Advanced Customization
Environment (ACE)

Online Help

Agilent Technologies

Notices

© Agilent Technologies, Inc. 2001-2009

No part of this manual may be reproduced
in any form or by any means (including
electronic storage and retrieval or transla-
tion into a foreign language) without prior
agreement and written consent from Agi-
lent Technologies, Inc. as governed by
United States and international copyright
laws.

Trademarks

Microsoft®, MS-DOS®, Windows®, Win-

dows 2000®, and Windows XP® are U.S.
registered trademarks of Microsoft Corpo-
ration.

Adobe®, Acrobat®, and the Acrobat
Logo® are trademarks of Adobe Systems
Incorporated.

Manual Part Number
Version 03.82.0000

Edition
April 10, 2009
Available in electronic format only

Agilent Technologies, Inc.
1900 Garden of the Gods Road
Colorado Springs, CO 80907 USA

Warranty

The material contained in this docu-
ment is provided “as is,” and is sub-
ject to being changed, without notice,
in future editions. Further, to the max-
imum extent permitted by applicable
law, Agilent disclaims all warranties,
either express or implied, with regard
to this manual and any information
contained herein, including but not
limited to the implied warranties of
merchantability and fitness for a par-
ticular purpose. Agilent shall not be
liable for errors or for incidental or
consequential damages in connection
with the furnishing, use, or perfor-
mance of this document or of any
information contained herein. Should
Agilent and the user have a separate
written agreement with warranty
terms covering the material in this
document that conflict with these
terms, the warranty terms in the sep-
arate agreement shall control.

Technology Licenses

The hardware and/or software described in
this document are furnished under a
license and may be used or copied only in
accordance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of
a U.S. Government prime contract or sub-
contract, Software is delivered and
licensed as “Commercial computer soft-
ware” as defined in DFAR 252.227-7014
(June 1995), or as a “commercial item” as
defined in FAR 2.101(a) or as “Restricted
computer software” as defined in FAR
52.227-19 (June 1987) or any equivalent

agency regulation or contract clause. Use,
duplication or disclosure of Software is
subject to Agilent Technologies’ standard
commercial license terms, and non-DOD
Departments and Agencies of the U.S. Gov-
ernment will receive no greater than
Restricted Rights as defined in FAR
52.227-19(c)(1-2) (June 1987). U.S. Govern-
ment users will receive no greater than
Limited Rights as defined in FAR 52.227-14
(June 1987) or DFAR 252.227-7015 (b)(2)
(November 1995), as applicable in any
technical data.

Safety Notices

A CAUTION notice denotes a haz-
ard. It calls attention to an operat-
ing procedure, practice, or the like
that, if not correctly performed or
adhered to, could result in damage
to the product or loss of important
data. Do not proceed beyond a
CAUTION notice until the indicated
conditions are fully understood and
met.

A WARNING notice denotes a
hazard. It calls attention to an
operating procedure, practice, or
the like that, if not correctly per-
formed or adhered to, could result
in personal injury or death. Do not
proceed beyond a WARNING
notice until the indicated condi-
tions are fully understood and met.

Using the Advanced Customization Environment (ACE)

¢ Advanced Customization Environment (ACE)—At a Glance (see
page 9)
e Integrated Visual Basic for Applications (VBA) (see page 9)
e Instrument Control and Measurement Automation (see page 11)
¢ Data Analysis (see page 12)
e Data Visualization (see page 13)
e Linking to Other COM-Enabled PC Applications (see page 14)
e VBA Macros and VbaView Windows (see page 15)

* Creating and Running Macros (see page 17)
¢ Considerations When Creating a Macro (see page 19)
* Creating a New Macro (see page 20)
¢ Editing Macros in the VBA IDE (see page 22)
¢ Using Forms for Program Input/Output (see page 24)
¢ Running a Macro (see page 28)
* Debugging Macros in the VBA IDE (see page 29)
¢ Notes on Programming Macros (see page 30)

¢ Using Logic Analysis COM Objects in the ACE (see page 37)

e Start with AgtLA Namespace (Connect Object Not Needed) (see
page 38)

* Accessing Window and BusSignal Objects (see page 39)
¢ Generic and Specific Objects (see page 40)
¢ Getting Help on COM Objects (see page 41)
¢ Analyzing Data in ACE (see page 43)
¢ Finding Events (Using Logic Analyzer Hardware) (see page 44)
¢ Getting Data from the Logic Analyzer (see page 54)
¢ Displaying Data in VbaView Windows (see page 59)
¢ Adding a New VBA View "Hello World Sample" Window (see page 61)
¢ Understanding the Notify Function (see page 63)
e Using the VbaViewChart Object (see page 65)
e Disabling VbaView Windows (see page 75)
* Distributing VBA Code (see page 77)

¢ To distribute VBA code via ALA format configuration files (see
page 78)

¢ To distribute VBA code via XML format configuration files (see
page 79)

¢ To distribute individual files (for VBA Modules/Forms) (see page 80)

Advanced Customization Environment (ACE) Online Help 3

See Also

TIP

e To distribute VBA project code via .zip files (see page 81)
Visual Basic Programming Tips (see page 89)

e Visual Basic Syntax (see page 90)

* Guidelines for C++ Programmers (see page 92)

e Common VBA Error Messages (see page 93)

"COM Automation Reference" (in the online help)

Help inside the VBA Integrated Development Environment (IDE) (for
syntax or method calls)

Web sites:

¢ '"http://groups.google.com" (get answers to VBA questions)

e "http://www.msdn.com" (Microsoft knowledge base)

Books:

* VBA Developer's Handbook by Ken Getz & Mike Gilbert, 2nd Edition
e VBA for Dummies by John Paul Mueller (Good reference for Forms)

When you get a reference book, be sure the book is for Visual Basic for Applications (VBA).
VBA is not the same as VB or VB.NET. Also, don't forget about the "F1" help.

Advanced Customization Environment (ACE) Online Help

http://groups.google.com
http://www.msdn.com

Contents

Using the Advanced Customization Environment (ACE) 3

1 Advanced Customization Environment (ACE)—At a Glance
Instrument Control and Measurement Automation 11
Data Analysis 12
Data Visualization 13
Linking to Other COM-Enabled PC Applications 14
VBA Macros and VbaView Windows 15

2 Creating and Running Macros
Considerations When Creating a Macro 19
Creating a New Macro 20
Editing Macros in the VBAIDE 22

Using Forms for Program Input/Qutput 24
Example: To populate a combo box with buses/signals 26
Example: To tell if a bus/signal is valid 26
Example: To get the selected string from a combo box 27
Example: To select an item in a combo box based upon a string 27
Example: To ensure that a text box allows only numeric input 27

Running a Macro 28
Debugging Macros in the VBAIDE 29

Notes on Programming Macros 30
Example: Control Macro 30
Example: Analysis Macro 31
Example: Export Macro 32

3 Using Logic Analysis COM Objects in the ACE
Start with AgtLA Namespace (Connect Object Not Needed) 38
Accessing Window and BusSignal Objects 39
Generic and Specific Objects 40
Getting Help on COM Objects 41

Advanced Customization Environment (ACE) Online Help

4 Analyzing Data in ACE

Finding Events (Using Logic Analyzer Hardware) 44
Understanding the Find Method and FindResult Object 44
Using Simple Event Strings 46
Using XML Event Strings 46
Finding a Sequence of Events 50

Getting Data from the Logic Analyzer 54
Understanding the GetDataBySample Method 54
Data Types for GetDataBySample 55
Getting the Entire Trace (from Beginning of Data to End of Data) 56
Example: GetTenSamples 56

b Displaying Data in VbaView Windows

Adding a New VBA View "Hello World Sample" Window 61

Using the Hello World Sample VbaView (Text) Window 61
Viewing the VbaView Code 62

Understanding the Notify Function 63

Using the VbaViewChart Object 65
Setting the Chart Type 66
Using the AddPointArrays Method 66
Setting Titles in the Chart 66
Updating the Chart Display 66
Example: XY Scattergram 67
Example: Line Chart 68
Example: Bar Chart 69
Example: Pie Chart 73

Disabling VbaView Windows 75

6 Distributing VBA Code
To distribute VBA code via ALA format configuration files 78
To distribute VBA code via XML format configuration files 79
To distribute individual files (for VBA Modules/Forms) 80

To distribute VBA project code via .zip files 81
To export VBA project code to .zip files 82
To create VBA project code .zip files with agZip.exe 82
To import VBA project code from .zip files 86
To load VBA project code at application startup 86

Advanced Customization Environment (ACE) Online Help

7 Visual Basic Programming Tips
Visual Basic Syntax 90
Guidelines for C++ Programmers 92

Common VBA Error Messages 93

Index

Advanced Customization Environment (ACE) Online Help

Advanced Customization Environment (ACE) Online Help

Integrated Visual
Basic for
Applications
(VBA)

TIP

Advanced Customization Environment (ACE)
Online Help

@oe- 1

‘... Advanced Customization Environment
¢ : °. (ACE)—At a Glance

The Advanced Customization Environment (ACE) is a seamless integration
of Microsoft Visual Basic for Applications (VBA) into the Agilent Logic
Analyzer application.

Advanced Customization
Environment (ACE}

Macros (for Instrument

Agilent Control, Measurement
Logic Analyzer Automation, Data
Analysis)
§
8 Js
Microsoft Visual Basic
Applicati Contral Y COM-Enabled PC
R S il >ﬁ.pnlicn1inna|e.q.,

Contral
Remate COM Automation M:cm‘:::a"
-‘-r-:\-,=r=sr--.~.< Interface Data el

§
= 3 =
g s g 8
]
HW Measurement X
Modules, Target ViaView\Windgws {for
Control Port, etc. Data Visualization)

Visual Basic for Applications (VBA) is a fully established Microsoft
application that provides an Integrated Development Environment (IDE)
for automating tasks and customizing an application. Just as VBA is
integrated into Microsoft Excel, Word, and Access (for example), it is now
integrated into the Agilent Logic Analyzer application. VBA's seamless
integration into the Agilent Logic Analyzer application shortens the
learning curve and lets you perform automation and customization tasks
in the same environment as you perform other logic analysis tasks.

VBA is not the same as VB or VB.NET. It is the same VBA that is part of Excel.

Agilent Technologies 9

1

10

Advanced Customization Environment (ACE)—At a Glance

With the
Advanced
Customization
Environment
(ACE), You Can:

See Also

Control the instrument and automate measurements (see page 11).
Add data analysis customization (see page 12).
Add data visualization windows (see page 13).

Link to other COM-enabled PC applications (see page 14).
VBA Macros and VbaView Windows (see page 15)

Advanced Customization Environment (ACE) Online Help

Advanced Customization Environment (ACE)—At a Glance 1

Instrument Control and Measurement Automation

With the Advanced Customization Environment (ACE), you can create
macros that control the instrument and automate measurements. For a
quick example of a macro that runs the logic analyzer, saves the results,
and runs the logic analyzer again:

1 In the Agilent Logic Analyzer application, choose Tools>Run
Macro>RepetitiveSaveToFile.

2 In the Repetitive Run & Save dialog, select the desired options, and
click Run.

Repetitive Run & Save @

File Marning
¥ Increment File Mames after sach run

File Mame without | C:\Documents and Settings|patjwity Documents|Agilent
extension TechnologiesiLogic Analyzer\RepRunFile

Starting Number : 1 i‘

File Type
(+ ALA Files

" Text Files (Comma Separated)

™ WML with Data Files

Mumber of Runs g| i‘

Run |:| S runs completed Close | Help |

3 Click Close to close the macro dialog.

Note that the Agilent Logic Analyzer application's Run/Stop>Run Properties... dialog now
supports saving data after every acquisition during repetitive runs.

Advanced Customization Environment (ACE) Online Help 11

1 Advanced Customization Environment (ACE)—At a Glance

Data Analysis

With the Advanced Customization Environment (ACE), you can create
macros that analyze captured data. For example, a macro can run the logic
analyzer and search the captured data for the occurrence of an event too
complicated to be triggered on. For a quick example of a data analysis
macro that finds the time between two edges and places markers on
particular difference values:

1 Choose Tools>Run Macro>FindEdgesSample.

2 In the Find Edges dialog, select the desired options, and click Find.

Find Edges

Window | Listing-1

3
[

First Edge

Bl

Second Edge| My Bus 1[1]

Results

Edges Found : 46

j | Rising Edge j

Edges Found

12

‘Where the difference between the edgesis | = ¥ Ins

Place Markers Clear Markers
Close Help

. s -1.048572 ms Delta=2 ns -
Average Time Between Edges ;. 5.9ns -1 048568 me Deltamt ns :‘
Max Time Between Edges : 6ns -1.04856 ms Dela=f ns
-1.048552 ms Delta=6 ns
Min Time Between Edges : 2ns -1.048544 ms Delta=6 ns j
Place Markers
Flace markers named | 1stEdge and | ZndEdge

3 Click Close to close the macro dialog.

Advanced Customization Environment (ACE) Online Help

Advanced Customization Environment (ACE)—At a Glance

Data Visualization

With the Advanced Customization Environment (ACE), you can add
VbaView windows that help visualize captured data in XY scattergrams,
bar charts, line charts, and pie charts. For a quick example of a VbaView
window that creates a bar chart of the distribution of values on a bus:

1

Choose Window>New VbaView>Distribution Sample....

2 In the Distribution Properties dialog, select the desired options, and

click OK.

Distribution Properties Pz|

Bus to analyze | My Bus 1

MNumber of Buckets | & i‘

+ Calculate buckets based upon bus width

Start Sample | -1000
End Sample 1000

Cancel |

Help

" Calculate Buckets based upon min and max bus values

|

The distribution of values on the specified bus are shown in the
VbaView window.

NEES

M ko M2 = 20 ns

a File Edit Wiew Setup Tools Markers RunfStop Wbaview Window Help

=

i asem

L
=

Distribution for My Bus 1

0. 20.. 40.. B0.. a0.. AD. co.. E0..
1F 3F aF 7F 9F BF DF FF
| Done - Distribution is drawn -
IE‘ Overview J % Listing-1 J . waveform-1 a Digtribution 5 ample-1
For Help, press F1 Skatus, ..

Advanced Customization Environment (ACE) Online Help

1

1

3

1

Advanced Customization Environment (ACE)—At a Glance

Linking to Other COM-Enabled PC Applications

14

With the Advanced Customization Environment (ACE), you can create
macros or add VbaView windows that interact with other COM-enabled PC
applications. For a quick example of a VbaView window that sends
captured data to an Internet Explorer window:

1 Choose Window>New VbaView>Export to IE Sample....

2 In the "Samples to send to Internet Explorer" dialog, select the desired
options, and click OK.

Samples to send to Internet Explorer.
Start Sample -1a End Sample i

Cancel |

File

Edit

S </ \ﬂ @ {h /.._\J Search

Yiew Favorites Tools Help

Address |@ http:ff127.0.0.1/

y ' y»_ B 7
‘:‘\'I(Favorites E} i (&=
v| a Go Links >

Exporting Data to External Applications

The data below was exported from the logic analyzer to Windows Internet
Explorer using the Advanced Customization Environment, This example
demonstrates how to easily launch and export data to other PC applications

fram within the logic analyzer application.

Here's the requested data from your last run.

Sample Number My Bus 1 | Time

-10 FE -20 ns

-9 FF -18 ns

-3 oo -16 ns L
-7 o1 -14 ns

-G oz -12 ns

-3 03 -10ns

-4 04 -3 ns

-3 [uls] -G ns

-2 [u]s] -4 ns

-1 o7 -2 ns v

@ Daone NQ Local intranet:

Advanced Customization Environment (ACE) Online Help

Advanced Customization Environment (ACE)—At a Glance 1

VBA Macros and VbhaView Windows

Macro = Script A macro:
Used to Automate

Tasks and
Customize °* Can optionally create a custom dialog for user input.

