Anything that causes the window to update, such
as a Run. The varCommandParm parameter is True
if the update succeeded, False if the update was
cancelled.

Properties — Choosing VbaView>Properties....

Load String (input) Opening a configuration file. This command lets
you load the state of a VbaView window. The
varCommandParm parameter contains a
previously saved XML string.

64 Advanced Customization Environment (ACE) Online Help

5 Displaying Data in VbaView Windows

The "Notify" function is not used if there is no VbaView window.

Save String (output) Saving a configuration file. This command lets you
save the state of a VbaView window. The
varCommandParm parameter returns an XML
string to be loaded later.
Caution: The Save command also occurs when
the Instrument object's QueryCommand method is
called. Agilent recommends that you do not call
the Instrument object's QueryCommand method
from within the Notify function because this can
cause your software to be re-entrant. Instead, call
the QueryCommand method for the specific
subsystem you are interested in (for example,
Instrument.Overview, Module.QueryCommand,
Tool.QueryCommand, etc.).

QueryComman
d

String (input) When a QueryCommand is sent to the window,
the varCommandParm parameter contains the
command to be queried.

Boolean (output) The varCommandParm parameter returns the
boolean False if the command is not valid or True if
the command is valid and nothing needs to be
returned.

String (output) The varCommandParm parameter returns an XML
string if the command is valid and the query
produced output.

Displaying Data in VbaView Windows 5

Advanced Customization Environment (ACE) Online Help 65

Using the VbaViewChart Object

Hierarchy of objects containing VbaViewChart object:

• "Windows" (in the online help) — Collection of all windows in the
system.

• "Window" (in the online help) — Generic object for any type of
window.

• "VbaViewWindow" (in the online help) — VbaView specific window
object.

• "VbaViewChart" (in the online help) — The chart object in a
VbaView window.

• "VbaViewChartAxis" (in the online help)

• "VbaViewChartData" (in the online help) — The data in the
chart.

• "VbaViewChartLegend" (in the online help)

• "VbaViewChartTitle" (in the online help)

• "VbaViewChartFont" (in the online help)

• "VbaViewWebBrowser" (in the online help)

To access data in a chart:

Dim myWindow As AgtLA.VbaViewWindow
Dim myChart As AgtLA.VbaViewChart
Dim myData As AgtLA.VbaViewChartData

Set myWindow = AgtLA.Windows(strWindow)
Set myChart = myWindow.Chart
Set myData = myChart.Data ' This is the data you are going to chart.

For more information on using the VbaViewChart object, see:

• Setting the Chart Type (see page 66)

• Using the AddPointArrays Method (see page 66)

• Setting Titles in the Chart (see page 66)

• Updating the Chart Display (see page 66)

• Example: XY Scattergram (see page 67)

• Example: Line Chart (see page 68)

• Example: Bar Chart (see page 69)

• Example: Horizontal Bar Chart (see page 70)

• Example: Horizontal Stacked Bar Chart (see page 71)

• Example: Vertical Bar Chart (see page 72)

• Example: Vertical Stacked Bar Chart (see page 72)

66 Advanced Customization Environment (ACE) Online Help

5 Displaying Data in VbaView Windows

• Example: Pie Chart (see page 73)

Setting the Chart Type

Chart Types When creating a VbaViewChart, you can choose between the following
types of charts:

• AgtChartTypeNone

• AgtChartTypeLine

• AgtChartTypeLineOnly

• AgtChartTypeXYScatter

• AgtChartTypeHorizontalBar

• AgtChartTypeVerticalBar

• AgtChartTypePie

• AgtChartTypeStackedVerticalBar

• AgtChartTypeStackedHorizontalBar

To set the chart
type

Set the chart's ChartType property to one of the values above. For
example, to set up a line chart:

myChart.ChartType = AgtChartTypeLine

Using the AddPointArrays Method

See "AddPointArrays Method" (in the online help).

Setting Titles in the Chart

For example:

myChart.HasTitle = True
myChart.Title = "My Chart"
myChart.Axis(AgtChartAxisTypeX).HasTitle = True
myChart.Axis(AgtChartAxisTypeX).Title = "My Bus 1"
myChart.Axis(AgtChartAxisTypeY).HasTitle = True
myChart.Axis(AgtChartAxisTypeY).Title = "My Bus 2"

Notice the X and Y axis each have a title.

Updating the Chart Display

• Start by changing the Notify function:

TIP Order is important when creating Chart titles or axis titles. You must do a "HasTitle=True"
before each title that you set; otherwise, you will get a run-time error.

Displaying Data in VbaView Windows 5

Advanced Customization Environment (ACE) Online Help 67

Select Case strCommand:
Case "New": myWindow.WriteOutput ("Hello World! System " + _

"sent a New command to " + strWindowName)
Case "Show": myWindow.WriteOutput ("Hello World! System " + _

"sent a Show command to " + strWindowName)
Case "Delete": myWindow.WriteOutput ("Hello World! System " + _

"sent a Delete command to " + strWindowName)
Case "Redraw": myWindow.WriteOutput ("Hello World! System " + _

"sent a Redraw command to " + strWindowName)
Case "Update": UpdateDisplay strWindowName
Case "Properties": myWindow.WriteOutput ("Hello World! System " + _

"sent a Properties command to " + _
strWindowName)

End Select

• Then, create the UpdateDisplay subroutine in the AgtVbaView module.
For example, see:

• Example: XY Scattergram (see page 67)

• Example: Line Chart (see page 68)

• Example: Horizontal Bar Chart (see page 70)

• Example: Horizontal Stacked Bar Chart (see page 71)

• Example: Vertical Bar Chart (see page 72)

• Example: Vertical Stacked Bar Chart (see page 72)

• Example: Pie Chart (see page 73)

The UpdateDisplay subroutine will not be accessible to the AgtVbaView
module unless you create it within the module.

