No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number
Version 03.82.0000

Edition
April 10, 2009

Available in electronic format only
Agilent Technologies, Inc.
1900 Garden of the Gods Road
Colorado Springs, CO 80907 USA

Warranty
The material contained in this document is provided “as is,” and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses
The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend
If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and licensed as “Commercial computer software” as defined in DFAR 252.227-7014 (June 1995), or as a “commercial item” as defined in FAR 2.101(a) or as “Restricted computer software” as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies’ standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015(b)(2) (November 1995), as applicable in any technical data.

Safety Notices

CAUTION
A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

WARNING
A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.
Using the Altera FPGA Dynamic Probe

When the Altera LAI (Logic Analyzer Interface) core has been inserted into an FPGA, the FPGA dynamic probe lets a logic analyzer capture data on signals internal to the FPGA.

The FPGA dynamic probe lets you change probe points without recompiling or affecting the timing of the design, and it lets you import internal signal names from your FPGA design tool.

- Overview (see page 9)
- Probing FPGA Debug Pins (see page 11)
- Installing and Licensing the FPGA Dynamic Probe for Altera FPGAs (see page 13)
- FPGA Design Steps (see page 15)
- Preparation Steps (see page 17)
 - Step 1. Install the JTAG cable programmer software (see page 18)
 - Step 2. Set up the JTAG cable using the programmer software (see page 19)
- Measurement Steps (see page 27)
 - Step 3. Establish connection between analyzer and JTAG cable (see page 28)
 - Step 4. Download configuration bits into FPGA (see page 30)
 - Step 5. Import signal names (see page 31)
 - Step 6. Map FPGA pins (see page 35)
 - Step 7. Make the measurement (see page 39)
- Troubleshooting (see page 41)
- Concepts (see page 47)
- Reference (see page 59)
 - FPGA Dynamic Probe Setup Dialog (see page 60)
 - FPGA Dynamic Probe Bank Selection Dialog (see page 67)
 - Specifications and Characteristics (see page 69)

See Also
- Probe Control, COM Automation (see page 71)
- Probe Setup, XML Format (see page 73)
Contents

Using the Altera FPGA Dynamic Probe 3

1 Overview

2 Probing FPGA Debug Pins

3 Installing and Licensing the FPGA Dynamic Probe

4 FPGA Design Steps

5 Preparation Steps

 Step 1. Install the JTAG cable programmer software 18
 Step 2. Set up the JTAG cable using the programmer software 19
 To install the USB Blaster device driver 20
 To set up a JTAG Server 21

6 Measurement Steps

 Step 3. Establish connection between analyzer and JTAG cable 28
 Step 4. Download configuration bits into FPGA 30
 Step 5. Import signal names 31
 To trim imported bus/signal names 32
 To rename imported bus/signal names 32
 To define additional FPGA bus/signal names 33
 Step 6. Map FPGA pins 35
 Step 7. Make the measurement 39

7 FPGA Dynamic Probe Troubleshooting

 When I click the 'Cable Connection' button I get 'problem locating Altera software' dialog 42
 When I click the 'Cable Connection' button I get 'script error' dialog 43
 If you don’t see activity in the logic analyzer 44
 If state mode measurements don’t work 45
8 FPGA Dynamic Probe Concepts

Example: Inserting an LAI Core 48
- Creating a Logic Analyzer Interface 48
- Configuring the Logic Analyzer Interface Core Parameters 49
- Mapping the Clock Signal 50
- Mapping the Logic Analyzer Interface File Pins to Available I/O Pins 51
- Mapping Internal Signals to the Logic Analyzer Interface Banks 53
- Saving the Logic Analyzer Interface 55
- Enabling/Disabling the Logic Analyzer Interface 55
- Compiling the Quartus II Project 56
- FYI: Creating Multiple Logic Analyzer Interface Instances in One FPGA 57