¢ Is written in Microsoft Visual Basic.

Analysis ¢ Is manually run from the menu or tool bar.

e Has no data visualization capabilities.

See the samples included with the Agilent Logic Analyzer application by
choosing Tools>Run Macro>:

* FindEdges (simple find time between edges and place markers
example).

* RepetitiveSaveToFile (simple repetitive run and save example).

Note that the Agilent Logic Analyzer application's Run/Stop>Run Properties... dialog now
supports saving data after every acquisition during repetitive runs.

¢ SendToExcel (for sending logic analyzer data to Microsoft Excel).

¢ SendToPatternGeneratorModule (for sending logic analyzer data to a
pattern generator module as stimulus vectors).

VbhaView = A VbaView is a window that:
Macro +

. o e Has charting capabilities.
Visualization

* Is integrated into the Overview window.

* Responds to logic analyzer events.

See the samples included with the Agilent Logic Analyzer application by
choosing Window>New VbaView>:

e Bus vs Bus Sample... (simple XY scattergram chart example).
e Distribution Sample... (simple data distribution bar chart example).
e Export to IE... (simple export data to another application example).

e External Scope Web Control... (opens web control window for external
oscilloscope).

e Hello World Sample... (simple text output example).

¢ TimingCompare... (compares timing analyzer data with a specified
tolerance).

More on Macros A macro is a generic function that is run by: choosing
Tools>Macro>Macros..., selecting the macro (in the Macros dialog), and
clicking Run. (This Run button does mot run the logic analyzer.) Macros
are generally used to start a one-time data analysis or data export. A

Advanced Customization Environment (ACE) Online Help 15

1

Advanced Customization Environment (ACE)—At a Glance

More on VbaView

16

Windows

macro should be used when there is no need to graph data or respond to
events in the logic analysis system (like when a measurement is run, for
example). It is common for a macro to open a dialog (also known as a
"user form") to prompt for user-selectable options or parameters before
running the analysis or export.

A macro must contain at least one module with at least one public
subroutine with no parameters. The name of the module does not have to
be any specific name. All subroutines with no parameters appear in the
Macros dialog (which appears when you choose Tools>Macro>Macros...).
Subroutines that are private or have parameters do not appear in the
Macros dialog. In general, you are not able to access VbaView window
functionality from the Macros dialog. (A public function with no
parameters can be put in the AgtVbaView module if desired, but there
generally isn't a need to do this).

A VbaView window has graphing and text display capabilities. It also has
the ability to respond to events in the logic analysis system (like when a
measurement is run or when the VbaView>Properties... command is
chosen, for example). A VbaView window essentially provides a superset of
the macro capabilities plus graphing and the ability to respond to events.
Use a VbaView window whenever data is to be graphed or when text is to
be displayed. VbaView windows generally have a properties dialog that lets
you choose window options.

VbaView windows must contain a Notify function in the AgtVbaView
module (see page 63). The name "Notify" must be used for the function
and "AgtVbaView" must be used for the module. The Notify function is how
the logic analysis system tells the VbaView window about events such as a
run or when the VbaView>Properties... command is chosen. It is common
for a VbaView window to have a user form called agtProperties although
any name can be used.

Advanced Customization Environment (ACE) Online Help

Advanced Customization Environment (ACE)
Online Help

o... ...oz

° Creating and Running Macros

In Microsoft Visual Basic for Applications (VBA), "macros" (in the online
help) are public Sub procedures (with no parameters) that can be run
from the user interface to automate an application.

Macros extend the functionality of an application. Macros can be used to
perform functions within an application or even across applications. For
example, a macro in the logic analyzer might cause an instance of
Microsoft Excel to open and copy data from the logic analyzer.

In the logic analyzer, macros generally fit into one of the categories:

Control — For example, a macro can run the logic analyzer, save the
results, run the logic analyzer again, etc.

Analyze — For example, a macro can run the logic analyzer and search
the captured data for the occurrence of an event too complicated to be
triggered on. If the event is not found, the logic analyzer can be run
again until the event is found.

Export — For example, macros can export logic analyzer data to Excel,
Access, MathWorks MATLAB, the Agilent Vector Signal Analyzer,
National Instruments LabVIEW, Agilent VEE, and SysStat. A macro can
copy data from a logic analyzer directly into a pattern generator
module.

There is another category of VBA program that is not created or run like
macros:

Graph — As a part of the added VBA functionality, graphing functions
such as XY scattergrams, bar charts, line charts, and pie charts can be
used in the VbaView window. See Displaying Data in VbaView Windows
(see page 59).

To create and run macros, see:

Considerations When Creating a Macro (see page 19)
Creating a New Macro (see page 20)
Editing Macros in the VBA IDE (see page 22)
Using Forms for Program Input/Output (see page 24)
Example: To populate a combo box with buses/signals (see page 26)

Example: To tell if a bus/signal is valid (see page 26)

Agilent Technologies 17

2

18

Creating and Running Macros

See Also

Example: To get the selected string from a combo box (see page 27)

Example: To select an item in a combo box based upon a string (see
page 27)

Example: To ensure that a text box allows only numeric input (see
page 27)

Running a Macro (see page 28)

Debugging Macros in the VBA IDE (see page 29)

Notes on Programming Macros (see page 30)
Example: Control Macro (see page 30)
Example: Analysis Macro (see page 31)
Example: Export Macro (see page 32)

VBA Macros and VbaView Windows (see page 15)

Advanced Customization Environment (ACE) Online Help

Creating and Running Macros 2

Considerations When Creating a Macro

TIP A macro needs to be stored into a Project.

A standalone macro can ONLY by stored in the MyConfigMacros or MyGlobalMacros
projects. The other projects are either read only or are not appropriate.

a Microsoft Visual Basic - patjw@WHITES2 - [Macros

% File Edit Wew Insert Format Debug Run Too

Ec e I ™ I ECTE N S N [ST 74
Project - MyGlobalMacros % =|
= =)] ! ~

&% AgtRPICmds (Read Only)
(73 Modules
= @ Agtsamples (Read Only)
(73 Forms
(73 Modules
@ MyConfigMacros {(Unnamed Configuration)

=B YMyGlobalMacros (patjw@WHITES2)

(=5 Modules
‘5{ Macros
Properties - MyGlobalMacros m
MyGlobalMacros Project v|

Alphabetic | Categorized

m MyGlobalMacros |

Config Macros The MyConfigMarcos project is saved with the ALA or XML format

configuration file (in other words, it is file specific).

e To access a macro in the MyConfigMacros project, you have to load the
associated configuration file.

Global Macros The MyGlobalMacros project is saved on the logic analysis system or
host PC, not in an ALA or XML format configuration file (in other

words, it is specific to the system).

e Macros in the MyGlobalMacros project are available with any
setup/configuration.

Advanced Customization Environment (ACE) Online Help 19

2 Creating and Running Macros

Creating a New Macro

1 Run the Agilent Logic Analyzer application.
2 Choose Tools>Macro>Macros... or press the ALT+F8 keyboard shortcut.

3 In the Macros dialog, use the Macros in drop-down to select the project
in which the macro should be created.

Macro name:

Cancel

Macros i | MyGlobalt acros [pwSE70@EPWSETOM) _:__]

Description: | <4 Standard Projects:

] AgtS amples
MyCanfighd acros [Unnamed Configuration]
MyGlobaltd acros [pwSE7DEPWEETOM]

Choose between:

MyConfigMacros — the macro will be saved with the ALA or XML
format logic analyzer configuration file.

MyGlobalMacros — the macro will be saved in "My Documents\Agilent
Technologies\Logic Analyzer\Vba Files\MyGlobalMacros.alv" when you
exit the Agilent Logic Analyzer application and loaded automatically
the next time you start the application.

4 In the Macros dialog, enter the desired macro name, and click Create.

Macro name:

RunhTimes

Macros in: ; MyConfighd acros (Unnamed Configuration] _:__1
Description:

b In the VBA IDE, enter the program (see Notes on Programming Macros
(see page 30)).

20 Advanced Customization Environment (ACE) Online Help

Creating and Running Macros 2

£ Microsoft Yisual Basic - Unnamed Configuration - [Macros (Code)]

% File Edit Wiew Insert Format Debug Run Tools Add-Ins Window Help
A e N Ly B e Bl 8 R R =
Project=_FyConfigtacros: ¥ I(General} j IRunNTimes

= G B
| Sub BunbTimes ()

= B4 Agtsamples
5% MyConfigMacros {(Unnan

For more information on progrstaning
"Programmming Macros"™ in the on-line

object is "AgtLi™., For example, to
@ MyGlobalMacros (pw567 AgtLi.Run.
I IR | End Sub
Properties - Macros x|
|Macros Module =

Alphabetic |Categ0rized I
Macros |

6 Close the VBA IDE window.
See Also * VBA Macros and VbaView Windows (see page 15)

Advanced Customization Environment (ACE) Online Help 21

2

Creating and Running Macros

Editing Macros in the VBA IDE

TIP

The VBA IDE looks like:

(all Microsoft Visual Basic - patjw@WHITES2 - [Macros (Code)]

% File Edit Wiew Insert Format Debug Run Tools Add-Ins Window Help
ERCi e B N E G N N " e e S NN
Project - MyGlobalMacros m |(General} v| |Test
= j | ! Sub Testi)

«$§ AgtFindEdgesSample ~ !

48 AgtRepetitiveSaveToFileSample ' For more information on programming macros,
; Eﬁ MyConfigMacros {(Unnamed Configu ! "Programming Macros" in the on-line help.
= @Myﬁlohall“lacros {patjw@WHITESZ) ' object is "AgtLAi"™. For example, to run the

=5 Modules = ' LgtLL.Run.

1o | s '
< -
Propetties - Macros x| End Sub
Macros Module v|
Alphabetic |Categ0ﬂzed|
WVELEN] Macros

v
== @0 >

Type "AgtLA" and the rest is magic.

For Each theModule In AgtLi.Modules
M=gBox theModule . Name
Next

=% QueryCommand
End 3ub ' RunningStatus

B Slot

E& Status

E& StatusMsg

& Type

| <

22

In the VBA IDE, you can:

e Edit code. The text editor has Intellisense, which means that menus

appear when typing.
* Debug macros:

Step through code.

Display the value of a variable.

Get a stack trace.

Advanced Customization Environment (ACE) Online Help

Creating and Running Macros 2

See Debugging Macros in the VBA IDE (see page 29).

The VBA IDE is basically the same as the one used in Microsoft Excel,
except it has knowledge of the logic analysis system COM model.

Advanced Customization Environment (ACE) Online Help 23

2

Creating and Running Macros

Using Forms for Program Input/Output

24

1

Create a macro as you would normally (see Creating a New Macro (see
page 20)).

2 In the VBA IDE, choose Insert>UserForm.

3 In the Properties window, rename the UserForm from "UserForm1" to

the desired form name, and change the Caption property to the desired
form dialog title.

£ Microsoft Yisual Basic - Unnamed Configuration - [frmNRuns (UserForm)]
% File Edit Wiew Insert Format Debug Run Tools Add-Ins Window Help

i - DR B o S @

Project=_FyConfigtacros: x|

=3 | ! umber of Runs

&% Agtsamples

E@ MyConfigMacros (Unnan
L Farms

-8 FrmMRUns

N I— i3
Properties - frmMNRuns [}
|frmNRuns UserForm =

Alphabetic |Categ0rized I

(Mame) FrmmRuns -
Eackicolor [&Hsooooo;
Eordercolor [l &Hs000001
BorderStyle 0 - frmBorders|
mber of Runs
Cycle 0 - frnZycleallF

4 Click in the form to open the Toolbox.

£ Microsoft Yisual Basic - Unnamed Configuration - [frmNRuns (UserForm)]

% File Edit Wiew Insert Format Debug Run Tools Add-Ins Window Help
e A O SR Bl S e b
-

|frmNRuns UserForm =1

Alphabetic |Categ0rized I

(Mame) FrmmRuns -
Eackicolor [&Hsooooo;
Eordercolor [l &Hs000001
BorderStyle 0 - frmBorders|
Mumber of Ru
Cycle 0 - frnZycleallF

Advanced Customization Environment (ACE) Online Help

Creating and Running Macros 2

5 Drag controls from the Toolbox to the form. Position the controls, name
them, and change the Caption and any other properties you desire.

£ Microsoft Yisual Basic - Unnamed Configuration - [frmNRuns (UserForm)]

% File Edit Wiew Insert Format Debug Run Tools Add-Ins Window Help
E fi‘l H|&'—bi§5-§ﬁ|‘1(“|b B AR S R

Number of Runs : b
,_=-| = [| ekt X
______ @ Agtsamples - Enter the number of runs: I | -
E| @ MyConfigMacros {Unnan
B Forms
-8 FrmMRUns
[=E @ Modules
| 482 Macros
------ @ MyGlobalMacros (pw567
;I—I i
Properties - cndOK [}
|cmdDK CommandButton =
Alphabetic |Categ0rized I
(Mame) crndOF -
Accelerator
AuboSize False
Eackicolor [&Hsooooo;

1 - FmBackstyl
False
Ok

ControlTipText

6 In the Project window, right-click on the form and choose View Code.

7 In the Code window under "(General)", select the control you want to
add code for, and enter the code for the form.

£ Microsoft Yisual Basic - Unnamed Configuration - [frmNRuns {(Code)]

% File Edit Wiew Insert Format Debug Run Tools Add-Ins Window Help

A T T e S

Project=_FyConfigtacros: x| IcmeK j ICIick
2= 5 B

Private Zub cmdOE_Clicki()
------ &% Agtsamples

@MvtoanMacros {Unnan ' Tell WBL about the error handler.
On Error GoTo NotMNumber

' Get the form field wvalue.
NumberOfRuns = txtNRuns.Text

.. MyGlobalMacros (pw567

4 _’I ' Close the dialog.
Propetties - cond 0K =] Unload Me

|cmdDK CommandButton = ' Exit the Sub.
Alphabetic |Categ0rized| Exit 3ub

crndOF X X
' Handle non-numeric input.

NotNumber:
M=gBox "You must enter a number. ™

False
[&Hsooooo;

End Sub

For more examples of code used in UserForms, see:
Example: To populate a combo box with buses/signals (see page 26)

Example: To tell if a bus/signal is valid (see page 26)

Advanced Customization Environment (ACE) Online Help 25

2

26

Creating and Running Macros

Example

Example
page 27)

Example
page 27)

: To get the selected string from a combo box (see page 27)

: To select an item in a combo box based upon a string (see

: To ensure that a text box allows only numeric input (see

8 In the Project window, right-click on the module and choose View

Code.

9 Enter the module code that operates on the entered form values.

i Microsoft ¥isual Basic - Unnamed Configuration - [Macros {Code)]

% File Edit Wiew Insert Format Debug Run Tools Add-Ins Window Help
n

pooom Y © | Ln1s, colst

i(GeneraI} L; iRunNTimes

i ' Declare global wvariasble for walue from form.

B4 Agtsamples

. ¢$§ Macros

= yConfigMacros (Unnan

.. MyGlobalMacros (pw567

Public NumberOfRuns Ls Integer

Sub BunbTimes ()

For more information on programming macros, see tl
"Programmming Macros"™ in the on-line help. The loc
object is "AgtLA™., For example, to run the logic
AgtLAi.FRun.

' Display the form.

IMacros Module

Alphabetic ;Categorized ;

Macros

See Also + Creating a

¢ Notes on P

Bl friiRuns. Show vhHModal

' Work with the entered form wvalue.
M=gBox "Number of runs: " + C3tr (NuberOfRuns)

End Sub

New Macro (see page 20)

rogramming Macros (see page 30)

e The VBA IDE's online help.