Example: XY Scattergram

This example uses generated points, but you're more likely to use double
arrays that you've obtained from the logic analyzer via GetDataBySample.

Private Sub UpdateDisplay(ByVal strWindow As String)
Dim myWindow As AgtLA.VbaViewWindow
Dim myChart As AgtLA.VbaViewChart
Dim myData As AgtLA.VbaViewChartData

Set myWindow = AgtLA.Windows(strWindow)
Set myChart = myWindow.Chart
Set myData = myChart.Data

' Set the ChartType:
myChart.ChartType = AgtChartTypeXYScatter

' Set up the titles:
myChart.HasTitle = True
myChart.Title = "XY Scattergram"
myChart.Axis(AgtChartAxisTypeX).HasTitle = True
myChart.Axis(AgtChartAxisTypeX).Title = "My Bus 1"
myChart.Axis(AgtChartAxisTypeY).HasTitle = True

68 Advanced Customization Environment (ACE) Online Help

5 Displaying Data in VbaView Windows

myChart.Axis(AgtChartAxisTypeY).Title = "My Bus 2"

' Populate the arrays:
Dim xValueArray(50) As Double
Dim yValueArray(50) As Double
Dim i As Integer
For i = 0 To 50
xValueArray(i) = i
yValueArray(i) = i

Next i

' Clear the old data, add the new, and redraw:
myData.Clear
myData.AddPointArrays xValueArray, yValueArray, _

AgtDataPointTypeCircle, AgtDataPointSizeSmall
myChart.Draw

End Sub

Example: Line Chart

This example uses generated points, but you're more likely to use double
arrays that you've obtained from the logic analyzer via GetDataBySample.
Also, you can draw line charts with or without points. Use
AgtChartTypeLineOnly for the ChartType if you don't want the points
drawn.

Private Sub UpdateDisplay(ByVal strWindow As String)
Dim myWindow As AgtLA.VbaViewWindow
Dim myChart As AgtLA.VbaViewChart
Dim myData As AgtLA.VbaViewChartData

Set myWindow = AgtLA.Windows(strWindow)
Set myChart = myWindow.Chart
Set myData = myChart.Data

Displaying Data in VbaView Windows 5

Advanced Customization Environment (ACE) Online Help 69

' Set the ChartType:
myChart.ChartType = AgtChartTypeLine

' Set up the titles:
myChart.HasTitle = True
myChart.Title = "Line Chart"
myChart.Axis(AgtChartAxisTypeX).HasTitle = True
myChart.Axis(AgtChartAxisTypeX).Title = "My Bus 1"
myChart.Axis(AgtChartAxisTypeY).HasTitle = True
myChart.Axis(AgtChartAxisTypeY).Title = "My Bus 2"

' Populate the arrays:
Dim xValueArray(50) As Double
Dim yValueArray(50) As Double
Dim i As Integer
For i = 0 To 50
xValueArray(i) = i
yValueArray(i) = i

Next i

' Clear the old data, add the new, and redraw:
myData.Clear
myData.AddPointArrays xValueArray, yValueArray, _

AgtDataPointTypeCircle, AgtDataPointSizeSmall
myChart.Draw

End Sub

Example: Bar Chart

There are both vertical and horizontal bar charts. There are also regular
bar charts and stacked bar charts. The VbaView window has the concept
of "Values" and "Groups". Use both groups and values to deal with stacked
bar charts. For regular bar charts, only values are needed.

• Example: Horizontal Bar Chart (see page 70)

70 Advanced Customization Environment (ACE) Online Help

5 Displaying Data in VbaView Windows

• Example: Horizontal Stacked Bar Chart (see page 71)

• Example: Vertical Bar Chart (see page 72)

• Example: Vertical Stacked Bar Chart (see page 72)

Example: Horizontal Bar Chart

Private Sub UpdateDisplay(ByVal strWindow As String)
Dim myWindow As AgtLA.VbaViewWindow
Dim myChart As AgtLA.VbaViewChart
Dim myData As AgtLA.VbaViewChartData

Set myWindow = AgtLA.Windows(strWindow)
Set myChart = myWindow.Chart
Set myData = myChart.Data

' Set the ChartType:
myChart.ChartType = AgtChartTypeHorizontalBar

' Set up the titles:
myChart.HasTitle = True
myChart.Title = "Horizontal Bar Chart"
myChart.Axis(AgtChartAxisTypeX).HasTitle = False
myChart.Axis(AgtChartAxisTypeY).HasTitle = False

' Clear the old data, add the new, and redraw:
myData.Clear
Call myChart.Data.SetValueCaption(0, "Read")
Call myChart.Data.SetValueCaption(1, "Write")
Call myChart.Data.SetValueCaption(2, "Idle")
Call myChart.Data.SetValue(0, 0, 10)
Call myChart.Data.SetValue(0, 1, 20)
Call myChart.Data.SetValue(0, 2, 530)
myChart.Draw

End Sub

Displaying Data in VbaView Windows 5

Advanced Customization Environment (ACE) Online Help 71

Example: Horizontal Stacked Bar Chart

Private Sub UpdateDisplay(ByVal strWindow As String)
Dim myWindow As AgtLA.VbaViewWindow
Dim myChart As AgtLA.VbaViewChart
Dim myData As AgtLA.VbaViewChartData

Set myWindow = AgtLA.Windows(strWindow)
Set myChart = myWindow.Chart
Set myData = myChart.Data

' Set the ChartType:
myChart.ChartType = AgtChartTypeStackedHorizontalBar

' Set up the titles:
myChart.HasTitle = True
myChart.Title = "Horizontal Stacked Bar Chart"
myChart.HasLegend = True
myChart.Axis(AgtChartAxisTypeX).HasTitle = False
myChart.Axis(AgtChartAxisTypeY).HasTitle = False