Automated Logic Analyzer Set Up 58

9 FPGA Dynamic Probe Reference

FPGA Dynamic Probe Setup Dialog 60
- Cable Connection Dialog 61
- Pin Mapping Dialog 61
- Pin Mapping Edit Dialog 62
- Select FPGA Configuration File Dialog 64
- Select Signal Import File Dialog 64
- Properties Dialog 65
- Core Details Dialog 65

FPGA Dynamic Probe Bank Selection Dialog 67
- Trim Bus/Signal Names Dialog 67

Specifications and Characteristics 69

10 Probe Control, COM Automation

11 Probe Setup, XML Format

<Assignment> Element 74
- <ATC_IL> Element 75
- <Bank> Element 76
- <Banks> Element 80
- <Core> Element 81
- <Cores> Element 83
- <DefinedProbes> Element 84
- <Device> Element 85
<Devices> Element 87
<JTAG_Chain> Element 88
<Label> Element 89
<Label> Element (under NonATCLabels) 90
<Labels> Element 91
<NonATCLabels> Element 92
<PinMapping> Element 93
<Pod> Element 95
<Pods> Element 96
<Probe> Element 97
<Properties> Element 98
<Signal> Element (under Bank) 100
<Signal> Element (under Probe) 101
<Signals> Element (under Bank) 102
<Signals> Element (under Probe) 104
<SymbolInfo> Element 105
<TriggerInfo> Element 106
<WindowInfo> Element 107

Index
The FPGA dynamic probe lets you:

- **View internal activity.**

 With a logic analyzer, you are normally limited to measuring signals at the periphery of the FPGA. With the FPGA dynamic probe, you can now access signals internal to the FPGA. You can measure multiple internal signals for each external pin dedicated to debug, unlocking visibility into your design that you never had before.

- **Make multiple measurements in seconds.**

 Moving probe points internal to an FPGA used to be time consuming. Now, in less than a second you can easily measure a different set of internal signals — without design changes — and FPGA timing stays constant when you select new sets of internal signals for probing.

- **Leverage the work you did in your design environment.**

 The FPGA dynamic probe is the industry’s first tool that maps internal signal names from your FPGA design tool to your logic analyzer. Eliminate unintentional mistakes and save hours of time with this automatic setup of signal and bus names on your logic analyzer.

Create a time-saving FPGA measurement system. Insert an Altera LAI (Logic Analyzer Interface) core into your FPGA design. With the application running on your logic analyzer via JTAG, you control which group of internal signals to measure.
The Altera LAI core provides a multiplexer for selecting the signals that are output to FPGA debug pins. Core parameters determine the number of signals per bank and the number of banks.
2 Probing FPGA Debug Pins

The supported mechanisms for probing the FPGA debug pins with a logic analyzer are: soft touch (34-channel or 17 channel), Mictor, Samtec, and flying lead probes.

For more information on probing, see "Probing the Device Under Test" (in the online help).
2 Probing FPGA Debug Pins
Before you can use the Agilent B4656A FPGA dynamic probe for Altera FPGAs, you must install and license the software:

1. Install the FPGA dynamic probe software from the download web page at:
 "http://www.agilent.com/find/la-sw-download"

2. Follow the instructions on your entitlement certificate to redeem and install the FPGA dynamic probe license.
Installing and Licensing the FPGA Dynamic Probe
Altera LAI cores are inserted into FPGAs using Altera's Quartus II design software. For an example, see:

- "Example: Inserting an LAI Core" on page 48

For more information, see Altera's web site at "www.altera.com".

Next • Preparation Steps (see page 17)
Before you can use the FPGA dynamic probe software with the *Agilent Logic Analyzer* application, you must take these preparation steps:

1. Install the JTAG cable programmer software (see page 18)
2. Set up the JTAG cable using the programmer software (see page 19)

Next • Measurement Steps (see page 27)
Step 1. Install the JTAG cable programmer software

Before you can use the FPGA dynamic probe for Altera FPGAs, you must download and install the free Altera Quartus II Programmer software on the same logic analysis system or PC that the Agilent Logic Analyzer application runs on.