Example: To populate a

combo box with buses/signals

Dimi As Integer
Me. cnbXAxi sBusSi gnal . d ear

For i = 0 To nmyW ndow. BusSi gnal s. Count - 1
Me. cnmbXAxi sBusSi gnal . Addl t em nyW ndow. BusSi gnhal s(i) . Name

Next i

Me. cnbYAxi sBusSi gnal . Li st ndex = 0

Example: To tell if a bus/signal is valid

Private Function |sBusSignal Valid(ByVal strBuSignal As String) _
As Bool ean
Di m nyDat a As Agt LA. Sanpl eBusSi gnal Dat a

On Error GoTo busSignal Not Val i d

Advanced Customization Environment (ACE) Online Help

Creating and Running Macros

I sBusSi gnal Valid = True
Set nmyData = nyW ndow. BusSi gnal s(str XAxi sBusSi gnal). BusSi gnal Dat a
Exit Function

busSi gnal Not Val i d:
I sBusSi gnal Valid = Fal se
End Function

Example: To get the selected string from a combo box

str XAxi sBusSi gnal = _
Me. cnbXAxi sBusSi gnal . Li st (Me. cmbXAxi sBusSi gnal . Li st | ndex)

Example: To select an item in a combo box based upon a string

Private Sub Set ComboBoxVal ue(ByRef cnbControl As ConboBox,
ByVal strValue As String)
Dmi As Integer
Di m bFound As Bool ean

i =0

Do While Not (cnbControl.List(i) <> strValue)
i =i +1

Loop

If (cnmbControl.List(i)
cnbControl . Li stlndex
El se
"A Listlndex of -1 neans no itemis selected
cnbControl . Listlndex = -1
End |f
End Sub

strVal ue) Then
i

Example: To ensure that a text box allows only numeric input

Private Sub txt EndSanpl e_KeyPress(ByVal KeyAscii As _
MSFor rs. Ret ur nl nt eger)
' Cancel any non-nuneric keys.
If KeyAscii < vbKeyO Or KeyAscii > vbKey9 Then
KeyAscii =0
End |f
End Sub

Advanced Customization Environment (ACE) Online Help

2

27

2 Creating and Running Macros

Running a Macro

e In the Agilent Logic Analyzer application, choose Tools>Run
Macro>(name of macro).

Or:

1 In the Agilent Logic Analyzer application, choose
Tools>Macro>Macros... or press the ALT+F8 keyboard shortcut.

2 In the Macros dialog, select the macro you want to run, and click Run.
Or:
e In the VBA IDE, press F5.

SeeAlso + VBA Macros and VbaView Windows (see page 15)

28 Advanced Customization Environment (ACE) Online Help

Creating and Running Macros

Debugging Macros in the VBA IDE

TR A = s DN H

.Z| |(General} v| |ShowWin(Iows 7|

_! Public Sub ShowWindows () f
~ Dim theWindow Ais AgtLlh.Window B

2) [] For Each theWindow In AgtLA.Windows =

M=gBox theWindow.Name

Next

Toadda < Click to the left of a line of code to set a breakpoint.

breakpoint
To"watch"a 1 When a macro is running, choose Debug>Add Watch... from the VBA
variable IDE's main menu.

N

In the Add Watch dialog, enter the variable expression you want to
watch, and click OK.

Advanced Customization Environment (ACE) Online Help

2

29

2

Creating and Running Macros

Notes on Programming Macros

30

e To make a macro available via the Tools>Macros> menu, the macro
must be public (not private) and have no parameters.

e The root object of the entire logic analyzer instrument is AgtLA. This
object is used for accessing both logic analyzer sub-objects (like
Modules and Windows) and also for logic analyzer specific data types.

¢ For example, to run the logic analyzer:

Agt LA. Run
Agt LA. Wi t Conpl et e(999)

This way of accessing the instrument object is different than when controlling the logic
analyzer remotely using COM automation. Please keep this in mind when referring to the
examples in the "COM Automation” (in the online help) online help.

e To extract data from the logic analyzer, see the "GetDataBySample
Method" (in the online help).

* To create forms for user input or display of results, see Using Forms for
Program Input/Output (see page 24).

e For a brief description of the differences between a VbaView and a
Macro and when to use each, see VBA Macros and VbaView Windows
(see page 15).

* For information about Visual Basic syntax, see Visual Basic Syntax (see
page 90).

¢ For simple macro examples, see:
Example: Control Macro (see page 30)
Example: Analysis Macro (see page 31)
Example: Export Macro (see page 32)
For more detailed macro examples, see the FindEdges,

RepetitiveSaveToFile, SendToExcel, and SendToPatternGeneratorModule
macros that are shipped with the Agilent Logic Analyzer application.

Example: Control Macro

Option Explicit ' Must define all variables.
Sub RunNTi nes()

Di m nConpl et edRuns As | nt eger

Dmi As Integer

DmstrFile As String

Use a loop to go through each of the runs.

Advanced Customization Environment (ACE) Online Help

Creating and Running Macros 2

nConpl et edRuns = 0
For i =1 To 5

Agt LA. Run
Agt LA. Wi t Conpl ete (999)

"Gven a file type, do the requested save

strFile = "c:\LA\ Data\ RunNTi nes" + VBA LTrin(VBA. Str(i)) + ".ala"
Cal | AgtLA. Save(strFile) ' This tells the | ogic analyzer to save.
Agt LA. Modul es(0). Wai t Conpl ete (99)

nConpl et edRuns = nConpl etedRuns + 1
MsgBox (VBA. Str(nConpl etedRuns) + " run(s) conpleted.")
Next i

End Sub

Example: Analysis Macro
Option Explicit ' Must define all variables.

This finds the first occurrence of a rising edge on bit O
of My Bus 1 fromthe beginning of the data.

Publ i c Sub Si npl eFi nd()

Di m nyW ndow As Agt LA. W ndow

D mt heFi ndResult As AgtLA. Fi ndResul t
Dim strEvent As String

Di m dTi neFound As Doubl e

' Set the wi ndow object.

Set nmyW ndow = AgtLA. W ndows("Wavef orm 1")

Get the XML based string representing the edge.
strEvent = "<BEvent>" + _
"<BusSignal Name='"My Bus 1' Bit="0" " +
"Qperator='"Ri sing Edge' />" + _
"</ Event >"

I nvoke the find conmand.
Set theFi ndResult = nmyW ndow. Fi nd(strEvent,

1, _

wpr

"Begi nning O Data",
"Present")

Get the time where the result was found.
If (theFindResult.Found) Then dTi neFound = theFi ndResul t. Ti neFound

End Sub

Advanced Customization Environment (ACE) Online Help 31

2

32

Creating and Running Macros

Example: Export Macro

Example

When exporting data to another application, you need to make sure the
VBA project references that application's object library:

1 In the VBA IDE's Project Explorer window, select the VBA project your
macro is in (or select a Form or Module in the project).
2 Choose Tools>References....
3 In the References dialog, check the object library of the application you
are exporting data to.
For example, the object library for Internet Explorer is "Microsoft
Internet Controls".
4 C(Click OK.
Option Explicit ' Must define all variables.
Publ i ¢ nyl EApp As SHDocVw. | nt er net Expl or er ' This is | E application.
Publ i ¢ nyModul e As Agt LA Modul e
Publ i ¢ nExport Tol EStart Sanpl e As Long ' Starting sanple.
Publ i ¢ nExport Tol EEndSanpl e As Long ' Endi ng sanpl e.
Publ i ¢ Export Tol ELogi cAnal yzerData As Col | ection ' Data collected
" from LA
Sub Export Dat aTol E()
DimstrHTM. As String
D m nSanpl e As Long
Di m nyDat a As Agt LA. Sanpl eBusSi gnal Dat a
On Error GoTo noData
nExport Tol EStart Sanple = -10
nExport Tol EEndSanpl e = 10
Set nmyModul e = Agt LA. Modul es(0)
Set nyData = nyMdul e. BusSi gnal s(0) . BusSi gnal Dat a
nSanpl e = nyData. St art Sanpl e " If error, there is no data.
Cal | Createl EObject ' Create the new | E object if one isn't
al ready avail abl e.
Call CetlLogi cAnalyzerData ' Get the data fromthe |ogic anal yzer.

str HTML " <HTML><TI TLE>Exporting Data to | E</ TI TLE><H1>Export" + _

"ing Data to External Applications</H1>"

strHTML = strHTM. + "<P>The data bel ow was exported fromthe " + _
"l ogi c anal yzer to Wndows I nternet

strHTML = strHTM. + "Explorer using the Advanced Custonmization " + _
"Environment. This exanple "

strHTML = strHTM. + "denonstrates how to easily launch and " + _
"export data to other PC "

strHTML = strHTM. + "applications fromwithin the logic " + _

"anal yzer application."”
strHTML + "<P>"
strHTML + "Here's the requested data from your |ast run.

str HTML
strHTM

Advanced Customization Environment (ACE) Online Help

Creating and Running Macros 2

strHTM. = strHTM. + "<P>"
strHTML = strHTML + "<TABLE BORDER>"
strHTML = strHTM. + Get Header String

'Go through the data acquired fromthe |ogic analyzer and display it.
‘"W obtain the data row by row.
For nSanpl e = nExport Tol ESt art Sanpl e To nExport Tol EEndSanpl e
strHTML = strHTM. + Get RowStri ng(nSanpl e)
Next nSampl e
strHTM. = strHTM. + "</ TABLE>"
strHTML = strHTML + "</ HTM.>"

nyl EApp. Docunent . Body. i nner HTML = strHTM
Exit Sub

noDat a:
MsgBox ("There is no data. Press Run button; then, run nmacro again.")

End Sub

' This subroutine creates a new | E object, but only if one is needed.
' The IE object is a new instance of the Internet Explorer application.
Private Sub Createl Ebject ()
If (IslEAl readyRunning() = Fal se) Then
Set myl EApp = Creat eCbj ect ("I nternet Expl orer. Application")

my| EApp. GoHorre

" Wait until page |oading conplete before continuing.
Wi | e nyl EApp. ReadySt at e <> READYSTATE_COVPLETE
DoEvent s
Wend
myl EApp. Visible = True
End If
End Sub

Private Function |slEAl readyRunni ng() As Bool ean
On Error GoTo invalidlE

" First, check to see if the IE app variable is enpty.
If (IsEnpty(nyl EApp)) Then

I sl EAl readyRunni ng = Fal se

Exit Function
End If

" Now, see if it is nothing.

If (nyl EApp I's Nothing) Then
I sl EAl readyRunni ng = Fal se
Exit Function

End If

If (nmyl EApp. Visible = Fal se) Then
I sl EAl readyRunni ng = Fal se
Exit Function

End |f

I sl EAl readyRunni ng = True

Exit Function

Advanced Customization Environment (ACE) Online Help 33

2 Creating and Running Macros

invalidlE:
I sl EAl readyRunni ng = Fal se

End Function

' W need to keep all of the logic analyzer data in nmenory at one tineg,
' so we store it to a collection called Export Tol ELogi cAnal yzer Dat a.
' This collection contains arrays of strings; one array for each Bus
' or Signal in this w ndow.
Private Sub GetLogi cAnal yzerData()
Di m myBusSi gnal As Agt LA BusSi gnal
DmstrArray() As String

' Clear out the old data (if any).
Set Export Tol ELogi cAnal yzerData = New Col | ecti on

For Each nyBusSignal |n nyMdul e. BusSi gnal s
' This is where we get the data and save it to a collection.

Cal |l GetStringDataArray(nyBusSignal, strArray) ' Cet the data.
Export Tol ELogi cAnal yzer Dat a. Add (strArray) ' Save to collection
' of strings.
Next
End Sub

' This is where we get the data for a specific bus or signal and
place it into a a string array so that we can add it to our web
' page |l ater.
Private Sub Get StringDataArray(ByVal nyBusSignal As AgtLA BusSignal,
ByRef strArray() As String)
Dimi As Integer
Di m nyDat a As Agt LA. Sanpl eBusSi gnal Dat a
Dim nArray() As Double
Di m nDat aRowCount As Long
DimnBitWdth As | nteger

nBi t Wdth = nyBusSi gnal . BitSize
Set nyData = nyBusSi gnal . BusSi gnal Dat a

' Make sure that the nExportTol EStart Sanpl e and nExport Tol EEndSanpl e
' are within bounds.
I f (nExportTol EStart Sanpl e < nyData. Start Sanpl e) Then
nExport Tol ESt art Sanpl e = nyDat a. St art Sanpl e
End |f
I f (nExport Tol EEndSanpl e > nmyDat a. EndSanpl €) Then
nExport Tol EEndSanpl e = nmyDat a. EndSanpl e
End If

' Extract the bus/signal data.
" In this case, we extract all data as a string.
strArray = nyDat a. Get Dat aBySanpl e(nExport Tol ESt art Sanpl e, _
nExpor t Tol EEndSanpl e, Agt Dat aStri ngHex, nDat aRowCount)
End Sub

' This gets the list of bus and signal nanmes formated as an HTM.
' tabl e header.

34 Advanced Customization Environment (ACE) Online Help

Creating and Running Macros 2

Private Function GetHeaderString() As String
Di m strHeader As String
D m nyBusSi gnal As AgtLA. BusSi gnal

' Get the nanes of each of the buses and signals.
strHeader = "<TR>"
For Each nyBusSi gnal I n myMdul e. BusSi gnal s
strHeader = strHeader + "<TH>" + nyBusSignal.Name + "</ TH>"
Next
strHeader = strHeader + "</ TR>"
Get Header String = strHeader
End Function
' Gven a sanple nunber, get the HTM. formatted string correspondi ng
' to that row.
Private Function Get RowString(ByVal nSanpl eNunber As Long) As String
DimstrArray() As String
D m nRow As Long
Dmi As Integer
Dim strRow As String

nRow = nSanpl eNunber - nExport Tol ESt art Sanpl e

strRow = "<TR>"

For i = 1 To Export Tol ELogi cAnal yzer Dat a. Count
strArray = Export Tol ELogi cAnal yzer Dat a(i)
strRow = strRow + "<TD>" + strArray(nRow) + "</ TD>"

Next i

strRow = strRow + "</ TR>"

Get RowString = strRow

End Function

Advanced Customization Environment (ACE) Online Help 35

2 Creating and Running Macros

36 Advanced Customization Environment (ACE) Online Help

Advanced Customization Environment (ACE)
Online Help

c0o0 @ ‘...3

° Using Logic Analysis COM Objects in

°. the ACE

Start with AgtLA Namespace (Connect Object Not Needed) (see
page 38)

Accessing Window and BusSignal Objects (see page 39)
Generic and Specific Objects (see page 40)
Getting Help on COM Objects (see page 41)

Agilent Technologies

37

3 Using Logic Analysis COM Objects in the ACE

Start with AgtLA Namespace (Connect Object Not Needed)

e Start with the AgtLA namespace:
Agt LA. Run
Agt LA. Modul es("My 1690D-1")

* No Connect object is needed in VBA because it is integrated into the
Agilent Logic Analyzer application.

Integrated VBA External VB

Agt LA. Run Di m nyConnect As AgtLA. Connect
Di m nyl nst As AgtLA. | nstrunent

Set myConnect = Createbject("AgtLA Connect")
Set nylnst = nyConnect. | nstrunent (" nyLAHost na
me")

myl nst. Run

38 Advanced Customization Environment (ACE) Online Help

Using Logic Analysis COM Objects in the ACE 3

Accessing Window and BusSignal Objects

Hierarchy of Window and BusSignal objects:

"Windows" (in the online help) — Collection of all windows.

"Window" (in the online help) — Specific instance of a window such
as Waveform- 1.

"BusSignals" (in the online help) — Collection of all buses and
signals in this window.

"BusSignal" (in the online help) — Specific instance of a bus or
signal such as My Bus 1.