' Clear the old data, add the new, and redraw:
myData.Clear
Call myChart.Data.SetValueCaption(0, "Read")
Call myChart.Data.SetValueCaption(1, "Write")
Call myChart.Data.SetGroupCaption(0, "I/O")
Call myChart.Data.SetGroupCaption(1, "Memory")
Call myChart.Data.SetValue(0, 0, 10)
Call myChart.Data.SetValue(0, 1, 20)
Call myChart.Data.SetValue(1, 0, 33)
Call myChart.Data.SetValue(1, 1, 45)
myChart.Draw

End Sub

72 Advanced Customization Environment (ACE) Online Help

5 Displaying Data in VbaView Windows

Example: Vertical Bar Chart

Private Sub UpdateDisplay(ByVal strWindow As String)
Dim myWindow As AgtLA.VbaViewWindow
Dim myChart As AgtLA.VbaViewChart
Dim myData As AgtLA.VbaViewChartData

Set myWindow = AgtLA.Windows(strWindow)
Set myChart = myWindow.Chart
Set myData = myChart.Data

' Set the ChartType:
myChart.ChartType = AgtChartTypeVerticalBar

' Set up the titles:
myChart.HasTitle = True
myChart.Title = "Vertical Bar Chart"
myChart.Axis(AgtChartAxisTypeX).HasTitle = False
myChart.Axis(AgtChartAxisTypeY).HasTitle = False

' Clear the old data, add the new, and redraw:
myData.Clear
Call myChart.Data.SetValueCaption(0, "Read")
Call myChart.Data.SetValueCaption(1, "Write")
Call myChart.Data.SetValueCaption(2, "Idle")
Call myChart.Data.SetValue(0, 0, 10)
Call myChart.Data.SetValue(0, 1, 20)
Call myChart.Data.SetValue(0, 2, 530)
myChart.Draw

End Sub

Example: Vertical Stacked Bar Chart

Private Sub UpdateDisplay(ByVal strWindow As String)
Dim myWindow As AgtLA.VbaViewWindow
Dim myChart As AgtLA.VbaViewChart

Displaying Data in VbaView Windows 5

Advanced Customization Environment (ACE) Online Help 73

Dim myData As AgtLA.VbaViewChartData

Set myWindow = AgtLA.Windows(strWindow)
Set myChart = myWindow.Chart
Set myData = myChart.Data

' Set the ChartType:
myChart.ChartType = AgtChartTypeStackedVerticalBar

' Set up the titles:
myChart.HasTitle = True
myChart.Title = "Vertical Stacked Bar Chart"
myChart.HasLegend = True
myChart.Axis(AgtChartAxisTypeX).HasTitle = False
myChart.Axis(AgtChartAxisTypeY).HasTitle = False

' Clear the old data, add the new, and redraw:
myData.Clear
Call myChart.Data.SetValueCaption(0, "Read")
Call myChart.Data.SetValueCaption(1, "Write")
Call myChart.Data.SetGroupCaption(0, "I/O")
Call myChart.Data.SetGroupCaption(1, "Memory")
Call myChart.Data.SetValue(0, 0, 10)
Call myChart.Data.SetValue(0, 1, 20)
Call myChart.Data.SetValue(1, 0, 33)
Call myChart.Data.SetValue(1, 1, 45)
myChart.Draw

End Sub

Example: Pie Chart

Private Sub UpdateDisplay(ByVal strWindow As String)
Dim myWindow As AgtLA.VbaViewWindow
Dim myChart As AgtLA.VbaViewChart
Dim myData As AgtLA.VbaViewChartData

74 Advanced Customization Environment (ACE) Online Help

5 Displaying Data in VbaView Windows

Set myWindow = AgtLA.Windows(strWindow)
Set myChart = myWindow.Chart
Set myData = myChart.Data

' Set the ChartType:
myChart.ChartType = AgtChartTypePie

' Set up the titles:
myChart.HasTitle = True
myChart.Title = "Pie Chart"
myChart.HasLegend = True
myChart.Axis(AgtChartAxisTypeX).HasTitle = False
myChart.Axis(AgtChartAxisTypeY).HasTitle = False

' Clear the old data, add the new, and redraw:
myData.Clear
Call myChart.Data.SetValueCaption(0, "Read")
Call myChart.Data.SetValueCaption(1, "Write")
Call myChart.Data.SetValueCaption(2, "Idle")
Call myChart.Data.SetValue(0, 0, 10)
Call myChart.Data.SetValue(0, 1, 20)
Call myChart.Data.SetValue(0, 2, 530)
myChart.Draw

End Sub

Displaying Data in VbaView Windows 5

Advanced Customization Environment (ACE) Online Help 75

Disabling VbaView Windows

Sometimes it can be useful to turn off VbaView window processing by
disabling the window.

1 In the Overview window, select the drop- down menu for a VbaView
window; then, choose Disable....

2 In the Disable dialog, select the VbaView windows you wish to disable;
then, click OK.

To re-enable
VbaView
windows

1 In the Overview window, select the drop- down menu for a VbaView
window; then, choose Enable....

2 In the Enable dialog, select the VbaView windows you wish to enable;
then, click OK.

76 Advanced Customization Environment (ACE) Online Help

5 Displaying Data in VbaView Windows

 77

Advanced Customization Environment (ACE)
Online Help

6
Distributing VBA Code

There are several ways to distribute VBA macro code:

• Through ALA format configuration files (if logic analyzers are
compatible).

• Through XML format configuration files (if logic analyzers are
incompatible).

• By exporting and importing individual Module or Form files.

• By exporting and importing VBA project .zip files. By placing VBA
project .zip files in the "<Install>\VBA\" directory, you can cause the
VBA code to load when the Agilent Logic Analyzer application starts
up.

When distributing VbaView window code, it must load at application
startup so the window appears in the Window>New VbaView> menu;
therefore, VBA project .zip files are required.