1. Download the Altera Quartus II Programmer software from:
 "https://www.altera.com/support/software/download/programming/quartus2/dnl-quartus2_programmer.jsp"

2. Follow the installation instructions to install the software on the same logic analysis system or PC that the Agilent Logic Analyzer application runs on.

3. If the PC or logic analysis system that has the JTAG cable connection to the device under test is not the same computer that runs the Agilent Logic Analyzer application, and Quartus II design software is not already installed, install the Quartus II Programmer software there too.

Next
- Step 2. Set up the JTAG cable using the programmer software (see page 19)
Step 2. Set up the JTAG cable using the programmer software

On the PC or logic analysis system that has the JTAG cable connection to the device under test:

1 If you are using the USB Blaster cable, driver files come with the Altera Quartus II Programmer software, but you must install them. See To install the USB Blaster device driver (see page 20).

2 Open the Altera Quartus II Programmer (or design) software and set up the JTAG cable connection:
 a From the Windows Start menu, choose All Programs>Altera>Quartus II 7.2 Programmer and SignalTap II>Quartus II 7.2 Programmer.
 b In the Quartus II Programmer window, click Hardware Setup....
 c In the Hardware Setup dialog, select the appropriate JTAG cable hardware.
 d After you have selected the appropriate JTAG cable hardware, click Close to close the Hardware Setup dialog.
 e Choose File>Exit to close the Quartus II Programmer software.
If the PC or logic analysis system that has the JTAG cable connection to the device under test is not the same computer that will run the Agilent Logic Analyzer application, you must set up a JTAG server. See “To set up a JTAG Server” on page 21.

Next
- Step 3. Establish connection between analyzer and JTAG cable (see page 28)

To install the USB Blaster device driver

On the PC or logic analysis system that has the JTAG cable connection to the device under test:

1. Connect the USB Blaster device to your computer.
2. In the Found New Hardware Wizard dialog, select **Install from a list or specific location**; then, click **Next >**.

3. On the next page of the wizard, specify the drivers\usb-blaster\x32 (for a 32-bit operating system) or drivers\usb-blaster\x64 (for a 64-bit operating system) location underneath the Quartus II Programmer install directory; then, click **Next >**.
When the wizard has finished installing the driver, click Finish.

For more information on installing the USB Blaster driver, see "http://www.altera.com/support/software/drivers/usb-blaster/dri-usb-blaster-xp.html" (or search for "USB Blaster driver" on the Altera website).

To set up a JTAG Server

The Altera FPGA Dynamic Probe can connect to JTAG cables over a TCP/IP connection. This is useful when you want to remotely connect to a logic analysis system that also has the JTAG cable connection to the device under test. In this case, the Agilent Logic Analyzer application (and the Altera FPGA Dynamic Probe software), must communicate remotely with the logic analysis system as well as the JTAG cable server.
If your JTAG cable is connected between the device under test and the logic analysis system or PC that is running the *Agilent Logic Analyzer* application, you do not need to set up a JTAG server.

To set up the Altera Programmer software to allow client/server connections to a remote JTAG cable:

1. Make sure the Altera Quartus II Programmer software is installed on both:
 - The *client computer* where you will be running the *Agilent Logic Analyzer* application (the JTAG Client).
 - The *remote computer* (logic analysis system or PC) that is physically connected to the JTAG cable (the JTAG Server).

 This should have already been done in "Step 1. Install the JTAG cable programmer software" on page 18.

2. Set up the JTAG Server on the *remote computer*:
 a. Start the Quartus II Programmer application from the Windows Start menu by choosing *All Programs*>>*Altera*>>*Quartus II 7.2 Programmer and SignalTap II*>>*Quartus II 7.2 Programmer*.
 b. In the Quartus II Programmer window, click **Hardware Setup**.
 c. In the Hardware Setup dialog's JTAG Settings tab, click **Configure Local JTAG Server**.
d In the Configure local JTAG Server dialog, check **Enable remote clients to connect to the local JTAG server**, enter a password, and confirm the password.

Record this password as you will need it later. Then, click **OK**.

e Click **Close** to close the Hardware Setup dialog.

f Choose **File>Exit** to close the Quartus II Programmer software.