To access Window and BusSignal objects:

Other Ways to
Access Objects

Define variables using "Dim":

Di m t heW ndow As AgtLA. W ndow
Di m t heBusSi gnal As Agt LA. BusSi gnal

Using AgtLA as a starting point, obtain the objects:

Set theW ndow = AgtLA. W ndows("Waveform 1")
Set theBusSignal = theW ndow BusSi gnal s("My Bus 1")

Result is two variables, one with Waveform-1 and one with My Bus 1.
Notice that we used "Set" because we are setting the value of an object.
Accessing by index:

Set theModdul e = Agt LA. Modul es(0)

Using a string variable instead of a string constant:

Dim strWndow As String
strWndow = "Waveform 1"
Set myW ndow = Agt LA. W ndows(st r W ndow)

Advanced Customization Environment (ACE) Online Help 39

3

Using Logic Analysis COM Objects in the ACE

Generic and Specific Objects

40

Hierarchy of generic and specific objects:
* "Modules" (in the online help) — Collection of all modules in the system.

"Module" (in the online help) — Generic object that covers both logic
analyzer and pattern generator modules.

"AnalyzerModule" (in the online help) — Logic analyzer module
specific object.

"PattgenModule" (in the online help) — Pattern generator module
specific object.

About generic and specific objects:

e Generic object Module contains the properties and methods that are
common to both logic analyzer and pattern generator modules.

Properties such as "Name" apply to both.

e There are separate objects for analyzer modules and pattern generator
modules:

AnalyzerModule contains logic analyzer specific properties and
methods such as GetDataBySample, but it also has access to all of
the generic properties and methods in Module.

PattgenModule contains pattern generator specific methods such as
InsertLine, but it also has access to all of the generic properties and
methods in Module.

e If you know what type of object you have, use the specific objects like
AnalyzerModule and PattgenModule.

e If you don't know what type of object you have, use the generic object
such as Module.

You can start by using a generic object, and, depending upon the
type, use the more specific objects:

Start generic:
Di mt heMbdul e As Agt LA. Modul e
Set theModul e = Agt LA. Modul es(0)

Di m t heAnal yzer Modul e As Agt LA. Anal yzer Modul e
If (theMdul e. Type = "Anal yzer") Then
Once you know the type, use the nmore specific objects.
Set theAnal yzer Modul e = t heMbdul e
End If

Di m t hePatt genMbdul e As Agt LA. Pat t genMbdul e
If (theMdul e. Type = "Pattgen") Then
Once you know the type, use the nmore specific objects.
Set thePattgenWbdul e = theMdul e
End If

Advanced Customization Environment (ACE) Online Help

Using Logic Analysis COM Objects in the ACE 3

Getting Help on COM Objects

e In the VBA IDE, choose Help>Agilent Logic Analyzer Object
Reference....

= | @] @) Microsoft Yisual Basic Help F1

| Agilent Logic Analyzer Object Reference. .. |

howlind About Microsoft Visual Basic...

dow Az AgtLL.Window —I

¢ Highlight the word you want to learn more about, and press the F1 key.

et theWindow = AgtLl.Windows("Waveform-17)
et theBus3ignal = theWindow. SR ["My Bus 17)
M=gBox theBusSignal.Name

Advanced Customization Environment (ACE) Online Help 4

3 Using Logic Analysis COM Objects in the ACE

42 Advanced Customization Environment (ACE) Online Help

Advanced Customization Environment (ACE)
[) Online Help

c 0 @ . . @ o o 4
° Analyzing Data in ACE

When analyzing data in the Advanced Customization Environment (ACE),
there are two ways to access the data you're interested in:

e Use the Find method to only find the events of interest.

This is much faster if events of interest are sparse. Also, this is
hardware accelerated if you are connected to logic analyzer hardware.

e Use the GetDataBySample or GetDataByTime methods to downloads
chunks of data.

This is much faster if almost all the captured data is needed. It is
faster to download 1 M of data than to do 500,000 Finds.

Some examples of analyzing data:
¢ Use TimingZoom data to verify timing of a bus.
¢ Find incomplete transactions.

e Analyze bus utilization.

For more information on analyzing data, see:

* Finding Events (Using Logic Analyzer Hardware) (see page 44)
Understanding the Find Method and FindResult Object (see page 44)
Using Simple Event Strings (see page 46)

Using XML Event Strings (see page 46)
Finding a Sequence of Events (see page 50)

* Getting Data from the Logic Analyzer (see page 54)
Understanding the GetDataBySample Method (see page 54)
Data Types for GetDataBySample (see page 55)

Getting the Entire Trace (from Beginning of Data to End of Data)
(see page 56)

Example: GetTenSamples (see page 56)

Agilent Technologies 3

4 Analyzing Data in ACE

Finding Events (Using Logic Analyzer Hardware)

To find "My Bus 1 = h11"

Publ i ¢ Sub Fi ndMet hod()
DimstrStartingTine As String
Di m nyW ndow As Agt LA. W ndow
Di mt heFi ndResult As Agt LA. Fi ndResul t

Set myW ndow = Agt LA. W ndows(" Wavef orm 1")
Find from begi nning of data.

The event string varies.
Set theFindResult = nyW ndow. Fi nd("My Bus 1 = h11", _

11 p—

np

"Begi nning O Data", _
"Present")

End Sub

For more information, see:

¢ Understanding the Find Method and FindResult Object (see page 44)
e Using Simple Event Strings (see page 46)

e Using XML Event Strings (see page 46)

Shortcut to Code Development: Secret to Creating XML Strings (see
page 47)

* Finding a Sequence of Events (see page 50)
Creating a Sequential Search (see page 51)
Example: Sequential Find (see page 52)
Debugging a Sequential Find (see page 52)

Understanding the Find Method and FindResult Object

Find Method Set theFindResult = myWndow. Find("My Bus 1 = h04", _ ' Event string.
1, _ ' Cccurrence.
"F, ' Forward or Backward.
"Begi nning O Data", _
"Present>", _
"10 ns")

This Find method call is the same as the Find shown below in the Agilent
Logic Analyzer interface.

44 Advanced Customization Environment (ACE) Online Help

FindResult Object

Event Strings

Analyzing Data in ACE

Find 3]
Find 1 E] occurrence searching |F0rward v | Fram |Beginning Of Data b |
BT] [albis ~|[= v|[0+ B)(Fex_¥)

Wwhen |Present = v | 1ons B

[Clear] [Options...] [Find] [Close] [Help

The FindResult object returned by the Find method has the following

1

properties:
Properties Description
"Found" (in the online Gets the found status.
help)
"OccurrencesFound” (in Gets the number of occurrences found.

the online help)

"SubrowFound" (in the Gets the subrow number if found on a subrow.
online help)

"TimeFound" (in the online | Gets the time found as a double.
help)

"TimeFoundString" (in the | Gets the time found as a string.
online help)

The following example shows how some of the FindResult properties are

used:

Set theFindResult = nyW ndow. Find("My Bus 1 = h08",

1, _

np

"Begi nning O Data",
"Present")

If (theFindResult.Found) Then

MsgBox "Found at " + theFi ndResult. Ti neFoundStri ng
El se

MsgBox "Not found"
End | f

Can either be:
* Simple:

"My Bus 1=h04"

These are best for very simple events (see Using Simple Event Strings

(see page 46)).
e XML:

Advanced Customization Environment (ACE) Online Help

45

4 Analyzing Data in ACE

"<Event ><BusSi gnal Nane="My Bus 1' Bit='0'" Operator='"R sing Edge' />
</ Event >"

These provide more power at the cost of using XML tags (see Using
XML Event Strings (see page 46)).

Using Simple Event Strings

TIP Simple event string programming rules:
* Precede each value with a base.

e Use "e" for edges.

Example:
"My Bus 1=h04 And Si gl=eR'

¢ You can use "And" and "Or". Note that these are case sensitive — "AND"
won't work!

Precede each value with the base (such as h04):

Prefix Base Example
h hexadecimal h04

0 octal 03

b binary b10110

d decimal da9

Use e for edges (such as eR):

Value Type Example
X don't care eX
R rising edge eR
F falling edge eF
E either edge eE

Using XML Event Strings

<Event >
<And>
<BusSi gnal Nane='Sigl'" Bit="Al' Operator="H gh' />
<BusSi gnal Nane=' ADDR Bit="All' Operator='"Equals' Value="hXX />

46 Advanced Customization Environment (ACE) Online Help

Analyzing Datain ACE 4

</ And>
</ Event >

e XML event strings are more complicated but provide much greater
power.

e Put the entire event within <Event>...</Event>.

e Each pair of bus/signal names needs an <And>...</And> or <Or>...</Or>.
e Operators include: Rising Edge, Falling Edge, Either Edge, Range, etc.
Example:

strEvent = "<Event><BusSignal Name="My Bus 1' Bit="Al" " + _
"Qperat or=' Equal s' Val ue=' hOl' / ></ Event >"

Note the use of single quotes instead of double quotes because double quotes are used for

TIP
strings in Visual Basic.
See Also ¢ Shortcut to Code Development: Secret to Creating XML Strings (see
page 47)
Shortcut to Code Development: Secret to Creating XML Strings
TIP The easy way to specify an XML find event string is:

1 Use the Advanced Trigger dialog to create the equivalent trigger.
2 Select Store... to save it to an XML file.

3 Open up the XML file in Notepad and cut-and-paste it into your
program.

Advanced Customization Environment (ACE) Online Help 47

14

48

Analyzing Data in ACE

To create an XML event string:

In the Agilent Logic Analyzer application, create the equivalent trigger
in the Advanced Trigger dialog.

Advanced Trigger, for My 16910 - 16911-1

Trigger Functions Trigger Sequence
A~
o, Advanced If Then
=
- E] I E] |Bus,|’SignaI v| [My Bus 1]|Bit0 v| Rising Edge |k
oceurs v | 1 [Bl[=)[+] |everkualy |+
Then E] |Trigger and fill memary v|
M nurnber of
edges
Edge and
Pattern
[SimpIeTrigger...] [Stare, ..] [Recall...] [Clear] [OF] [Cancel] [Help

2 C(Click Store....
3 In the Store Trigger dialog, click Save to file..., and save the trigger to

a file.

Store Trigger

Store as Favarite

Mame | igger and Fill memary

Save ko file...

Cancel

4 Open the trigger XML file in Notepad (not Internet Explorer because of

its double quoted attribute values).

5 Copy the XML Event string.

Advanced Customization Environment (ACE) Online Help

Analyzing Datain ACE 4

B trigger_spec.xml - Notepad
File Edit Format View Help

<File Content='Logic Analyzer Trigger Specification’ owner='"' P
<Trigger Mode='Timing'>

<Step Mumber="1l">

<If>

operator="Ri1s1ng Edg

<0CCurrence value='1l' Mode='Eventual' />
<action>

<Triggeraction operatar="Fill Memory' />
< actions

</If>

</Step>

</Triggers>

</File>

<

| %

TIP Do not copy <Step>, <Action>, <Trigger>, or anything except <Event>.

Only <Event> will work even though some of these tags are similar to
parameters in the Find Method.

Example: Don't use <Occurrence> even though the Find Method has
an Occurrence parameter.

6 In the VBA IDE, paste the XML event string into a string variable.

Dim strEvent As 3tring
strEvent = <Event Parensleeded='F'>
<BusSignal Name='My Busz 1' Bit='0' Operator='Rizing Edge'/>
</ Event:
Zet theFindResult = myWindow.Find("My Bus 1 = hO8", _
1,
nFnT
"Beginning ©f Data", _
"Present™)

(Red means there is an error.)

7 If you happen to have an XML event string with double quoted attribute
values, convert double quotes to single quotes.

a Highlight the entire event string.
b Choose Edit>Replace....

¢ Replace " with '

Advanced Customization Environment (ACE) Online Help 49

4 Analyzing Data in ACE

Find What: ! N
Replace ‘With: | v
Search Direction: | &l v
(O Current Procedure
O Current Module [CFind whole Word Cnly g
() Current Project [IMatch Case
(®) Selected Text [Juse Pattern Matching

8 Put double quotes around each line, and use the "+" operator to
concatenate lines.

9 Use line extension " _" to extend the line.

10 Use the string variable in the Find method.

The resulting XML event string in code looks like:

Dim strEvent As 3tring

strEvent = "<Event ParensNeeded='F'>" + _
"<BusSignal Neame='My Bus 1' Bit='0' Operator='Rising Edge'/>" + _
"o/ Event:"

Zet theFindResult = myWindow.Find({strEvent, _
1,

.

"Begi;ning Of Data", _
"Present™)

Notice that the XML Event String is on three lines. Each line is within
double quotes. All lines except the last end in "+ _" for concatenation and
extension.

Finding a Sequence of Events

Just as you can set up a trigger on a sequence of events (see the XML
example below), you can also find a sequence of events in the Advanced
Customization Environment (ACE).

<File Content='Logi c Anal yzer Trigger Specification'>
<Trigger Mde="Tining >
<Step Nunber='1'>
<|f>
<Event ParensNeeded='F' >
<BusSi gnal Nanme='My Bus 1' Bit='0'
Oper at or =" Ri si ng Edge' />
</ Event >

<Cccurrence Value='1'" Mde=' Eventual '/ >
<Acti on>
<CGoto Step='Next'/>
</ Action>
</[lf>
</ St ep>
<Step Nunber='2'>

50 Advanced Customization Environment (ACE) Online Help

Analyzing Datain ACE 4

<|f>
<Event ParensNeeded='F >
<BusSi gnal Nane='Sigl Bit="Al"
Qperator='Falling Edge'/>

</ Event >
<Cccurrence Value='1" Mdde=' Eventual ' />
<Acti on>
<TriggerAction Qperator="Fill Menory'/>
</ Acti on>
</1f>
</ St ep>
</ Tri gger >
</File>
TIP * Only use an Event string. Nothing else will work!

* Copy each event string individually. (Strings that begin with <Event>
and end with </Event>.)

¢ Nothing else will work — not an occurrence, not an if, not a step, not a
sequence, ...

To find a sequence of events, see:

e Creating a Sequential Search (see page 51)
e Example: Sequential Find (see page 52)

e Debugging a Sequential Find (see page 52)

Creating a Sequential Search

When finding A followed by B:
e 1st find is often started from "Beginning Of Data".

e 2nd find starts with the "Found" marker because it starts searching at
the point that the 1st find ended.

Watch out for this:

0A Bus 1

1

1

| 0A X B4 X
i

:1| 0 | 1 Sig 1
1

Sample #10

e 1st find matches at sample #10.
¢ 2nd find has an event that is also matched by sample #10.

Advanced Customization Environment (ACE) Online Help 51

4 Analyzing Data in ACE

2nd find stays on sample 10 instead of finding the next occurrence.

TIP To avoid creating an infinite loop that continues to find the same sample:

1 In the 2nd find result, check that the found time is not the same as the
found time for the 1st find result.

2 If the found times are the same, do a "Find Next".

Example: Sequential Find

Publ i ¢ Sub Sequenti al Fi nd()
DmstrStartingTime As String
D m nyW ndow As Agt LA. W ndow
Di mt heFi ndResult As Agt LA. Fi ndResul t

Set nmyW ndow = AgtLA. W ndows("Waveform 1")

Fi nd from begi nni ng of data.
Set theFi ndResult = nyW ndow. Fi nd(" MyBus1=h08",

11 a—

np

"Begi nning O Data",
"Present")

If (theFindResult.Found) Then strStartingTinme = _
t heFi ndResul t . Ti mneFoundStri ng
' Find starting at the Found narker.
Set theFindResult = nyW ndow. Fi nd(" MyBus1=h15",
1, _
"FL_
"Found", _
"Present")
" Verify if we haven't noved fromthe 2nd find.
If (theFindResult.Found And strStartingTine = _
t heFi ndResul t . Ti meFoundStri ng) Then
Set theFi ndResult = nyW ndow. Fi ndNext
End If

I f (theFi ndResul t. Found) Then
MsgBox "Found themat " + strStartingTine + " and " +
t heFi ndResul t . Ti neFoundStri ng
El se
MsgBox "Found failed"
End If

Fi ndEdge = t heFi ndResul t. Found
End Sub

Debugging a Sequential Find

e Place a marker on each event after you find it.