• To distribute VBA code via ALA format configuration files (see page 78)

• To distribute VBA code via XML format configuration files (see page 79)

• To distribute individual files (for VBA Modules/Forms) (see page 80)

• To distribute VBA project code via .zip files (see page 81)

• To export VBA project code to .zip files (see page 82)

• To create VBA project code .zip files with agZip.exe (see page 82)

• To import VBA project code from .zip files (see page 86)

• To load VBA project code at application startup (see page 86)

78 Advanced Customization Environment (ACE) Online Help

6 Distributing VBA Code

To distribute VBA code via ALA format configuration files

VBA code can be saved as part of ALA format configuration files.

If you want to share a VBA macro with another user who has a
compatible logic analyzer, all you need to do is give them the ALA format
configuration file.

However, if the other user has an incompatible logic analyzer,you must use
one of the other methods for distributing VBA code.

See Also • To distribute VBA code via XML format configuration files (see page 79)

• To distribute individual files (for VBA Modules/Forms) (see page 80)

• To distribute VBA project code via .zip files (see page 81)

Distributing VBA Code 6

Advanced Customization Environment (ACE) Online Help 79

To distribute VBA code via XML format configuration files

VBA code can be saved as part of XML format configuration files.

If you want to share a VBA macro with another user who has an
incompatible logic analyzer, all you need to do is give them the XML
format configuration file.

See Also • To distribute individual files (for VBA Modules/Forms) (see page 80)

• To distribute VBA project code via .zip files (see page 81)

80 Advanced Customization Environment (ACE) Online Help

6 Distributing VBA Code

To distribute individual files (for VBA Modules/Forms)

This procedure describes how, using the VBA IDE, to export Module and
Form VBA code to individual files from one ALA format configuration file
and import those files into another configuration.

1 Open the ALA format configuration file that contains the VBA code to
export.

2 In the Information dialog that tells you about incompatible modules,
click Load Offline.

3 Choose Tools>Macro>Visual Basic Editor to open the VBA IDE.

4 In the VBA IDE, export each Module and Form from the VBA IDE to
.bas and .frm files, respectively. To do this, right- click on the Module or
Form in the Project Browser (upper left hand corner); then, choose
Export>File....

5 Now, if you are offline, choose File>Go Online; otherwise, create a new
configuration by choosing File>New.

6 Choose Tools>Macro>Visual Basic Editor to open the VBA IDE.

7 In the VBA IDE's Project Browser, select the configuration into which
the files should be imported.

8 Choose File>Import... to import the files that you previously exported.

See Also • To distribute VBA code via ALA format configuration files (see page 78)

• To distribute VBA project code via .zip files (see page 81)

Distributing VBA Code 6

Advanced Customization Environment (ACE) Online Help 81

To distribute VBA project code via .zip files

This procedure describes how to export all of a project's VBA code from
one ALA format configuration file and import it into another
configuration.

1 Open the ALA format configuration file that contains the VBA code to
export.

2 In the Information dialog that tells you about incompatible modules,
click Load Offline.

3 Choose Tools>Macro>Export Zip File.... (You can also choose
File>Export Zip File from within the VBA IDE.)

4 In the Export Macros dialog, select the project whose VBA code should
be exported; then, click OK.

5 In the next "Export macros in project" dialog, enter the name of the .zip
file that will contain the project's VBA code; then, click Save.

If you want to transfer the logic analyzer configuration as well, save it
to an XML format file.

6 Now, if you are offline, choose File>Go Online; otherwise, create a new
configuration by choosing File>New.

If you saved the logic analyzer configuration to an XML format file in
the previous step, open it now.

7 If you are importing code for a VbaView window project (and the
VbaView window wasn't created by opening an XML format logic
analyzer configuration file), choose Window>New VbaView....

8 Choose Tools>Macro>Import Zip File.... (You can also choose
File>Import Zip File from within the VBA IDE.)

9 In the Import Macros dialog, select the project into which the VBA code
should be imported; then, click OK.

10 In the next "Select file to import" dialog, select the .zip file that
contains the project's VBA code; then, click Open.

When importing VBA code from .zip files, only files with the following
extensions are directly imported:

• .bas — Module

• .cls — Class Module

• .frm — Form

See Also • To export VBA project code to .zip files (see page 82)

• To create VBA project code .zip files with agZip.exe (see page 82)

• To import VBA project code from .zip files (see page 86)

• To load VBA project code at application startup (see page 86)

82 Advanced Customization Environment (ACE) Online Help

6 Distributing VBA Code

To export VBA project code to .zip files

This procedure describes how to export a VBA project's code to a .zip file.

1 Open the ALA format configuration file that contains the VBA project
code to export.

2 Choose Tools>Macro>Export Zip File.... (You can also choose
File>Export Zip File from within the VBA IDE.)

3 In the Export Macros dialog, select the project whose VBA code should
be exported; then, click OK.

4 In the next "Export macros in project" dialog, enter the name of the .zip
file that will contain the project's VBA code; then, click Save.

See Also • To create VBA project code .zip files with agZip.exe (see page 82)

• To import VBA project code from .zip files (see page 86)

• To load VBA project code at application startup (see page 86)

To create VBA project code .zip files with agZip.exe

This procedure describes how to create a VBA project .zip file using the
agZip.exe program.

1 Place all VBA project source files in a directory.

2 Add a Project.xml file to the directory (see Project.xml File Format (see
page 83)).

3 Open a Command Prompt window, and run the command:

agZip.exe <directory>

The agZip.exe program is located in the directory:

<Install directory>\

For example:

C:\Program Files\Agilent Technologies\Logic Analyzer\

Password
Protecting VBA

Project Zip Files

The agZip.exe executable generates an encrypted, password protected zip
that ONLY the Agilent Logic Analyzer application can unencrypt. No
standalone unzip executables exist.