3 If the *remote computer* is running firewall software, allow access to the JTAG Server through the firewall. If the remote computer is not running firewall software, you can skip this step and proceed to step 4.

For example, if the *remote computer* is running Windows Firewall:

a Make sure you are logged in as an administrator.

b From the Windows Start menu, choose **Control Panel>Windows Firewall**.

c In the Windows Firewall dialog's General tab, uncheck **Don’t allow exceptions**.
If the firewall is off, it may be that the computer is using different firewall software. In this case, you must enable access to the Quartus II Programmer port using the different firewall software.

d In the Exceptions tab, click **Add Port**....

e In the Add a Port dialog:

i Enter the **Name**: Quartus II Programmer.

ii Enter the **Port number**: 1309.

iii Select **TCP**.

iv Click **OK** to close the Add a Port dialog.

f Click **OK** to close the Windows Firewall dialog.
4 Get the hostname of the *remote computer* (JTAG Server):
 a From the Windows Start menu, choose **Control Panel>System**.
 b Click the **Computer Name** tab.
 c Write down the "Full computer name". This is the hostname of your
 remote JTAG server which you will need shortly.
 d Click **OK**.

5 Set up the JTAG Client on the *client computer*:
 a Start the Quartus II Programmer application from the Windows Start
 menu by choosing **All Programs>Altera>Quartus II 7.2 Programmer
 and SignalTap II>Quartus II 7.2 Programmer**.
 b In the Quartus II Programmer window, click **Hardware Setup**....
 c In the Hardware Setup dialog's JTAG Settings tab, click **Add
 Server**....
 d In the Add Server dialog:
 i Enter the full hostname of the remote JTAG Server you found in
 step 4.c as the **Server name**.
 ii Enter the password you created in step 2.d as the **Server
 password**.
 iii Click **OK**.

 d Verify that the Hardware Setup dialog shows a Connection Status of
 "OK". If not, then there is a problem with the networking. Re-verify
 your firewall settings and server-name/server-password settings.
e Click **Close** to close the Hardware Setup dialog.

f Choose **File>Exit** to close the Quartus II Programmer software.

Now, when you establish the connection between the analyzer and the JTAG cable (see "Step 3. Establish connection between analyzer and JTAG cable" on page 28), the remote JTAG cable will be listed in the Cable Connection dialog.
After you have completed the FPGA Design Steps (see page 15) and Preparation Steps (see page 17), you are ready to take these measurement steps in the Agilent Logic Analyzer application:

1. Establish connection between analyzer and JTAG cable (see page 28)
2. Download configuration bits into FPGA (see page 30)
3. Import signal names (see page 31)
4. Map FPGA pins (see page 35)
5. Make the measurement (see page 39)
Step 3. Establish connection between analyzer and JTAG cable

The FPGA dynamic probe application establishes a connection between the logic analyzer and a Xilinx cable. It also determines what devices are on the JTAG scan chain and lets you pick which one you wish to communicate.

To establish a connection between the logic analyzer and the Altera LAI core:

1. Add a new FPGA Dynamic Probe set by choosing Setup>(Logic Analyzer Module)>New Probe>FPGA Dynamic Probe.

Or, in the Overview window, from a module's drop-down menu, choose New Probe>FPGA Dynamic Probe.

2. In the FPGA Dynamic Probe Setup dialog (see page 60), click Cable Connection....
3 In the Cable Connection dialog (see page 61), select the type of cable and, if necessary, specify any cable parameters; then, click **OK**.

When the connection has been established, you will see the devices on the JTAG chain, and you can select the desired device.

Next
- Step 4. Download configuration bits into FPGA (see page 30)
Step 4. Download configuration bits into FPGA

To download configuration bits into an FPGA:

1. In the FPGA Dynamic Probe Setup dialog (see page 60), select the FPGA device to which you wish to download configuration bits; then, click **Configure Device**.