52 Advanced Customization Environment (ACE) Online Help

Analyzing Datain ACE 4

e The last event always gets the Found marker, so you don't have to place
a marker on it.

Agt LA. Mar ker s. Add mar ker Nane, textCol or, backgroundCol or,
ti mePosition:
Agt LA. Markers. Add "My New Marker", vbWite, vbBlue, nPos

Advanced Customization Environment (ACE) Online Help 53

4 Analyzing Data in ACE

Getting Data from the Logic Analyzer

Hierarchy of objects with sample data:
* "Windows" (in the online help)
"Window" (in the online help)
"BusSignals" (in the online help)
"BusSignal" (in the online help)

"BusSignalData" (in the online help) — Generic object for all
data.

"SampleBusSignalData" (in the online help) — Specific object
for sample data.

The SampleBusSignalData object is currently the only type of bus/signal

data available, so always use the SampleBusSignalData object instead of
the BusSignalData object.

Di m nyW ndow As Agt LA. W ndow
Di m nyBusSi gnal Dat a As Agt LA. Sanpl eBusSi gnal Dat a

Set myW ndow = Agt LA. W ndows(" Wavef orm 1")
Set myBusSi gnal Data = myW ndow. BusSi gnal s("My Bus 1"). BusSi gnal Dat a

For more information on getting data from the logic analyzer, see:
¢ Understanding the GetDataBySample Method (see page 54)
e Data Types for GetDataBySample (see page 55)

¢ Getting the Entire Trace (from Beginning of Data to End of Data) (see
page 56)

e Example: GetTenSamples (see page 56)
Understanding the GetDataBySample Method

The GetDataBySample method has the following parameters and returns
the number of rows:

Parameters Definition

object An expression that evaluates to an "SampleBusSignalData" (in the
online help) object.

StartSample A Long containing the first sample to upload.

EndSample A Long containing the last sample to upload. EndSample must be

greater than or equal to StartSample.

DataType Specifies the type of data to return. See Data Types for
GetDataBySample (see page 55).

54 Advanced Customization Environment (ACE) Online Help

Analyzing Data in ACE

1

Returns Definition

NumRowsRet A Long initialized by this method to the number of rows being

returned in the array.

For example:

Di m nyW ndow As Agt LA. W ndow

Di m nyBusDat a As Agt LA. Sanpl eBusSi gnal Dat a
Di m nNunDat aRows As Long

Dim dArray() As Double

Set myW ndow = Agt LA. W ndows(" Wavef orm 1")
Set myBusData = nmyW ndow. BusSi gnal s("My Bus 1"). BusSi gnal Dat a

dArray = nyBusDat a. Get Dat aBySanpl e(0, 10, AgtDat aDoubl e, nNunDat aRows)
' N N N N N

' I I I I
' obj ect Start Sanpl e EndSanpl e Dat aType

Data Types for GetDataBySample

See Also

Possible GetSampleByData method data types and the associated Visual

Basic data types are shown below.

NunmRows Ret

AgtDataType Max Channels VB Data Type
AgtDatalong 31 Long

AgtDataDouble 52 Double
AgtDataDecimal 96 Variant

AgtDataTime n/a Double
AgtDataStringHex 128 String
AgtDataStringDec 128 String

AgtDataRaw 128 Variant (Not for VBA!)

e Use the smallest data type you can to save space.

e AgtDataRaw cannot be manipulated by VBA and is essentially useless to

VBA. (It is useful for Visual Studio C++ users.)

e For buses wider than 96 bits, break them into two buses or use String.

"DataTypes and Return Values" (in the online help)

Advanced Customization Environment (ACE) Online Help

bb

4 Analyzing Data in ACE

Getting the Entire Trace (from Beginning of Data to End of Data)

TIP

To get the data from the beginning sample to the end sample, use the
BusSignalData object's StartSample and EndSample properties as the
StartSample and EndSample parameters in the GetDataBySample method.

Set myBusSi gnal Data = myW ndow. BusSi gnal s("My Bus 1"). BusSi gnal Dat a

Getting Entire Trace!
dArray = nyBusSi gnal Dat a. Get Dat aBySanpl e(myBusSi gnal Dat a. St art Sanpl e,
myBusSi gnal Dat a. EndSanpl e, Agt Dat aDoubl e, nNunDat aRows)

To avoid memory overflow, get your data in chunks.
Memory overflow depends on the amount of data requested and the data type chosen:

¢ For the double data type, use less than 4 M samples.

e The 4 M samples limit is the total for all buses you keep in memory at
once (for example, for 2 buses, use only 2 M samples).

¢ For the string data types, use less than 10,000 samples.
To process data, get the data a chunk at a time and process it.

¢ Generally, there is no reason to have 64 M of samples in memory at
one time.

Example: GetTenSamples

56

Publ i c Sub Get TenSanpl es()
Di m nyW ndow As Agt LA. W ndow
Di m nyBusSi gnal Dat a As Agt LA. Sanpl eBusSi gnal Dat a
Di m nNunDat aRows As Long

Dim dArray() As Double ' Place to keep our data.
' Get the objects we need.
Set myW ndow = Agt LA. W ndows (" Waveform 1")
Set myBusSignal Data = _
myW ndow. BusSi gnal s("My Bus 1").BusSi gnal Dat a
' Get the data fromthe |ogic analyzer.
dArray= nyBusSi gnal Dat a. Get Dat aBySanpl e(0, 10, AgtDataDoubl e,
nNunDat aRows)

Dmi As Integer
Di m nCount As | nteger
' This loop iterates through all ten sanples.
For i = 0 To nNunDat aRows -1
dArray(i) is the value of the sanple.
We use Hex to convert it to a hex string, but dArray(i) is the
val ue itself.
MsgBox "Value of My Bus 1 at Sanple " + VBA Str(i) + " was " + _

Advanced Customization Environment (ACE) Online Help

Analyzing Datain ACE 4

Hex(dArray(i))
Next i
End Sub

Advanced Customization Environment (ACE) Online Help 57

4 Analyzing Data in ACE

58 Advanced Customization Environment (ACE) Online Help

e Advanced Customization Environment (ACE)
[) Online Help

.o‘ o .o.
0%
o0 @® @eo-:)
.'0‘. Displaying Data in VbaView Windows
o

The VbaView window works with the integrated Microsoft Visual Basic for
Applications (VBA) to provide custom data visualization charts. The
VbaView window is a data window like Waveform or Listing, except that it
requires VBA code to display data.

There are events in the Agilent Logic Analyzer user interface that (in
many cases) the VbaView window should respond to. These events include
a logic analyzer run, a screen update, and clicking on items in the
VbaView menu. You program the VbaView window by writing VBA code
that responds to these events; this code belongs in the "Notify" function
within the "AgtVbaView" module. (It is not necessary to create macros
when programming the VbaView window.)

[Offline] Agilent Logic Analyzer - [...\Logic Analyzer\RepRunFile5.ala] - [Distribution Sam... |:||§||X|
a File Edit Wiew Setup Tools Markers RunfStop Wbaview Window Help = | &|x
DEEE & N i |G T Ee &

M ko M2 = 20 ns

Distribution for My Bus 1

| Done - Distribution is drawn -
IE‘ Overview J % Listing-1 J . Wwaveform:-1 a Distribution 5 ample-1
For Help, press F1 Skatus, ..

e Adding a New VBA View "Hello World Sample" Window (see page 61)
Using the Hello World Sample VbaView (Text) Window (see page 61)
Viewing the VbaView Code (see page 62)

Agilent Technologies 59

5

60

Displaying Data in VbaView Windows

¢ Understanding the Notify Function (see page 63)
e Using the VbaViewChart Object (see page 65)
Setting the Chart Type (see page 66)
Using the AddPointArrays Method (see page 66)
Setting Titles in the Chart (see page 66)
Updating the Chart Display (see page 66)
Example: XY Scattergram (see page 67)
Example: Line Chart (see page 68)
Example: Bar Chart (see page 69)
Example: Pie Chart (see page 73)
¢ Disabling VbaView Windows (see page 75)

Advanced Customization Environment (ACE) Online Help

Displaying Data in VbaView Windows B

Adding a New VBA View "Hello World Sample" Window

The purpose of the Hello World Sample VbaView window is to give you a
short cut to creating a VbaView window. To add a new Hello World Sample
VbaView window:

1 In the Agilent Logic Analyzer application, choose Window>New
VbaView>Hello World Sample....

Next <« Using the Hello World Sample VbaView (Text) Window (see page 61)
See Also +* VBA Macros and VbaView Windows (see page 15)

Using the Hello World Sample VbaView (Text) Window

[Offline] Agilent Logic Analyzer - Unnamed Configuration - [Hello World Sample-1] |:||§|g|
h File Edit Wiew Setup Tools Markers RunfStop Wbaview Window Help = | 5| x
DEES Q& | i i1 E > &

ML ko M2 = ----

Hello World! System sent a New comand to Hello World Sample-1

ﬂ Overview J % Listing-1 J Wwaveform:-1 % Helo'world Sample-1

For Help, press F1 Skatus, ..
—

1 Choose VbaView>Redraw.
2 Choose VbaView>Properties....

3 Choose Run/Stop>Run (or press the F5 keyboard shortcut).

Note that events in the logic analysis system cause text to be written to
the VbaView window.

Next <« Viewing the VbaView Code (see page 62)

Advanced Customization Environment (ACE) Online Help 61

5

Displaying Data in VbaView Windows

Viewing the VbaView Code

TIP

1

Choose VbaView>View Code... (or press the ALT+F11

shortcut).

keyboard

Microsoft Visual Basic - Unnamed Configuration - [AgtV¥ba¥iew (Code]]

% File Edit Wiew Insert Format Debug Run Tools Add-Ins Window Help -8 x

B N N N

0@ &Y @

= @ Agtsamples (Read O A
(23 Forms [
(23 Modules

= @ Hello_¥orld_Sample
[=-E5 Modules

5 MyConfigMacros (Un +
< | >

Properties - Agt¥baYiew
Agt¥ba¥iew Module R |
Alphabetic | Categorized

MM Agtvbaview

| [notity 7|

|(Generan

L

'The MNotify function is used to process comwands sent ti g
'reflect actions that the user has done, such as hitting

'an Update compand. Here's comeands and what they mean.
!

Initialize - The system has created a new VhaView win
Show - The system is trying to show the VhaView windo
DIelete — The system is trying to delete this VhaView
Redraw - The user has selected the Redraw item in the
Update — The user hit the Eun button, sSo we may want
' Properties - The user has selected the Properties iter
Function Notify(strWindowlNsme As 2tring, strComwmand Ls

' Always trap errors and return as an error string so tl
' application can display the error. Newver let WEL disp
' the error.

COn Error GoTo ErrorHandler

' Get the window ohject
Set wyWindow = AgtLA.GetWindowByName (striWindowlame)

' Handle the command. Use a separate case for each type

Jelect Case strCommand:
Caze "New'™: myWindow. WriteCutput
Case "Show'™: myWindow. WriteCutput
Case "Delete': myWindow. WriteCutput
Case "Redraw": myWindow. WriteCutput
Caze "Update™: myWindow. WriteCutput
Case "Properties": wyWindow.Writedutput
Case "Load": myWindow. WriteCutput
Case "Save'™: myWindow. WriteCutput

End Zelect

I >

["Hello World
["Hello World
["Hello World
("Hello World
["Hello World
["Hello World
["Hello World
["Hello World

"AgtVbaView" is a reserved word for Module name. "Notify" is a reserved word for
Function name. Nothing else will work, so don't change the names.

62

See Also

¢ Understanding the Notify Function (see page 63)

Advanced Customization Environment (ACE) Online Help

Displaying Data in VbaView Windows

Understanding the Notify Function

The Notify function that must be present in VbaView window code is
called with the following parameters:

Function Notify(strWndowNanme As String,
strCommand As String, _
ByRef var CommandParm As Variant) As Variant

* StrWindowName is the name of the VbaView, such as "Hello World
Sample-1".

% Helo'world Sample-1

¢ strCommand is what happened in the logic analysis system.

e varCommandParm is an optional parameter that is declared ByRef,
which means a parameter value can be sent to and received from the
Notify function. The definition of this parameter is strCommand
specific.

Notify Commands The Notify function receives the following commands from the logic
(strCommand) analysis system and calls functions to respond to them if needed. For
example, when an Update command is received, the VbaView should
update itself based upon the current data.

strCommand |varCommandParm What makes it happen
New — Creating a new VbaView window.
Show — Making VbaView window visible, such as

switching to a VbaView window from another
window. This is only used when controlling an
external application to make it visible. See the
Export to IE Sample VbaView window.

Delete — Deleting a VbaView window.
Redraw — Choosing VbaView>Redraw.
Update Boolean (output) Anything that causes the window to update, such

as a Run. The varCommandParm parameter is True
if the update succeeded, False if the update was

cancelled.
Properties — Choosing VbaView>Properties....
Load String (input) Opening a configuration file. This command lets

you load the state of a VbaView window. The
varCommandParm parameter contains a
previously saved XML string.

Advanced Customization Environment (ACE) Online Help 63

b Displaying Data in VbaView Windows

Save String (output) Saving a configuration file. This command lets you
save the state of a VbaView window. The
varCommandParm parameter returns an XML
string to be loaded later.

Caution: The Save command also occurs when
the Instrument object's QueryCommand method is
called. Agilent recommends that you do not call
the Instrument object's QueryCommand method
from within the Notify function because this can
cause your software to be re-entrant. Instead, call
the QueryCommand method for the specific
subsystem you are interested in (for example,
Instrument.Overview, Module.QueryCommand,
Tool.QueryCommand, etc.).

QueryComman | String (input) When a QueryCommand is sent to the window,
d the varCommandParm parameter contains the
command to be queried.

Boolean (output) The varCommandParm parameter returns the
boolean False if the command is not valid or True if
the command is valid and nothing needs to be
returned.

String (output) The varCommandParm parameter returns an XML
string if the command is valid and the query
produced output.

The "Notify" function is not used if there is no VbaView window.

64 Advanced Customization Environment (ACE) Online Help

Displaying Data in VbaView Windows B

Using the VbaViewChart Object

Hierarchy of objects containing VbaViewChart object:

e "Windows" (in the online help) — Collection of all windows in the
system.

"Window" (in the online help) — Generic object for any type of
window.

"VbaView Window" (in the online help) — VbaView specific window
object.

"VbaViewChart" (in the online help) — The chart object in a
VbaView window.

"VbaViewChartAxis" (in the online help)

"VbaViewChartData" (in the online help) — The data in the
chart.

"VbaViewChartLegend" (in the online help)
"VbaViewChartTitle" (in the online help)

"VbaViewChartFont" (in the online help)
"VbaViewWebBrowser" (in the online help)

To access data in a chart:

Di m nyW ndow As Agt LA. VbaVi ewW ndow
Di m nyChart As AgtLA VbaVi ewChart
Di m nyData As Agt LA. VbaVi ewChart Dat a

Set myW ndow = Agt LA. W ndows(st r W ndow)
Set myChart = nmyW ndow. Chart
Set nmyData = nyChart. Data ' This is the data you are going to chart.