The password protected zip is a one- way street so that access to the zip
file can only be done via the application or the vendor directly sending
sources. Think of a password protected VBA project zip file as a binary
file.

When VBA
Projects are

Password
Protected

If a project is password protected in the VBA IDE, or the zip file is
password protected, the project cannot be exported to a zip file via
Tools>Macro>Export Zip File....

Distributing VBA Code 6

Advanced Customization Environment (ACE) Online Help 83

For the case of password protected zip files with no VBA IDE password
(like AgtRPICmds, for example), you can only export files individually via
the Export File... command in the VBA IDE.

See Also • To export VBA project code to .zip files (see page 82)

• To import VBA project code from .zip files (see page 86)

• To load VBA project code at application startup (see page 86)

Project.xml File Format

The Project.xml file identifies the type of VBA project a .zip file contains.
XML format elements and attributes provide for password protection,
licensing, and other complexities of distributing VBA intellectual property.
XML elements for the Project.xml file have the following hierarchy:

<VbaProject> (see page 84)
<References> (see page 83)

<Reference> (see page 83)

<Reference> Element The <Reference> element contains type library
information.

Attributes

Parents This element can have the following parents: <References> (see
page 83).

Example <Reference Description='Microsoft Internet Controls'
Guid='{EAB22AC0-30C1-11CF-A7EB-0000C05BAE0B}'
Major='1' Minor='1' />

<References> Element The <References> element contains references to
type libraries. References are added when the project is loaded so that
external references will not cause syntax errors. These references are
added manually by choosing Tools>References... in the VBA IDE. The
<References> element can contain multiple references.

Children This element can have the following children: <Reference> (see
page 83).

Parents This element can have the following parents: <VbaProject> (see
page 84).

Name Description

Guid 'string'. The type library GUID.

Major 'string'. Major type library version.

Minor 'string'. Minor type library version.

Description 'string'. The description is just to make the XML readable and
is not required.

84 Advanced Customization Environment (ACE) Online Help

6 Distributing VBA Code

Example <References>
<Reference Description='Microsoft Internet Controls'

Guid='{EAB22AC0-30C1-11CF-A7EB-0000C05BAE0B}'
Major='1' Minor='1' />

<Reference Description='Microsoft Forms 2.0 Object Library'
Guid='{0D452EE1-E08F-101A-852E-02608C4D0BB4}'
Major='2' Minor='0' />

</References>

<VbaProject> Element The <VbaProject> element lets the Agilent Logic
Analyzer application know that this is a valid Project.xml file. If this
element is not present, all other information is ignored. The
<VbaProject> element is the top element in the Project.xml file.

Attributes
Name Description

Type 'VbaView' or ''. If 'VbaView', this project will not be loaded
at application startup because it needs to be loaded into an existing
"VbaView" project. All of "VbaView" projects are placed in the
menu Window>New VbaView>.

Name 'string'. Typically, this attribute isn't set, and the name is the
base name of the project zip file. This attribute overrides the default
behavior.

Action 'Recall' (default) or 'Create'. Contains the action to take
with this project.
'Recall' — the zip contents are imported into an already
existing project. If the project has the Name attribute set, it will
highlight that project in the Import Zip File project selection dialog.
This attribute is set when a zip file is created from the Export Zip
File... menu.
'Create' — the zip contents are loaded into a newly created
project. See the Name attribute for the new project name. This is
only valid for non "VbaView" type projects because "VbaView"
type projects can't be created directly and must be associated with
a view. This attribute is usually used in zip files that are created by
Agilent or third parties and installed into the <Install
directory>/VBA directory so they can be automatically loaded at
startup. This type of project can also be loaded directly via the
Import Zip File.. menu if you don't want it loaded at application
startup. If the project has already been loaded, an error will be
returned.

Description 'string'. The description is used when displaying error
messages. For example, this will be used when the license can't be
obtained. If this is not set, the full zip file name is used as the
description.

Distributing VBA Code 6

Advanced Customization Environment (ACE) Online Help 85

Children This element can have the following children: <References> (see
page 83).

Parents None.

Example <VbaProject Type='VbaView' Name='Export to IE Sample'
HelpFile='VBA_View_Export_to_IE.chm'>

<References>
<Reference Description='Microsoft Internet Controls'

Guid='{EAB22AC0-30C1-11CF-A7EB-0000C05BAE0B}'
Major='1' Minor='1' />

<Reference Description='Microsoft Forms 2.0 Object Library'
Guid='{0D452EE1-E08F-101A-852E-02608C4D0BB4}'
Major='2' Minor='0' />

</References>
</VbaProject>

UseDefaultPasswor
d

'F', False or 'T', True. If this is not set, or is set to
'False' or 'F', and the zip file contains a password, the project
will be password protected with the password used in the zip. If the
Password attribute is set, it overrides the
UseDefaultPassword attribute which only works for the
default password. The UseDefaultPassword attribute is used
to support projects like "AgtRPICmds" where the zip is password
protected but users need to be able to view the source.

Password 'string'. This is the password string used to password protect
the VBA project in the VBA IDE. If this isn't set, the password used
to encrypt the zip file will be used if UseDefaultPassword
isn't True. Because the encrypted password used in the zip is a
one-way street (see Password Protecting VBA Project Zip Files (see
page 82)), vendors can set a password that they control in case
they need access to the VBA project for debugging the macro at a
customer site.

LicenseName 'string'. If a LicenseName is specified, the application will
look for this license (which is different from the VBA Runtime
license). If the license doesn't exist, the project isn't loaded, and no
errors will be displayed.

LicenseVersion 'string'. If the LicenseName attribute is specified, and this
is not set, then "1.0" will be used.

LicenseVendor 'string'. If the LicenseName attribute is specified, and this
is not set, then "Agilent Technologies" will be used.

86 Advanced Customization Environment (ACE) Online Help

6 Distributing VBA Code

To import VBA project code from .zip files

This procedure describes how to import VBA project VBA code from a .zip
file.