![FPGA Dynamic Probe Setup dialog](image)

2. In the Select FPGA Configuration File dialog (see page 64), select the FPGA configuration file; then, click **Open**.

Next
- Step 5. Import signal names (see page 31)
Step 5. Import signal names

The FPGA dynamic probe can automatically set up bus/signal names in the logic analyzer by reading a .lai file produced by Altera's Quartus II LAI (Logic Analyzer Interface) design software.

To import bus/signal names:

1. In the FPGA Dynamic Probe Setup dialog (see page 60), select the device whose bus/signal names you want to import; then, click **Import Bus/Signals**.

2. In the Select Signal Import File dialog (see page 64), select the signal import file; then, click **Open**.

3. In the import results dialog, view the bus/signal import information; then, click **OK**.

4. In the FPGA Dynamic Probe dialog, note that the defined cores now appear.
See Also

- To trim imported bus/signal names (see page 32)
- To rename imported bus/signal names (see page 32)
- To define additional FPGA bus/signal names (see page 33)

Next

- Step 6. Map FPGA pins (see page 35)

To trim imported bus/signal names

NOTE

Trimming bus/signal names after initial bank selection may require manual insertion of bus/signals in Waveform and Listing display windows. We recommend that you trim bus/signal names before changing the bank selection.

1. In the FPGA Dynamic Probe Bank Selection dialog (see page 67), click **Trim Bus/Signal Names**.
2. In the Trim Bus/Signal Names dialog (see page 67), specify the bus/signal name characters to trim; then, click **OK**.

To rename imported bus/signal names

1. Open the Buses/Signals setup tab (see "Defining Buses and Signals" (in the online help)).
2. In the "FPGA Probe" bus/signal name folder, rename the bus/signal (see "To rename a bus or signal" (in the online help)).
3. Reopen the FPGA Dynamic Probe dialog by choosing **Setup>(Logic Analyzer Module>(FPGA Dynamic Probe Name)>Bank Selection**...
Or, in the Overview window, click the FPGA dynamic probe's **Properties** button; then, choose **Bank Selection**.

Note also that you can triple-click signal names in the FPGA Dynamic Probe dialog to rename them (without having to do global trimming).

To define additional FPGA bus/signal names

1. Open the Buses/Signals setup tab (see "Defining Buses and Signals" (in the online help)).
2. In the "FPGA Probe" bus/signal name folder, add a new bus/signal (see "To add a new bus or signal" (in the online help)).
3. Assign channels to the new bus/signal name (see "To assign channels in the default bit order" (in the online help) or "To assign channels, selecting the bit order" (in the online help)).
4. Reopen the FPGA Dynamic Probe dialog by choosing **Setup>(Logic Analyzer Module)>(FPGA Dynamic Probe Name)>Bank Selection**.
Or, in the Overview window, click the FPGA dynamic probe's **Properties** button; then, choose **Bank Selection**....

Whenever buses/signals are added to the "FPGA Probe" folder, they are associated with a specific bank. If you select another bank, the added buses/signals do not appear.

If you want to define buses/signals that apply to all banks, create them outside of the "FPGA Probe" folder. That way, the buses/signals are not associated with a bank.
Step 6. Map FPGA pins

Quickly specify how the FPGA pins (the signal outputs of Altera LAI) are connected to your logic analyzer. Select your probe type and rapidly provide the information needed for the logic analyzer to automatically track names of signals routed through the Altera LAI core.

To map FPGA pins to logic analyzer probes:
1. In the FPGA Dynamic Probe Setup dialog (see page 60), select the Altera LAI core whose output pins you want to map; then, click Pin Mapping....

2. In the Pin Mapping dialog (see page 61), click Add Probe....

3. In the "Select the type of probe to add" dialog, select the type of probe that is used to connect to your FPGA; then, click OK.
If your probe doesn't appear in the list, you can "download the latest probe definitions from the web" (in the online help).

4 In the Pin Mapping Edit dialog (see page 62), select the FPGA pins (you can select multiple pins using Shift-click or Ctrl-click) and drag them on to the pin/pad map.