For more information on using the VbaViewChart object, see:

e Setting the Chart Type (see page 66)

e Using the AddPointArrays Method (see page 66)

e Setting Titles in the Chart (see page 66)

e Updating the Chart Display (see page 66)

e Example: XY Scattergram (see page 67)

e Example: Line Chart (see page 68)

e Example: Bar Chart (see page 69)
Example: Horizontal Bar Chart (see page 70)
Example: Horizontal Stacked Bar Chart (see page 71)
Example: Vertical Bar Chart (see page 72)
Example: Vertical Stacked Bar Chart (see page 72)

Advanced Customization Environment (ACE) Online Help 65

b Displaying Data in VbaView Windows

e Example: Pie Chart (see page 73)

Setting the Chart Type

Chart Types When creating a VbaViewChart, you can choose between the following
types of charts:
e AgtChartTypeNone
e AgtChartTypeLine
e AgtChartTypeLineOnly
e AgtChartTypeXYScatter
e AgtChartTypeHorizontalBar
e AgtChartTypeVerticalBar
e AgtChartTypePie
* AgtChartTypeStackedVerticalBar
* AgtChartTypeStackedHorizontalBar

To setthe chart Set the chart's ChartType property to one of the values above. For
type example, to set up a line chart:

myChart. Chart Type = Agt Chart TypeLi ne

Using the AddPointArrays Method

See "AddPointArrays Method" (in the online help).
Setting Titles in the Chart

TIP Order is important when creating Chart titles or axis titles. You must do a "HasTitle=True"
before each title that you set; otherwise, you will get a run-time error.

For example:

myChart. HasTitl e = True

myChart. Title = "My Chart™

myChart . Axi s(Agt Chart Axi sTypeX). HasTitle = True
myChart . Axi s(Agt Chart Axi sTypeX). Title = "My Bus 1"
myChart . Axi s(Agt Chart Axi sTypeY).HasTitle = True
myChart . Axi s(Agt Chart Axi sTypeY).Title = "My Bus 2"

Notice the X and Y axis each have a title.

Updating the Chart Display

e Start by changing the Notify function:

66 Advanced Customization Environment (ACE) Online Help

Displaying Data in VbaView Windows B

Sel ect Case strCommand:

Case "New': myW ndow. WiteQutput ("Hello World! System™" + _
"sent a New conmmand to " + strW ndowNane)
Case "Show': myW ndow. WiteQutput ("Hello World! System™" + _
"sent a Show command to " + strW ndowNane)
Case "Del ete": nmyW ndow. WiteQutput ("Hello Wrld! System" + _
"sent a Delete command to " + strW ndowNane)
Case "Redraw': myW ndow. WiteQutput ("Hello World! System" + _
"sent a Redraw command to " + strW ndowNane)
Case "Update": Updat eDi spl ay strW ndowNane

Case "Properties": myWndow. WiteQutput ("Hello World! System" + _
"sent a Properties command to " + _
st r W ndowNane)
End Sel ect

* Then, create the UpdateDisplay subroutine in the AgtVbaView module.
For example, see:

Example: XY Scattergram (see page 67)

Example: Line Chart (see page 68)

Example: Horizontal Bar Chart (see page 70)
Example: Horizontal Stacked Bar Chart (see page 71)
Example: Vertical Bar Chart (see page 72)

Example: Vertical Stacked Bar Chart (see page 72)
Example: Pie Chart (see page 73)

The UpdateDisplay subroutine will not be accessible to the AgtVbaView
module unless you create it within the module.

Example: XY Scattergram

This example uses generated points, but you're more likely to use double
arrays that you've obtained from the logic analyzer via GetDataBySample.

Private Sub UpdateDi spl ay(ByVal strWndow As String)
D m nyW ndow As Agt LA. VbaVi ewW ndow
D m nyChart As AgtLA. VbaVi ewChart
Di m nyDat a As Agt LA. VbaVi ewChart Dat a

Set nmyW ndow = AgtLA. W ndows(st rW ndow)
Set nyChart = nyW ndow. Chart
Set myData = nyChart. Data

Set the Chart Type:
myChart. Chart Type = Agt Chart TypeXYScatter
' Set up the titles:
nyChart. HasTitle = True
nyChart. Title = "XY Scattergrant
myChart . Axi s(Agt Chart Axi sTypeX). HasTitle = True
myChart . Axi s(Agt Chart Axi sTypeX). Title = "My Bus 1"
myChart . Axi s(Agt Chart Axi sTypeY).HasTitle = True

Advanced Customization Environment (ACE) Online Help 67

5

68

Displaying Data in VbaView Windows

myChart . Axi s(Agt Chart Axi sTypeY).Title = "My Bus 2"

Popul ate the arrays:
Di m xVal ueArray(50) As Doubl e
Di m yVal ueArray(50) As Doubl e
Dmi As Integer
For i =0 To 50
xVal ueArray(i)
yVal ueArray(i)
Next i

Clear the old data, add the new, and redraw
nmyDat a. Cl ear
nmyDat a. AddPoi nt Arrays xVal ueArray, yVal ueArray, _
Agt Dat aPoi nt TypeCi rcl e, Agt Dat aPoi nt Si zeSmal |
nmyChart. Draw

End Sub
XY Scattergram
&0
a0 N 4
!
40 ot
[.
£ + *1
g a0 JPX M
= I
20 w4° *
+ *1
4
10 ye A0
.
0ot
02 46 810 14 18 22 26 30 34 38 42 46 a0 a4 58
My Bus 1
Hello World! System sent a New comand to Hello World Sample-1

ﬂ Overview I % Listing-1 I . waveform-1 h Hella ‘world Sample-1 J

Example: Line Chart

This example uses generated points, but you're more likely to use double
arrays that you've obtained from the logic analyzer via GetDataBySample.
Also, you can draw line charts with or without points. Use
AgtChartTypeLineOnly for the ChartType if you don't want the points
drawn.

Private Sub UpdateDi spl ay(ByVal strWndow As String)
D m nyW ndow As Agt LA. VbaVi ewW ndow
D m nyChart As AgtLA. VbaVi ewChart
D m nyData As Agt LA. VbaVi ewChart Dat a

Set myW ndow = Agt LA. W ndows(st r W ndow)

Set myChart = nmyW ndow. Chart
Set myData = nyChart. Data

Advanced Customization Environment (ACE) Online Help

Displaying Data in VbaView Windows B

Set the Chart Type:
myChart. Chart Type = Agt Chart TypeLi ne

Set up the titles:
myChart. HasTitle = True
myChart.Title = "Line Chart"
myChart . Axi s(Agt Chart Axi sTypeX). HasTitle = True
myChart . Axi s(Agt Chart Axi sTypeX). Title = "My Bus 1"
myChart . Axi s(Agt Chart Axi sTypeY) . HasTitle = True
myChart . Axi s(Agt Chart Axi sTypeY).Title = "My Bus 2"
' Popul ate the arrays:
Di m xVal ueArray(50) As Doubl e
Di m yVal ueArray(50) As Doubl e
Dmi As Integer
For i = 0 To 50
xVal ueArray(i)
yVal ueArray(i)
Next i

Clear the old data, add the new, and redraw
nyDat a. Cl ear
nmyDat a. AddPoi nt Arrays xVal ueArray, yValueArray, _
Agt Dat aPoi nt TypeCi rcl e, Agt Dat aPoi nt Si zeSnal |
myChart . Draw
End Sub

Line Chart

60

a0

40

30

My Bus 2

20

10

-t
Mr"‘

a

0246 810 14 18 22] 30 34 35 42 45 50 54 58
My Bus 1

Hello World! System sent a New comand to Hello World Sample-1

ﬂ Overview I % Listing-1 I . waveform-1 h Hella ‘world Sample-1 J

Example: Bar Chart

There are both vertical and horizontal bar charts. There are also regular
bar charts and stacked bar charts. The VbaView window has the concept
of "Values" and "Groups". Use both groups and values to deal with stacked
bar charts. For regular bar charts, only values are needed.

e Example: Horizontal Bar Chart (see page 70)

Advanced Customization Environment (ACE) Online Help 69

5

70

Displaying Data in VbaView Windows

e Example: Horizontal Stacked Bar Chart (see page 71)

e Example: Vertical Bar Chart (see page 72)

 Example: Vertical Stacked Bar Chart (see page 72)

Example: Horizontal Bar Chart

Private Sub UpdateDi spl ay(ByVal strWndow As String)
D m nyW ndow As Agt LA. VbaVi ewW ndow
D m nyChart As AgtLA. VbaVi ewChart
D m nyDat a As Agt LA. VbaVi ewChart Dat a

Set myW ndow = Agt LA. W ndows(st r W ndow)

Set myChart

= nyW ndow. Chart

Set myData = nyChart. Data

Set the Chart Type:
nmyChart. Chart Type = Agt Chart TypeHori zont al Bar

' Set up the titles:

myChart. HasTitl e = True
myChart. Title = "Horizontal Bar Chart"
myChart . Axi s(Agt Chart Axi sTypeX). HasTitl e = Fal se
myChart . Axi s(Agt Chart Axi sTypeY) . HasTitl e = Fal se
' Clear the old data, add the new, and redraw
nmyDat a. Cl ear
Cal |l nyChart. Dat a. Set Val ueCapti on(0, "Read")
Call nyChart. Data. Set Val ueCaption(1, "Wite")
Call nyChart. Dat a. Set Val ueCaption(2, "ldle")
Call nyChart. Data. Set Val ue(0, 0, 10)
Call nyChart. Data. Set Val ue(0, 1, 20)
Call nyChart. Dat a. Set Val ue(0, 2, 530)
myChart . Draw
End Sub
Horizontal Bar Chart

Idle
Write

Read

I
020 B0 100 140 180 220 260 300 340 380 420 460 500 540 580

Hello World! System sent a New command to Hello World Sample-1

=

Overview I %

Listing-1 I . ‘wiaveform-1 h Hello *orld 5 ample-1 J

Advanced Customization Environment (ACE) Online Help

Displaying Data in VbaView Windows B

Example: Horizontal Stacked Bar Chart

Private Sub UpdateDi spl ay(ByVal strWndow As String)
D m nyW ndow As Agt LA. VbaVi ewW ndow
Dim nmyChart As AgtLA. VbaVi enChart
D m nyDat a As Agt LA. VbaVi ewChart Dat a

Set myW ndow = Agt LA. W ndows(st r W ndow)
Set myChart = nmyW ndow. Chart
Set nyData = nyChart. Data

' Set the ChartType:
myChart. Chart Type = Agt Chart TypeSt ackedHori zont al Bar

Set up the titles:
nmyChart. HasTitle = True
myChart.Title = "Horizontal Stacked Bar Chart"
nmyChart . HasLegend = True
myChart . Axi s(Agt Chart Axi sTypeX). HasTitl e
myChart . Axi s(Agt Chart Axi sTypeY). HasTitle

Fal se
Fal se

Clear the old data, add the new, and redraw
nmyDat a. Cl ear
Call nyChart. Dat a. Set Val ueCapti on(0, "Read")
Call nyChart. Data. Set Val ueCaption(1, "Wite")
Call nyChart. Dat a. Set G oupCaption(0, "I1/0")
Call nyChart. Dat a. Set G oupCaption(1, "Menory")
Call nyChart. Data. Set Val ue(0, 0, 10)
Call nyChart. Data. SetVal ue(0, 1, 20)
Call nyChart. Data. Set Val ue(1, 0, 33)
Call nyChart. Data. SetVal ue(1, 1, 45)
myChart . Draw

End Sub
Horizontal Stacked Bar Chart
—I/0
—Mermory
Wyrite
Read
I T T T
0 =3 10 15 20 25 30 35 40 45 a0
Hello World! System sent a New comand to Hello World Sample-1
ﬂ Overview I% Listing-1 I. waveform-1 h Hella ‘world Sample-1 J

Advanced Customization Environment (ACE) Online Help n

5

72

Displaying Data in VbaView Windows

Example: Vertical Bar Chart

Private Sub Updat eDi spl ay(ByVal

strWndow As String)

D m nyW ndow As Agt LA. VbaVi ewW ndow
Dim nmyChart As AgtLA. VbaVi enChart
D m nyDat a As Agt LA. VbaVi ewChart Dat a

Set myW ndow = Agt LA. W ndows(st r W ndow)

Set myChart
Set nyData =

= nyW ndow. Chart
myChart . Dat a

' Set the ChartType:

myChart. Chart Type = Agt Chart TypeVerti cal Bar

Set up the titles:

myChart. HasTitle = True

myChart.Title = "Vertical Bar Chart"

myChart . Axi s(Agt Chart Axi sTypeX). HasTitle = Fal se
myChart . Axi s(Agt Chart Axi sTypeY). HasTitle = Fal se

Clear the old data, add the new, and redraw

nyDat a. Cl ear

Cal |l nyChart. Dat a. Set Val ueCapti on(0, "Read")

Call nyChart. Dat a. Set Val ueCaption(1, "Wite")
Call nyChart. Dat a. Set Val ueCaption(2, "ldle")

Call nyChart. Data. Set Val ue(0, 0, 10)

Call nyChart. Data. Set Val ue(0, 1, 20)

Call nyChart. Dat a. Set Val ue(0, 2, 530)

myChart . Draw

End Sub
Vertical Bar Chart

BO0

£50

500

450

400

350

300

250

200

150

100

&0

D
Read Write Idle

Hello World! System sent a New command to Hello World Sample-1
ﬂ Overview I% Listing-1 I. waveform-1 h Hella ‘world Sample-1 J

Example: Vertical Stacked Bar Chart

Private Sub Updat eDi spl ay(ByVal

strWndow As String)

Di m myW ndow As Agt LA. VbaVi ewW ndow
D m nyChart As AgtLA. VbaVi ewChart

Advanced Customization Environment (ACE) Online Help

Displaying Data in VbaView Windows

D m nyData As Agt LA. VbaVi ewChart Dat a

Set myW ndow = Agt LA. W ndows(st r W ndow)
Set nmyChart = nyW ndow. Chart
Set nmyData = nyChart. Data

Set the Chart Type:
myChart. Chart Type = Agt Chart TypeSt ackedVerti cal Bar

Set up the titles:
myChart. HasTitle = True
myChart. Title = "Vertical Stacked Bar Chart"
myChart . HasLegend = True
myChart . Axi s(Agt Chart Axi sTypeX). HasTitle
myChart . Axi s(Agt Chart Axi sTypeY). HasTitle

Fal se
Fal se

Clear the old data, add the new, and redraw
nyDat a. Cl ear

Cal |l myChart. Dat a. Set Val ueCapti on(0, "Read")
Call nyChart. Data. Set Val ueCaption(1, "Wite")
Call nyChart. Dat a. Set G oupCaption(0, "I1/0")
Call nyChart. Dat a. Set G oupCaption(1, "Menory")
Call nyChart. Data. Set Val ue(0, 0, 10)

Call nyChart. Data. SetVal ue(0, 1, 20)
Call nyChart. Data. Set Val ue(1, 0, 33)
Call nyChart. Data. Set Val ue(1, 1, 45)
myChart . Draw

End Sub
Vertical Stacked Bar Chart

50 — I/
45 —Mermory
40

35

30+

25+

20+
15+
10+
54
04

Read Wyrite
Hello World! System sent a New comand to Hello World Sample-1
ﬂ Overview I% Listing-1 I. waveform-1 h Hella ‘world Sample-1 J

Example: Pie Chart

Private Sub UpdateDi spl ay(ByVal strWndow As String)
D m nyW ndow As Agt LA. VbaVi ewW ndow
D m nyChart As AgtLA. VbaVi ewChart
D m nyData As Agt LA. VbaVi ewChart Dat a

Advanced Customization Environment (ACE) Online Help

5

74

Displaying Data in VbaView Windows

Set myW ndow = Agt LA. W ndows(st r W ndow)
Set nmyChart = nyW ndow. Chart
Set nyData = nyChart. Data

' Set the ChartType:
myChart. Chart Type = Agt Chart TypePi e

' Set up the titles:

nmyChart. HasTitle = True

myChart.Title = "Pie Chart"

nmyChart . HasLegend = True

myChart . Axi s(Agt Chart Axi sTypeX). HasTitle
myChart . Axi s(Agt Chart Axi sTypeY). HasTitle

Fal se
Fal se

' Clear the old data, add the new, and redraw
nyDat a. Cl ear
Cal |l nmyChart. Dat a. Set Val ueCapti on(0, "Read")
Call nyChart. Dat a. Set Val ueCaption(1, "Wite")
Cal |l nyChart. Data. Set Val ueCaption(2, "ldle")
Call nyChart. Data. Set Val ue(0, 0, 10)
Call nyChart. Data. Set Val ue(0, 1, 20)
Call nyChart. Data. Set Val ue(0, 2, 530)
myChart . Draw

End Sub

Pie Chart

530 (35%)

10 (1.8%)
20 (3.6%)

Hello World! System sent a New comand to Hello World Sample-1

ﬂ Overview I % Listing-1 I waveform-1 h Hella ‘world Sample-1 J

Advanced Customization Environment (ACE) Online Help

Displaying Data in VbaView Windows B

Disabling VbaView Windows

Sometimes it can be useful to turn off VbaView window processing by
disabling the window.