1 In the Agilent Logic Analyzer application, choose Tools>Macro>Import
Zip File.... (You can also choose File>Import Zip File from within the
VBA IDE.)

2 In the Import Macros dialog, select the project into which the VBA code
should be imported; then, click OK.

3 In the next "Select file to import" dialog, select the .zip file that
contains the project's VBA code; then, click Open.

When importing VBA code from .zip files, only files with the following
extensions are directly imported:

• .bas — Module

• .cls — Class Module

• .frm — Form

See Also • To export VBA project code to .zip files (see page 82)

• To create VBA project code .zip files with agZip.exe (see page 82)

• To load VBA project code at application startup (see page 86)

To load VBA project code at application startup

1 Place the VBA project zip file in the directory:

<Install directory>\VBA\

For example:

C:\Program Files\Agilent Technologies\Logic Analyzer\VBA\

Projects are loaded automatically at startup if they exist in the VBA
installation directory.

At Application
Startup

If the Agilent Logic Analyzer application has at least a Runtime VBA
license, an attempt will be made to automatically load the zip projects
installed. The application looks for the Runtime VBA license but does not
prompt for one if it is missing because it is confusing having the license
dialog display at startup.

The following algorithm for handling VBA project zip files is also used in
Tools>Macro>Import Zip File... because you may not want a project
loaded at startup when you can just recall it an any time.

Distributing VBA Code 6

Advanced Customization Environment (ACE) Online Help 87

The Agilent Logic Analyzer application looks through all of the zip files in
the VBA directory. For each zip file:

1 Look for a Project.xml file. If the file does not exist, the project will be
loaded directly. See When a Project is Loaded (see page 87) below for
details. The main objective of the Project.xml file is to handle the
complexity of password protection, licensing, and distribution of VBA
intellectual property.

2 If a Project.xml file exists, the application looks for valid XML elements
(see Project.xml File Format (see page 83)).

It is strongly recommended if licensing information or the password is
set in the Project.xml file, the zip file should be password protected.
See Password Protecting VBA Project Zip Files (see page 82).

When a Project is
Loaded

When a VBA project is loaded at application startup, it is placed in a
project that is not saved with the ALA format configuration file.

88 Advanced Customization Environment (ACE) Online Help

6 Distributing VBA Code

 89

Advanced Customization Environment (ACE)
Online Help

7
Visual Basic Programming Tips

• Visual Basic Syntax (see page 90)

• Guidelines for C++ Programmers (see page 92)

• Common VBA Error Messages (see page 93)

90 Advanced Customization Environment (ACE) Online Help

7 Visual Basic Programming Tips

Visual Basic Syntax

• VBA divides the code into modules and forms. Modules are just code
while forms are both GUI controls and code. In general, modules are
used to contain code that is global to the project or that spans multiple
forms.

• All code must be in a subroutine or a function. A subroutine does not
return a value but a function does.

Public Sub MySubroutine(Byval i as integer, ByRef retVal as boolean)

• This is public so it can be called outside of this module or form. The
other alternative is Private.

• ByVal means this parameter is passed by value. In other words, if
you don't want MySubroutine to change the value of i, then make it
"ByVal".

• ByRef means this parameter is passed by reference. In this case,
MySubroutine can change the value of retVal.

• To call this subroutine, use Call MySubroutine(i, retVal)

Private Function MyFunction(ByVal i as integer) as boolean

• Notice the "as boolean" at the end of this function declaration. This
means this function returns a boolean value.

• To set the return value, pretend that "MyFunction" is a variable and
give it as value, as in "MyFunction = true". VBA does not use "Return
true".

• To call this function, use myBool = MyFunction(i)

• Variables are defined in the following manner:

• Local variables within a subroutine or function. Dim myVal as
long.

• Private variables within a module or form. Private myVal as
integer.

• Public variables within a module or form. Public myVal as
string.

• Common data types are:

• Integer (no signed or unsigned; everything except boolean and string
are signed)

• Long

• String

• Boolean

• Double (Use for real numbers; also used by the VbaView graphing
tools).

Visual Basic Programming Tips 7

Advanced Customization Environment (ACE) Online Help 91

• Defining and using arrays:

• If you know the dimensions of the array. Dim myArray(5, 5) as
boolean

• If you or another function will re- dimension the array later.
(GetDataBySample does this). Dim myArray() as boolean

• To use the array, myArray(x,y)

• Common control structures:

If (bEntering) Then
strEnteringExiting = "Entering"

Else
strEnteringExiting = "Exiting"

End If

For i = 0 To myNumDataRows - 2
If (OEArray(i) = 0 And WEArray(i) = 1) Then
dReadTime = dReadTime + TimeArray(i + 1) - TimeArray(i)

End If
Next i

Do While (bFound)
bFound = FindTransition(bRead, True, True, dEnteringTime)

Loop

Select Case Command:
Case "Show"
Case "Delete"
Case "Update" : Call DrawChart

End Select

92 Advanced Customization Environment (ACE) Online Help

7 Visual Basic Programming Tips

Guidelines for C++ Programmers

• Visual Basic has come a long way from the original BASIC, but it's not
C++ either.

• VBA is based upon VB6, not VB.NET. VB.NET works quite a bit
different from VB6, so if you refer to a book or website make sure that
you are dealing with VB6 or VBA but not .NET.

• There is no scoping of variables within a subroutine.

• There are no pointers at all. (But for VBA, you probably won't miss
them).

• There is no concept of resource files. There are forms are used to
define dialogs, but forms contain code. They are not like Visual C++
resource files.

• In general, modules are code only and forms are both GUI and code.

• Variables do not need to be defined before they are used. This means
that a misspelled variable will not be detected by the compiler. You can,
however, use the "Option Explicit" compiler option to tell VBA that
variables should be defined before they are used.