After you've mapped FPGA pins to the probe, you can hover the mouse pointer over a pin description field to view a tool tip describing the FPGA debug pin name, the pod connection, the channel number, and the signal type (single-ended or differential).
You can clear all FPGA pins that have been mapped to pins/pads by clicking **Clear**. You can clear individual pin mappings by dragging a pin from the pin/pad diagram back to the FPGA Pins list.

5 Select the logic analyzer pods that the probe is connected to.

When you wish to map multiple cores using different halves of the same probe, make sure you select **None** for the half that will be used by the other core.

NOTE

For state (synchronous) cores, you need to make sure that the ATCK pin maps to one of the "Clk" pin/pad locations (which identify clock signal inputs) and that the associated logic analyzer pod is valid for clock inputs. (In the *General State Mode*, the clock lines on the first 4 pods of a logic analyzer can be used as clock inputs; in the *Turbo State Mode*, the clock line on the first pod can be used as a clock input.)

6 When you are done mapping FPGA pins, click **OK**. Note that your probe has been added to the list in the Pin Mapping dialog.

7 Click **OK** to close the Pin Mapping dialog.
6 Measurement Steps

In the FPGA Dynamic Probe Setup dialog, notice pin mapping is no longer "Incomplete".

8 Click OK to close the FPGA Dynamic Probe Setup dialog.

The FPGA Dynamic Probe dialog opens automatically. If you expand a bank, you see the imported bus/signal names.

Next • Step 7. Make the measurement (see page 39)
Step 7. Make the measurement

At this point, you are ready to use the logic analyzer (as you would normally) to capture activity on internal FPGA signals.

You can tell the Altera LAI core to switch signal banks without affecting the timing of your design. When viewing the Probes toolbar (View>Toolbars>Probes), click to open the FPGA Dynamic Probe dialog. Then, select the signal bank to be routed to the logic analyzer and click OK. You can change signal banks as often as needed to make measurements throughout your FPGA.

You can correlate internal FPGA activity with external measurements. With each new selection of a signal bank, the application updates new signal names from your design to the logic analyzer. View internal FPGA activity and time correlate internal FPGA measurements with external events in the surrounding system.
Timing zoom is automatically disabled when using the FPGA dynamic probe. You can re-enable timing zoom; however, because of the Altera LAI core, timing zoom does not provide an accurate representation of internal FPGA signals.

Captured data is invalidated whenever you:
- Select a different bank.
- Select a different core.
- Download configuration bits into an FPGA.
- Reopen a cable connection.
- Imported signal names.
- Trim imported bus/signal names.
- Change the FPGA pin mapping.

See Also
- "Capturing Data from the Device Under Test" (in the online help)
- "Analyzing the Captured Data" (in the online help)
7 FPGA Dynamic Probe Troubleshooting

- When I click the 'Cable Connection' button I get 'problem locating Altera software' dialog (see page 42)
- When I click the 'Cable Connection' button I get 'script error' dialog (see page 43)
- If you don't see activity in the logic analyzer (see page 44)
- If state mode measurements don't work (see page 45)
When I click the 'Cable Connection' button I get 'problem locating Altera software' dialog

Possible cause: Default install path was changed during Quartus II installation. Actions:

1. Follow the instructions displayed on the dialog. If the file 'quartus_stp.exe' does not exist anywhere on the machine, continue with step 2.

2. Close the error and 'Cable Connection' dialogs.

3. Use Windows Add/Remove Programs to "Modify" the Quartus II installation, checking both the QProgrammer and SignalTap boxes before confirming. Reboot.
When I click the 'Cable Connection' button I get 'script error' dialog

The blue light on the USB Blaster should blink when it is being identified.

Possible causes:

- There are no connected cables. Actions:
 a. Close the error and 'Cable Connection' dialogs.
 b. Re-seat the connection between the oscilloscope or PC and the Altera cable.
 c. Retry the 'Cable Connection' button.