1

To re-enable 1
VbaView
windows 9

In the Overview window, select the drop-down menu for a VbaView
window; then, choose Disable....

\Qd Distribution |
Sample-1
B e]

Duplicate. ..

Delete

Renare. ..
Properties...

In the Disable dialog, select the VbaView windows you wish to disable;
then, click OK.

= Modules OF
I My 16910 - 169111
= Windows

LR Distribution S ample-1

[Joelete all Connections

In the Overview window, select the drop-down menu for a VbaView
window; then, choose Enable....

In the Enable dialog, select the VbaView windows you wish to enable;
then, click OK.

Advanced Customization Environment (ACE) Online Help 75

b Displaying Data in VbaView Windows

76 Advanced Customization Environment (ACE) Online Help

Advanced Customization Environment (ACE)
Online Help

@oc- 60

Lo, Distributing VBA Code

There are several ways to distribute VBA macro code:

e Through ALA format configuration files (if logic analyzers are
compatible).

e Through XML format configuration files (if logic analyzers are
incompatible).

* By exporting and importing individual Module or Form files.

* By exporting and importing VBA project .zip files. By placing VBA
project .zip files in the "<Install>\VBA\" directory, you can cause the
VBA code to load when the Agilent Logic Analyzer application starts
up.

When distributing VbaView window code, it must load at application
startup so the window appears in the Window>New VbaView> menu;
therefore, VBA project .zip files are required.

¢ To distribute VBA code via ALA format configuration files (see page 78)
¢ To distribute VBA code via XML format configuration files (see page 79)
¢ To distribute individual files (for VBA Modules/Forms) (see page 80)
¢ To distribute VBA project code via .zip files (see page 81)
To export VBA project code to .zip files (see page 82)
To create VBA project code .zip files with agZip.exe (see page 82)
To import VBA project code from .zip files (see page 86)
To load VBA project code at application startup (see page 86)

Agilent Technologies 7

78

6 Distributing VBA Code

To distribute VBA code via ALA format configuration files

See Also

VBA code can be saved as part of ALA format configuration files.

If you want to share a VBA macro with another user who has a

compatible logic analyzer, all you need to do is give them the ALA format
configuration file.

However, if the other user has an incompatible logic analyzer,you must use
one of the other methods for distributing VBA code.

e To distribute VBA code via XML format configuration files (see page 79)
e To distribute individual files (for VBA Modules/Forms) (see page 80)
e To distribute VBA project code via .zip files (see page 81)

Advanced Customization Environment (ACE) Online Help

Distributing VBA Code

To distribute VBA code via XML format configuration files

VBA code can be saved as part of XML format configuration files.

If you want to share a VBA macro with another user who has an
incompatible logic analyzer, all you need to do is give them the XML
format configuration file.

See Also + To distribute individual files (for VBA Modules/Forms) (see page 80)
e To distribute VBA project code via .zip files (see page 81)

Advanced Customization Environment (ACE) Online Help

19

6

Distributing VBA Code

To distribute individual files (for VBA Modules/Forms)

80

See Also

This procedure describes how, using the VBA IDE, to export Module and
Form VBA code to individual files from one ALA format configuration file
and import those files into another configuration.

1

Open the ALA format configuration file that contains the VBA code to
export.

In the Information dialog that tells you about incompatible modules,
click Load Offline.

Choose Tools>Macro>Visual Basic Editor to open the VBA IDE.

In the VBA IDE, export each Module and Form from the VBA IDE to
.bas and .frm files, respectively. To do this, right-click on the Module or
Form in the Project Browser (upper left hand corner); then, choose
Export>File....

Now, if you are offline, choose File>Go Online; otherwise, create a new
configuration by choosing File>New.

Choose Tools>Macro>Visual Basic Editor to open the VBA IDE.

In the VBA IDE's Project Browser, select the configuration into which
the files should be imported.

Choose File>Import... to import the files that you previously exported.

To distribute VBA code via ALA format configuration files (see page 78)
To distribute VBA project code via .zip files (see page 81)

Advanced Customization Environment (ACE) Online Help

Distributing VBA Code 6

To distribute VBA project code via .zip files

This procedure describes how to export all of a project's VBA code from
one ALA format configuration file and import it into another
configuration.

1

10

See Also

Open the ALA format configuration file that contains the VBA code to
export.

In the Information dialog that tells you about incompatible modules,
click Load Offline.

Choose Tools>Macro>Export Zip File.... (You can also choose
File>Export Zip File from within the VBA IDE.)

In the Export Macros dialog, select the project whose VBA code should
be exported; then, click OK.

In the next "Export macros in project" dialog, enter the name of the .zip
file that will contain the project's VBA code; then, click Save.

If you want to transfer the logic analyzer configuration as well, save it
to an XML format file.

Now, if you are offline, choose File>Go Online; otherwise, create a new
configuration by choosing File>New.

If you saved the logic analyzer configuration to an XML format file in
the previous step, open it now.

If you are importing code for a VbaView window project (and the
VbaView window wasn't created by opening an XML format logic
analyzer configuration file), choose Window>New VbaView....

Choose Tools>Macro>Import Zip File.... (You can also choose
File>Import Zip File from within the VBA IDE.)

In the Import Macros dialog, select the project into which the VBA code
should be imported; then, click OK.

In the next "Select file to import" dialog, select the .zip file that
contains the project's VBA code; then, click Open.

When importing VBA code from .zip files, only files with the following
extensions are directly imported:

.bas — Module
.cls — Class Module

frm — Form

To export VBA project code to .zip files (see page 82)

To create VBA project code .zip files with agZip.exe (see page 82)
To import VBA project code from .zip files (see page 86)

To load VBA project code at application startup (see page 86)

Advanced Customization Environment (ACE) Online Help 81

6

82

Distributing VBA Code

To export VBA project code to .zip files

See Also

This procedure describes how to export a VBA project's code to a .zip file.

1 Open the ALA format configuration file that contains the VBA project
code to export.

2 Choose Tools>Macro>Export Zip File.... (You can also choose
File>Export Zip File from within the VBA IDE.)

3 In the Export Macros dialog, select the project whose VBA code should
be exported; then, click OK.

4 In the next "Export macros in project" dialog, enter the name of the .zip
file that will contain the project's VBA code; then, click Save.

To create VBA project code .zip files with agZip.exe (see page 82)
e To import VBA project code from .zip files (see page 86)
e To load VBA project code at application startup (see page 86)

To create VBA project code .zip files with agZip.exe

Password
Protecting VBA
Project Zip Files

When VBA
Projects are
Password
Protected

This procedure describes how to create a VBA project .zip file using the
agZip.exe program.

1 Place all VBA project source files in a directory.
2 Add a Project.xml file to the directory (see Project.xml File Format (see
page 83)).
3 Open a Command Prompt window, and run the command:
agZi p. exe <directory>
The agZip.exe program is located in the directory:
<Install directory>\
For example:

C:\Program Fi | es\ Agi | ent Technol ogi es\ Logi c Anal yzer\

The agZip.exe executable generates an encrypted, password protected zip
that ONLY the Agilent Logic Analyzer application can unencrypt. No
standalone unzip executables exist.

The password protected zip is a one-way street so that access to the zip
file can only be done via the application or the vendor directly sending

sources. Think of a password protected VBA project zip file as a binary

file.

If a project is password protected in the VBA IDE, or the zip file is
password protected, the project cannot be exported to a zip file via
Tools>Macro>Export Zip File....

Advanced Customization Environment (ACE) Online Help

Distributing VBA Code 6

For the case of password protected zip files with no VBA IDE password
(like AgtRPICmds, for example), you can only export files individually via
the Export File... command in the VBA IDE.

SeeAlso + To export VBA project code to .zip files (see page 82)
* To import VBA project code from .zip files (see page 86)
e To load VBA project code at application startup (see page 86)

Project.xml File Format

The Project.xml file identifies the type of VBA project a .zip file contains.
XML format elements and attributes provide for password protection,
licensing, and other complexities of distributing VBA intellectual property.
XML elements for the Project.xml file have the following hierarchy:

<VbaProj ect > (see page 84)
<Ref erences> (see page 83)
<Ref erence> (see page 83)

<Reference> Element The <Ref er ence> element contains type library

information.
Attributes
Name Description
Gui d "string' .Thetype library GUID.
Maj or "string'.Majortype library version.
M nor "string'.Minortype library version.
Description "string'.Thedescription is just to make the XML readable and
is not required.

Parents This element can have the following parents: <Ref er ences> (see
page 83).

Example <Reference Description='Mcrosoft Internet Controls'
Gui d=" { EAB22AC0- 30C1- 11CF- A7EB- 0000CO5BAEOB}
Major="1" Mnor="1" />

<References> Element The <Ref er ences> element contains references to
type libraries. References are added when the project is loaded so that
external references will not cause syntax errors. These references are
added manually by choosing Tools>References... in the VBA IDE. The
<Ref er ences> element can contain multiple references.

Children This element can have the following children: <Ref erence> (see
page 83).

Parents This element can have the following parents: <VbaPr oj ect > (see
page 84).

Advanced Customization Environment (ACE) Online Help 83

6 Distributing VBA Code

Example <References>

<Ref erence Description="Mcrosoft Internet Controls'
Gui d=' { EAB22AC0- 30C1- 11CF- A7EB- 0000CO5BAEOB}
Major="1" Mnor="1" />

<Ref erence Description="Mcrosoft Forns 2.0 Cbject Library'
Gui d=' { 0OD452EE1- EO8F- 101A- 852E- 02608C4D0BB4} "
Major="2'" Mnor='0" />

</ Ref erences>

<VbaProject> Element The <VbaPr oj ect > element lets the Agilent Logic
Analyzer application know that this is a valid Project.xml file. If this
element is not present, all other information is ignored. The

<VbaPr oj ect > element is the top element in the Project.xml file.

Attributes

Name Description

Type "VbaVi ew or''.If' VbaVi ew , this project will not be loaded
at application startup because it needs to be loaded into an existing
"VbaView" project. All of "VbaView" projects are placed in the
menu Window>New VbaView>.

Narme "string'.Typically, this attribute isn't set, and the name is the
base name of the project zip file. This attribute overrides the default
behavior.

Acti on "Recal | ' (default) or' Cr eat e' . Contains the action to take
with this project.

" Recal | ' — the zip contents are imported into an already

existing project. If the project has the Nan® attribute set, it will
highlight that project in the Import Zip File project selection dialog.
This attribute is set when a zip file is created from the Export Zip
File... menu.

' Cr eat e' — the zip contents are loaded into a newly created
project. See the Nan® attribute for the new project name. This is
only valid for non "VbaView" type projects because "VbaView"
type projects can't be created directly and must be associated with
a view. This attribute is usually used in zip files that are created by
Agilent or third parties and installed into the <Install
directory>/VBA directory so they can be automatically loaded at
startup. This type of project can also be loaded directly via the
Import Zip File.. menu if you don't want it loaded at application
startup. If the project has already been loaded, an error will be
returned.

Description "string'.The description is used when displaying error
messages. For example, this will be used when the license can't be
obtained. If this is not set, the full zip file name is used as the
description.

84 Advanced Customization Environment (ACE) Online Help

Distributing VBA Code 6

UseDef aul t Passwor "F',Fal seor' T', Tr ue. If this is not set, or is set to

d " Fal se' or' F',and the zip file contains a password, the project
will be password protected with the password used in the zip. If the
Passwor d attribute is set, it overrides the

UseDef aul t Passwor d attribute which only works for the
default password. The UseDef aul t Passwor d attribute is used
to support projects like "AgtRPICmds" where the zip is password
protected but users need to be able to view the source.

Passwor d "string'.Thisisthe password string used to password protect
the VBA project in the VBA IDE. If this isn't set, the password used
to encrypt the zip file will be used if UseDef aul t Passwor d
isn't Tr ue. Because the encrypted password used in the zip is a
one-way street (see Password Protecting VBA Project Zip Files (see
page 82)), vendors can set a password that they control in case
they need access to the VBA project for debugging the macro at a
customer site.

Li censeName "string' .IfalLi censeNane is specified, the application will
look for this license (which is different from the VBA Runtime
license). If the license doesn't exist, the project isn't loaded, and no
errors will be displayed.

Li censeVersi on "string'.lftheLi censeNane attribute is specified, and this
is not set, then "1.0" will be used.

Li censeVendor "string' .Ifthe Li censeNane attribute is specified, and this
is not set, then "Agilent Technologies" will be used.

Children This element can have the following children: <Ref er ences> (see
page 83).

Parents None.

Example <VbaProject Type='VbaView Name='Export to |E Sanple'
Hel pFi | e=' VBA Vi ew_Export_to_ I E. chm >
<Ref erences>
<Reference Description='"Mcrosoft Internet Controls'
Gui d=' { EAB22AC0- 30C1- 11CF- A7EB- 0000C05BAEOB}
Major="1" Mnor=1" />
<Reference Description="Mcrosoft Forms 2.0 Object Library'
Gui d=' { 0D452EE1- EO8F- 101A- 852E- 02608C4D0BB4} '
Maj or="2" Mnor="0" />
</ Ref er ences>
</ VVbaPr oj ect >

Advanced Customization Environment (ACE) Online Help 85

6

86

Distributing VBA Code

To import VBA project code from .zip files

See Also

This procedure describes how to import VBA project VBA code from a .zip
file.

1

In the Agilent Logic Analyzer application, choose Tools>Macro>Import
Zip File.... (You can also choose File>Import Zip File from within the
VBA IDE.)

In the Import Macros dialog, select the project into which the VBA code
should be imported; then, click OK.

In the next "Select file to import" dialog, select the .zip file that
contains the project's VBA code; then, click Open.

When importing VBA code from .zip files, only files with the following
extensions are directly imported:

.bas — Module
.cls — Class Module

frm — Form

To export VBA project code to .zip files (see page 82)
To create VBA project code .zip files with agZip.exe (see page 82)
To load VBA project code at application startup (see page 86)

To load VBA project code at application startup

At Application
Startup

1

Place the VBA project zip file in the directory:

<Install directory>\VBA

For example:

C.\Program Fi | es\ Agi | ent Technol ogi es\ Logi ¢ Anal yzer\ VBA\

Projects are loaded automatically at startup if they exist in the VBA
installation directory.

If the Agilent Logic Analyzer application has at least a Runtime VBA
license, an attempt will be made to automatically load the zip projects
installed. The application looks for the Runtime VBA license but does not
prompt for one if it is missing because it is confusing having the license
dialog display at startup.

The following algorithm for handling VBA project zip files is also used in
Tools>Macro>Import Zip File... because you may not want a project
loaded at startup when you can just recall it an any time.

Advanced Customization Environment (ACE) Online Help

Distributing VBA Code 6

The Agilent Logic Analyzer application looks through all of the zip files in
the VBA directory. For each zip file:

1 Look for a Project.xml file. If the file does not exist, the project will be
loaded directly. See When a Project is Loaded (see page 87) below for
details. The main objective of the Project.xml file is to handle the
complexity of password protection, licensing, and distribution of VBA
intellectual property.