• The single "=" is used both as an assignment operator and as a
comparison operator. VB doesn't support "==". So, there is "if(myVal =
1)" and "myVal=1". The system knows the difference because of the "If".

• VB does not use "!". In general, they use "not", although "not equals" is
"<>".

• VB cares about line breaks. To make code wrap to the next line, you
must end in a " _". Notice that there is a space before the underscore.

• VB likes you to say "Call" before calling a subroutine, as in "Call
UpdateWindow(true)".

• VB is not case sensitive like C and C++.

• VB is not object oriented. There is no inheritance.

• VB does not use { or }. It uses "then" and "end if".

Visual Basic Programming Tips 7

Advanced Customization Environment (ACE) Online Help 93

Common VBA Error Messages

There are a couple of common VBA mistakes.

• One common mistake is a failure to put a "Set" in front of a function
that returns an object. For example:

Dim myFindResult as AgtLA.FindResult
myFindResult = AgtLA.Windows(0).Find(strEvent)

This code results in the error message "Object Variable or With block
variable not set". Instead, this code should be used:

Dim myFindResult as AgtLA.FindResult
Set myFindResult = AgtLA.Windows(0).Find(strEvent)

• When using VBA with the Agilent Logic Analyzer application, it is
unusual to create a new object using the "New" keyword. The problem
with the example below is that we try to create a new FindResult
object, but the Find function already returns a FindResult object.

Dim myFindResult as New AgtLA.FindResult
Set myFindResult = AgtLA.Windows(0).Find(strEvent)

This code results in the error message "ActiveX Component is unable to
create object". To fix this problem, you must remove the "New".

94 Advanced Customization Environment (ACE) Online Help

7 Visual Basic Programming Tips

Advanced Customization Environment (ACE) Online Help 95

Index

A

ActiveX Component is unable to create
object, 93

AddPointArrays method, 66
Advanced Customization Environment (ACE),

analyzing data, 43
Advanced Customization Environment (ACE), at

a glance, 9
Advanced Customization Environment (ACE),

COM objects, 37
Advanced Customization Environment (ACE),

data analysis, 12
Advanced Customization Environment (ACE),

data visualization, 13
Advanced Customization Environment (ACE),

finding events, 44
Advanced Customization Environment (ACE),

finding sequence of events, 50
Advanced Customization Environment (ACE),

getting data, 54
Advanced Customization Environment (ACE),

instrument control, 11
Advanced Customization Environment (ACE),

link to other PC apps, 14
Advanced Customization Environment (ACE),

macro considerations, 19
Advanced Customization Environment (ACE),

measurement automation, 11
Advanced Customization Environment (ACE),

VbaView windows, 59
AgtDataType, 55
AgtLA namespace, 22, 38
AgtVbaView module, Notify function, 15, 63
agZip.exe, creating VBA project zip files, 82
ALA format configuration files, distributing VBA

code in, 78
AnalyzerModule object, 40
application startup, loading VBA project

code, 86
applications (PC), linking to COM-enabled, 14

B

bar chart, drawing, 69
breakpoints in VBA IDE, 29
Bus vs Bus Sample VbaView window, 15
bus/signal validity, 26
BusSignal object, accessing, 39

C

C++ programmers, guidelines for, 92

chart display (VbaView window), updating, 66
chart titles (VbaView window), 66
chart types (VbaView window), 66
COM objects in Advanced Customization

Environment (ACE), 37
COM objects, accessing, 39
COM objects, generic and specific, 40
COM objects, help on, 41
combo box, getting selected string, 27
combo box, populating with buses/signals, 26
combo box, selecting item based on string, 27
COM-enabled PC applications, linking to, 14
config macros, 19
Connect object, 38

D

data analysis macros, 12
data types for GetDataBySample method, 55
data visualization VbaView windows, 13
data, displaying in VbaView windows, 59
data, getting from logic analyzer, 54
debugging macros, 29
Delete, VbaView window event, 63
development environment, VBA, 9
distributing VBA code, 77
Distribution Sample VbaView window, 13, 15
drawing a bar chart, 69
drawing a horizontal bar chart, 70
drawing a horizontal stacked bar chart, 71
drawing a line chart, 68
drawing a pie chart, 73
drawing a vertical bar chart, 72
drawing a vertical stacked bar chart, 72
drawing an XY scattergram, 67

E

EndSample property, 56
error messages, common VBA, 93
event strings, 44
event strings, creating XML, 47
event strings, simple, 46
event strings, XML, 46
events, finding, 44
events, finding sequence of, 50
Export to IE Sample VbaView window, 14
Export to IE VbaView window, 15
exporting Module/Form VBA code, 80
exporting project VBA code, 81
External Scope Web Control VbaView

window, 15

F

F1 help for COM objects, 41
Find method, 43, 44
find, creating sequential, 51
find, debugging sequential, 52
find, sequential example, 52
FindEdges macro, 15, 30
FindEdgesSample macro, 12
FindResult object, 44
Form VBA code, exporting/importing, 80
forms in VBA, 15, 24

G

generic COM objects, 40
GetDataBySample method, 43, 54
GetDataBySample method, data types, 55
GetDataByTime method, 43
GetTenSamples example, 56
global macros, 19
guidelines for C++ programmers, 92

H

Hello World Sample VbaView window, 15
Hello World Sample VbaView window,

adding, 61
help on COM objects, 41
horizontal bar chart, drawing, 70
horizontal stacked bar chart, drawing, 71

I

IDE (Integrated Development Environment),
VBA, 9, 22

importing Module/Form VBA code, 80
importing project VBA code, 81
instrument control macros, 11
Integrated Development Environment (IDE), 9

L

line chart, drawing, 68

M

macro considerations, 19
macro, creating a new, 20
macro, VBA, 17
macros, debugging, 29