- Cable driver installation is incomplete. Actions:
 a. Close the error and 'Cable Connection' dialogs.
 b. Verify: Windows Device Manager should show a USB controller named "Altera USB-Blaster". If this controller has a red X, it is disabled. Right-click and select 'Enable'. If it has a yellow exclamation mark, then the Altera driver has not been fully installed. There is probably a New Hardware Found dialog hidden beneath the display. Complete the instructions on that dialog. See To install the USB Blaster device driver (see page 20)
 c. Retry the 'Cable Connection' button.

- Selected cable not connected to DUT (device under test). Actions:
 a. Close the error and 'Cable Connection' dialogs.
 b. Re-seat connection between Altera cable and DUT (ensure plug on board is not reversed).
 c. Retry the 'Cable Connection' button.

- DUT is not powered up. Actions:
 a. Close the error dialog and 'Cable Connection' dialog.
 b. Power up DUT.
 c. Retry the 'Cable Connection' button.
If you don't see activity in the logic analyzer

If you get a dynamic status from the core that says everything is enabled and ready, but you see no activity on your logic analyzer, check your connections to and from your device under test to the logic analyzer pod cables.
If state mode measurements don't work

If you are unable to capture data in state mode, either look at the clock activity indicators and select the appropriate clock for state measurements, or make a timing measurement to determine which clock is the master clock.
8
FPGA Dynamic Probe Concepts

• "Example: Inserting an LAI Core" on page 48
• "Automated Logic Analyzer Set Up" on page 58
Example: Inserting an LAI Core

In this example, to create designs with the Logic Analyzer Interface (LAI) core, you need to download the Altera Quartus II Web Edition from:

"https://www.altera.com/support/software/download/altera_design/quartus_we/dnl-quartus_we.jsp"

The Quartus II software requires a free license that you can request from:

"https://www.altera.com/support/licensing/free_software/lic-q2web.jsp"

Here are the steps to insert a LAI core into your design:

1. "Creating a Logic Analyzer Interface" on page 48
2. "Configuring the Logic Analyzer Interface Core Parameters" on page 49
3. "Mapping the Clock Signal" on page 50
4. "Mapping the Logic Analyzer Interface File Pins to Available I/O Pins" on page 51
5. "Mapping Internal Signals to the Logic Analyzer Interface Banks" on page 53
6. "Saving the Logic Analyzer Interface" on page 55
7. "Enabling/Disabling the Logic Analyzer Interface" on page 55
8. "Compiling the Quartus II Project" on page 56
9. "FYI: Creating Multiple Logic Analyzer Interface Instances in One FPGA" on page 57

Creating a Logic Analyzer Interface

The Logic Analyzer Interface File (.lai) defines the interface between internal FPGA signals and the external logic analyzer. To define the Quartus II Logic Analyzer Interface, you can create a new LAI file or use an existing file. In this walkthrough, you open an existing design and add an LAI core.

To create a new Logic Analyzer Interface file, perform the following steps:

1. Double-click the Quartus II design file, small.qpf, located at C:\S800_altera
2. In the Quartus II File menu, click New.
3. In the New dialog, click the Other Files tab and select Logic Analyzer Interface File.
4 Click OK.

The Logic Analyzer Interface editor opens.

Next • "Configuring the Logic Analyzer Interface Core Parameters" on page 49

Configuring the Logic Analyzer Interface Core Parameters

After creating the LAI file, you must configure the Logic Analyzer Interface core parameters. To configure these parameters, from the **Setup View** list select Core Parameters.

NOTE

Screen resolution might cause your screen to look different; please resize or scroll within the window to view the parameter.
The parameters can be set depending on the user's debug resources. In this example, the following parameters are used:

- **Pin count** = 13
- **Bank count** = 4
- **Capture mode** = State
- **Power-up state** = tristate