2 If a Project.xml file exists, the application looks for valid XML elements
(see Project.xml File Format (see page 83)).

It is strongly recommended if licensing information or the password is
set in the Project.xml file, the zip file should be password protected.
See Password Protecting VBA Project Zip Files (see page 82).

When a Projectis When a VBA project is loaded at application startup, it is placed in a
Loaded project that is not saved with the ALA format configuration file.

Advanced Customization Environment (ACE) Online Help 87

6 Distributing VBA Code

88 Advanced Customization Environment (ACE) Online Help

. Advanced Customization Environment (ACE)
[) Online Help

.o. [.o.
0%
e 0o @ . ‘ @ o o 7
..O.. Visual Basic Programming Tips
O

e Visual Basic Syntax (see page 90)
* Guidelines for C++ Programmers (see page 92)

e Common VBA Error Messages (see page 93)

Agilent Technologies

89

7

Visual Basic Programming Tips

Visual Basic Syntax

90

e VBA divides the code into modules and forms. Modules are just code
while forms are both GUI controls and code. In general, modules are
used to contain code that is global to the project or that spans multiple
forms.

e All code must be in a subroutine or a function. A subroutine does not
return a value but a function does.

Public Sub MySubroutine(Byval i as integer, ByRef retVal as bool ean)

This is public so it can be called outside of this module or form. The
other alternative is Private.

ByVal means this parameter is passed by value. In other words, if
you don't want MySubroutine to change the value of i, then make it
"ByVal".

ByRef means this parameter is passed by reference. In this case,
MySubroutine can change the value of retVal.

To call this subroutine, use Call MySubroutine(i, retVal)

Private Function MyFunction(ByVal i as integer) as bool ean

Notice the "as boolean" at the end of this function declaration. This
means this function returns a boolean value.

To set the return value, pretend that "MyFunction" is a variable and
give it as value, as in "MyFunction = true". VBA does not use "Return
true".

To call this function, use myBool = MyFunction(i)
e Variables are defined in the following manner:

Local variables within a subroutine or function. Di m nyVal as
| ong.

Private variables within a module or form. Private nyVal as
i nt eger.

Public variables within a module or form. Public nyVal as
string.

e Common data types are:

Integer (no signed or unsigned; everything except boolean and string
are signed)

Long
String
Boolean

Double (Use for real numbers; also used by the VbaView graphing
tools).

Advanced Customization Environment (ACE) Online Help

Visual Basic Programming Tips

Defining and using arrays:

If you know the dimensions of the array. Di m nyArray(5, 5) as
bool ean

If you or another function will re-dimension the array later.
(GetDataBySample does this). Di m nyArray() as bool ean

To use the array, nyArray(X,Yy)

Common control structures:

If (bEntering) Then
strEnteringExiting = "Entering”

El se

strEnteringExiting = "Exiting"
End | f
For i = 0 To nyNumDat aRows - 2

If (OEArray(i) = 0 And WEArray(i) = 1) Then
dReadTine = dReadTine + TinmeArray(i + 1) - TineArray(i)
End |f
Next i

Do Wil e (bFound)
bFound = FindTransition(bRead, True, True, dEnteringTi ne)
Loop

Sel ect Case Command:

Case " Show'

Case "Del ete"

Case "Update" : Call DrawChart
End Sel ect

Advanced Customization Environment (ACE) Online Help

7

91

7

Visual Basic Programming Tips

Guidelines for C++ Programmers

92

Visual Basic has come a long way from the original BASIC, but it's not
C++ either.

VBA is based upon VB6, not VB.NET. VB.NET works quite a bit
different from VBG6, so if you refer to a book or website make sure that
you are dealing with VB6 or VBA but not .NET.

There is no scoping of variables within a subroutine.

There are no pointers at all. (But for VBA, you probably won't miss
them).

There is no concept of resource files. There are forms are used to
define dialogs, but forms contain code. They are not like Visual C++
resource files.

In general, modules are code only and forms are both GUI and code.

Variables do not need to be defined before they are used. This means
that a misspelled variable will not be detected by the compiler. You can,
however, use the "Opti on Explicit" compiler option to tell VBA that
variables should be defined before they are used.

The single "=" is used both as an assignment operator and as a
comparison operator. VB doesn't support "==". So, there is "i f (myVal =
1) " and "nmyVal =1". The system knows the difference because of the "If".

VB does not use "!". In general, they use "not", although "not equals" is
Il<>|l'

VB cares about line breaks. To make code wrap to the next line, you
must end in a " _". Notice that there is a space before the underscore.

VB likes you to say "Call" before calling a subroutine, as in "Cal |
Updat eW ndow(true)".

VB is not case sensitive like C and C++.
VB is not object oriented. There is no inheritance.

VB does not use { or }. It uses "then" and "end if".

Advanced Customization Environment (ACE) Online Help

Visual Basic Programming Tips 7

Common VBA Error Messages

There are a couple of common VBA mistakes.

One common mistake is a failure to put a "Set" in front of a function
that returns an object. For example:

Di m nyFi ndResul t as Agt LA. Fi ndResul t
nyFi ndResult = Agt LA. Wndows(0). Fi nd(strEvent)

This code results in the error message "Object Variable or With block
variable not set". Instead, this code should be used:

Di m nyFi ndResul t as Agt LA. Fi ndResul t
Set myFi ndResult = Agt LA. W ndows(0) . Fi nd(strEvent)

When using VBA with the Agilent Logic Analyzer application, it is
unusual to create a new object using the "New" keyword. The problem

with the example below is that we try to create a new FindResult
object, but the Find function already returns a FindResult object.

Di m nyFi ndResult as New Agt LA. Fi ndResul t
Set nyFi ndResult = Agt LA. W ndows(0). Fi nd(strEvent)

This code results in the error message "ActiveX Component is unable to
create object". To fix this problem, you must remove the "New".

Advanced Customization Environment (ACE) Online Help 93

7 Visual Basic Programming Tips

94 Advanced Customization Environment (ACE) Online Help

Index

A

ActiveX Component is unable to create
object, 93

AddPointArrays method, 66

Advanced Customization Environment (ACE),
analyzing data, 43

Advanced Customization Environment (ACE), at
aglance, 9

Advanced Customization Environment (ACE),
COM objects, 37

Advanced Customization Environment (ACE),
data analysis, 12

Advanced Customization Environment (ACE),
data visualization, 13

Advanced Customization Environment (ACE),
finding events, 44

Advanced Customization Environment (ACE),
finding sequence of events, 50

Advanced Customization Environment (ACE),
getting data, 54

Advanced Customization Environment (ACE),
instrument control, 11

Advanced Customization Environment (ACE),
link to other PC apps, 14

Advanced Customization Environment (ACE),
macro considerations, 19

Advanced Customization Environment (ACE),
measurement automation, 11

Advanced Customization Environment (ACE),
VbaView windows, 59

AgtDatalype, 55

AgtLA namespace, 22, 38

AgtVbaView module, Notify function, 15, 63

agZip.exe, creating VBA project zip files, 82

ALA format configuration files, distributing VBA
codein, 78

AnalyzerModule object, 40

application startup, loading VBA project
code, 86

applications (PC), linking to COM-enabled, 14

bar chart, drawing, 69

breakpoints in VBA IDE, 29

Bus vs Bus Sample VbaView window, 15
bus/signal validity, 26

BusSignal object, accessing, 39

C

C++ programmers, guidelines for, 92

chart display (VbaView window), updating, 66

chart titles (VbaView window), 66

chart types (VbaView window), 66

COM objects in Advanced Customization
Environment (ACE), 37

COM objects, accessing, 39

COM objects, generic and specific, 40

COM objects, help on, 41

combo box, getting selected string, 27

combo box, populating with buses/signals, 26

combo box, selecting item based on string, 27

COM:-enabled PC applications, linking to, 14

config macros, 19

Connect object, 38

D

data analysis macros, 12

data types for GetDataBySample method, 55
data visualization VbaView windows, 13
data, displaying in VbaView windows, 59
data, getting from logic analyzer, 54
debugging macros, 29

Delete, VbaView window event, 63
development environment, VBA, 9
distributing VBA code, 77

Distribution Sample VbaView window, 13, 15
drawing a bar chart, 69

drawing a horizontal bar chart, 70

drawing a horizontal stacked bar chart, 71
drawing a line chart, 68

drawing a pie chart, 73

drawing a vertical bar chart, 72

drawing a vertical stacked bar chart, 72
drawing an XY scattergram, 67

E

EndSample property, 56

error messages, common VBA, 93

event strings, 44

event strings, creating XML, 47

event strings, simple, 46

event strings, XML, 46

events, finding, 44

events, finding sequence of, 50

Export to |E Sample VbaView window, 14

Export to IE VbaView window, 15

exporting Module/Form VBA code, 80

exporting project VBA code, 81

External Scope Web Control VbaView
window, 15

Advanced Customization Environment (ACE) Online Help

F

F1 help for COM objects, 41

Find method, 43, 44

find, creating sequential, 51

find, debugging sequential, 52

find, sequential example, 52

FindEdges macro, 15, 30
FindEdgesSample macro, 12

FindResult object, 44

Form VBA code, exporting/importing, 80
formsin VBA, 15, 24

G

generic COM objects, 40
GetDataBySample method, 43, 54
GetDataBySample method, data types, 55
GetDataByTime method, 43
GetTenSamples example, 56

global macros, 19

guidelines for C++ programmers, 92

H

Hello World Sample VbaView window, 15

Hello World Sample VbaView window,
adding, 61

help on COM objects, 41

horizontal bar chart, drawing, 70

horizontal stacked bar chart, drawing, 71

IDE (Integrated Development Environment),
VBA, 9,22

importing Module/Form VBA code, 80

importing project VBA code, 81

instrument control macros, 11

Integrated Development Environment (IDE), 9

L

line chart, drawing, 68

M

macro considerations, 19
macro, creating a new, 20
macro, VBA, 17

macros, debugging, 29

95

Index

macros, differences between VbaView windows
and, 15

macros, editing, 22

macros, programming, 30

macros, running, 28

measurement automation macros, 11

Microsoft Visual Basic for Applications (VBA), 9

Module object, 40

Module VBA code, exporting/importing, 80

MyConfigMacros VBA project, 19, 20

MyGlobalMacros VBA project, 19, 20

N

namespace, AgtLA, 38

New, VbaView window event, 63

notices, 2

Notify function, AgtVbaView module, 15, 63

0

Object Variable or With block variable not
set, 93

objects (COM), accessing, 39

objects (COM), generic and specific, 40

objects (COM), help on, 41

objects (COM), in Advanced Customization
Environment (ACE), 37

P

password protecting VBA project zip files, 82
PattgenModule object, 40

PC applications, linking to COM-enabled, 14
pie chart, drawing, 73

programming macros, 30

programming tips, Visual Basic, 89

project VBA code, exporting and importing, 81
Project.xml file format, 83

properties, VbaView window, 15

Properties, VbaView window event, 63

Redraw, VbaView window event, 63
Reference, Project.xml element, 83
References, Project.xml element, 83
RepetitiveSaveToFile macro, 15, 30
RepetitiveSaveToFile macros, 11
running macros, 28

S

scattergram, drawing, 67

search, creating sequential, 51

search, debugging sequential, 52

search, sequential example, 52

SendToExcel macro, 15, 30
SendToPatternGeneratorModule macro, 15, 30
sequence of events, finding, 50

96

sequential find, creating, 51

sequential find, debugging, 52

sequential find, example, 52

Show, VbaView window event, 63

simple event strings, 46

specific COM objects, 40

stacked horizontal bar chart, drawing, 71

stacked vertical bar chart, drawing, 72

StartSample property, 56

startup (application), loading VBA project
code, 86

syntax, Visual Basic, 90

T

text box, allowing numeric input, 27
Timing Compare VbaView window, 15
titles, VbaView charts), 66

trace, getting entire, 56

trademarks, 2

U

Update, VbaView window event, 63
user form, 15, 24

vV

validity, bus/signal, 26

variables, watching in VBA IDE, 29

VBA (Visual Basic for Applications), 3, 9

VBA code, distributing, 77

VBA code, exporting and importing project, 81

VBA code, exporting/importing Module or
Form, 80

VBA error messages, common, 93

VBA IDE, 22

VBA macro example, analysis, 31

VBA macro example, control, 30

VBA macro example, export, 32

VBA project code, loading at application
startup, 86

VBA project zip files, creating, 82

VBA project zip files, exporting, 82

VBA project zip files, importing, 86

VBA projects, 19, 20

VbaProject, Project.xml element, 84

VbaView window code, viewing, 62

VbaView windows, differences between Macros
and, 15

VbaView windows, disabling, 75

VbaView windows, displaying data in, 59

VbaViewChart object, 65

vertical bar chart, drawing, 72

vertical stacked bar chart, drawing, 72

Visual Basic for Applications (VBA), 3,9

Visual Basic programming tips, 89

Visual Basic syntax, 90

W

watching variables in VBA IDE, 29
Window object, accessing, 39

X

XML event strings, 46

XML event strings, creating, 47

XML format configuration files, distributing VBA
codein, 79

XY scattergram, drawing, 67

Advanced Customization Environment (ACE) Online Help

	Using the Advanced Customization Environment (ACE)
	Contents
	Advanced Customization Environment (ACE)—At a Glance
	Instrument Control and Measurement Automation
	Data Analysis
	Data Visualization
	Linking to Other COM-Enabled PC Applications
	VBA Macros and VbaView Windows

	Creating and Running Macros
	Considerations When Creating a Macro
	Creating a New Macro
	Editing Macros in the VBA IDE
	Using Forms for Program Input/Output
	Example: To populate a combo box with buses/signals
	Example: To tell if a bus/signal is valid
	Example: To get the selected string from a combo box
	Example: To select an item in a combo box based upon a string
	Example: To ensure that a text box allows only numeric input

	Running a Macro
	Debugging Macros in the VBA IDE
	Notes on Programming Macros
	Example: Control Macro
	Example: Analysis Macro
	Example: Export Macro

	Using Logic Analysis COM Objects in the ACE
	Start with AgtLA Namespace (Connect Object Not Needed)
	Accessing Window and BusSignal Objects
	Generic and Specific Objects
	Getting Help on COM Objects

	Analyzing Data in ACE
	Finding Events (Using Logic Analyzer Hardware)
	Understanding the Find Method and FindResult Object
	Using Simple Event Strings
	Using XML Event Strings
	Finding a Sequence of Events

	Getting Data from the Logic Analyzer
	Understanding the GetDataBySample Method
	Data Types for GetDataBySample
	Getting the Entire Trace (from Beginning of Data to End of Data)
	Example: GetTenSamples

	Displaying Data in VbaView Windows
	Adding a New VBA View "Hello World Sample" Window
	Using the Hello World Sample VbaView (Text) Window
	Viewing the VbaView Code

	Understanding the Notify Function
	Using the VbaViewChart Object
	Setting the Chart Type
	Using the AddPointArrays Method
	Setting Titles in the Chart
	Updating the Chart Display
	Example: XY Scattergram
	Example: Line Chart
	Example: Bar Chart
	Example: Pie Chart

	Disabling VbaView Windows

	Distributing VBA Code
	To distribute VBA code via ALA format configuration files
	To distribute VBA code via XML format configuration files
	To distribute individual files (for VBA Modules/Forms)
	To distribute VBA project code via .zip files
	To export VBA project code to .zip files
	To create VBA project code .zip files with agZip.exe
	To import VBA project code from .zip files
	To load VBA project code at application startup

	Visual Basic Programming Tips
	Visual Basic Syntax
	Guidelines for C++ Programmers
	Common VBA Error Messages

	Index