96 Advanced Customization Environment (ACE) Online Help

Index

macros, differences between VbaView windows
and, 15

macros, editing, 22
macros, programming, 30
macros, running, 28
measurement automation macros, 11
Microsoft Visual Basic for Applications (VBA), 9
Module object, 40
Module VBA code, exporting/importing, 80
MyConfigMacros VBA project, 19, 20
MyGlobalMacros VBA project, 19, 20

N

namespace, AgtLA, 38
New, VbaView window event, 63
notices, 2
Notify function, AgtVbaView module, 15, 63

O

Object Variable or With block variable not
set, 93

objects (COM), accessing, 39
objects (COM), generic and specific, 40
objects (COM), help on, 41
objects (COM), in Advanced Customization

Environment (ACE), 37

P

password protecting VBA project zip files, 82
PattgenModule object, 40
PC applications, linking to COM-enabled, 14
pie chart, drawing, 73
programming macros, 30
programming tips, Visual Basic, 89
project VBA code, exporting and importing, 81
Project.xml file format, 83
properties, VbaView window, 15
Properties, VbaView window event, 63

R

Redraw, VbaView window event, 63
Reference, Project.xml element, 83
References, Project.xml element, 83
RepetitiveSaveToFile macro, 15, 30
RepetitiveSaveToFile macros, 11
running macros, 28

S

scattergram, drawing, 67
search, creating sequential, 51
search, debugging sequential, 52
search, sequential example, 52
SendToExcel macro, 15, 30
SendToPatternGeneratorModule macro, 15, 30
sequence of events, finding, 50

sequential find, creating, 51
sequential find, debugging, 52
sequential find, example, 52
Show, VbaView window event, 63
simple event strings, 46
specific COM objects, 40
stacked horizontal bar chart, drawing, 71
stacked vertical bar chart, drawing, 72
StartSample property, 56
startup (application), loading VBA project

code, 86
syntax, Visual Basic, 90

T

text box, allowing numeric input, 27
Timing Compare VbaView window, 15
titles, VbaView charts), 66
trace, getting entire, 56
trademarks, 2

U

Update, VbaView window event, 63
user form, 15, 24

V

validity, bus/signal, 26
variables, watching in VBA IDE, 29
VBA (Visual Basic for Applications), 3, 9
VBA code, distributing, 77
VBA code, exporting and importing project, 81
VBA code, exporting/importing Module or

Form, 80
VBA error messages, common, 93
VBA IDE, 22
VBA macro example, analysis, 31
VBA macro example, control, 30
VBA macro example, export, 32
VBA project code, loading at application

startup, 86
VBA project zip files, creating, 82
VBA project zip files, exporting, 82
VBA project zip files, importing, 86
VBA projects, 19, 20
VbaProject, Project.xml element, 84
VbaView window code, viewing, 62
VbaView windows, differences between Macros

and, 15
VbaView windows, disabling, 75
VbaView windows, displaying data in, 59
VbaViewChart object, 65
vertical bar chart, drawing, 72
vertical stacked bar chart, drawing, 72
Visual Basic for Applications (VBA), 3, 9
Visual Basic programming tips, 89
Visual Basic syntax, 90

W

watching variables in VBA IDE, 29
Window object, accessing, 39

X

XML event strings, 46
XML event strings, creating, 47
XML format configuration files, distributing VBA

code in, 79
XY scattergram, drawing, 67

	Using the Advanced Customization Environment (ACE)
	Contents
	Advanced Customization Environment (ACE)—At a Glance
	Instrument Control and Measurement Automation
	Data Analysis
	Data Visualization
	Linking to Other COM-Enabled PC Applications
	VBA Macros and VbaView Windows

	Creating and Running Macros
	Considerations When Creating a Macro
	Creating a New Macro
	Editing Macros in the VBA IDE
	Using Forms for Program Input/Output
	Example: To populate a combo box with buses/signals
	Example: To tell if a bus/signal is valid
	Example: To get the selected string from a combo box
	Example: To select an item in a combo box based upon a string
	Example: To ensure that a text box allows only numeric input

	Running a Macro
	Debugging Macros in the VBA IDE
	Notes on Programming Macros
	Example: Control Macro
	Example: Analysis Macro
	Example: Export Macro

	Using Logic Analysis COM Objects in the ACE
	Start with AgtLA Namespace (Connect Object Not Needed)
	Accessing Window and BusSignal Objects
	Generic and Specific Objects
	Getting Help on COM Objects

	Analyzing Data in ACE
	Finding Events (Using Logic Analyzer Hardware)
	Understanding the Find Method and FindResult Object
	Using Simple Event Strings
	Using XML Event Strings
	Finding a Sequence of Events

	Getting Data from the Logic Analyzer
	Understanding the GetDataBySample Method
	Data Types for GetDataBySample
	Getting the Entire Trace (from Beginning of Data to End of Data)
	Example: GetTenSamples

	Displaying Data in VbaView Windows
	Adding a New VBA View "Hello World Sample" Window
	Using the Hello World Sample VbaView (Text) Window
	Viewing the VbaView Code

	Understanding the Notify Function
	Using the VbaViewChart Object
	Setting the Chart Type
	Using the AddPointArrays Method
	Setting Titles in the Chart
	Updating the Chart Display
	Example: XY Scattergram
	Example: Line Chart
	Example: Bar Chart
	Example: Pie Chart

	Disabling VbaView Windows

	Distributing VBA Code
	To distribute VBA code via ALA format configuration files
	To distribute VBA code via XML format configuration files
	To distribute individual files (for VBA Modules/Forms)
	To distribute VBA project code via .zip files
	To export VBA project code to .zip files
	To create VBA project code .zip files with agZip.exe
	To import VBA project code from .zip files
	To load VBA project code at application startup

	Visual Basic Programming Tips
	Visual Basic Syntax
	Guidelines for C++ Programmers
	Common VBA Error Messages

	Index