The Node Finder tool will be used in the next step to map the Clock signal.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin Count</td>
<td>Signifies the number of pins dedicated to the Logic Analyzer Interface. The external pins connected to the user's debug header on the board. The Pin Count parameter can range from 1 to 256 pins.</td>
</tr>
<tr>
<td>Bank Count</td>
<td>Signifies the number of internal signals mapped to each pin. A Bank Count of 8 implies you will connect eight internal signals to each pin. The Bank Count parameter can range from 1 to 256 banks.</td>
</tr>
<tr>
<td>Output/Capture Mode</td>
<td>Signifies the type of acquisition the external logic analyzer will perform. There are two options to select from:</td>
</tr>
<tr>
<td></td>
<td>• Combinational/Timing – This acquisition uses the logic analyzer's internal clock to determine when to sample data.</td>
</tr>
<tr>
<td></td>
<td>• Registered/State – This acquisition uses a signal from the system under test to determine when to sample. Registered/State acquisition samples data synchronously providing a functional view of the FPGA.</td>
</tr>
<tr>
<td>Clock</td>
<td>The clock parameter is available when the Output/Capture Mode is set to Registered State. The sample clock can be any signal in the design.</td>
</tr>
<tr>
<td>Power-Up State</td>
<td>The Power-Up State parameter specifies the power-up state of the Logic Analyzer Interface pins. The two options are tri-stated for all pins or selection a particular bank.</td>
</tr>
</tbody>
</table>

Next

- "Mapping the Clock Signal" on page 50

Mapping the Clock Signal

To assign the Clock, which will synchronize the state capture, click the ... button. This will launch the Node Finder tool.
Click **List** to display the signals from the synthesized design. Search through signal names and locate the clock signal, small_1s10:inst|clk. When the signal is selected, click the **OK** button to make the core assignment. Click **OK** to continue.

Next
- "Mapping the Logic Analyzer Interface File Pins to Available I/O Pins" on page 51

Mapping the Logic Analyzer Interface File Pins to Available I/O Pins

To configure the LAI I/O pins, from the **Setup View** list select **Pins**.
To assign pin locations double-click inside the Location column next to the reserved pins in the Name column. This action opens the Pin Planner tool.

NOTE

Please resize the window as necessary.

You can assign pins to the LAI by double-clicking in the Location column within Pin Planner. The pin assignment is typed in as PIN_XYZ or selected from the drop-down list.

The pins are assigned according to the following table.

<table>
<thead>
<tr>
<th>Node Name</th>
<th>Location</th>
<th>I/O Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>altera_reserved_lai_0_0</td>
<td>PIN_H26</td>
<td>LVTTL</td>
</tr>
<tr>
<td>altera_reserved_lai_0_1</td>
<td>PIN_N25</td>
<td>LVTTL</td>
</tr>
<tr>
<td>altera_reserved_lai_0_2</td>
<td>PIN_N26</td>
<td>LVTTL</td>
</tr>
<tr>
<td>altera_reserved_lai_0_3</td>
<td>PIN_L26</td>
<td>LVTTL</td>
</tr>
<tr>
<td>altera_reserved_lai_0_4</td>
<td>PIN_L25</td>
<td>LVTTL</td>
</tr>
<tr>
<td>altera_reserved_lai_0_5</td>
<td>PIN_M19</td>
<td>LVTTL</td>
</tr>
<tr>
<td>altera_reserved_lai_0_6</td>
<td>PIN_M20</td>
<td>LVTTL</td>
</tr>
<tr>
<td>altera_reserved_lai_0_7</td>
<td>PIN_K28</td>
<td>LVTTL</td>
</tr>
<tr>
<td>altera_reserved_lai_0_8</td>
<td>PIN_K27</td>
<td>LVTTL</td>
</tr>
<tr>
<td>altera_reserved_lai_0_9</td>
<td>PIN_N21</td>
<td>LVTTL</td>
</tr>
<tr>
<td>altera_reserved_lai_0_10</td>
<td>PIN_N22</td>
<td>LVTTL</td>
</tr>
</tbody>
</table>
Once all LAI nodes have been assigned pin locations, close the Pin Planner window. The pin assignments will be reflected in the Setup View.

Next
- "Mapping Internal Signals to the Logic Analyzer Interface Banks" on page 53

Mapping Internal Signals to the Logic Analyzer Interface Banks

Having specified the number of banks to use in the Core Parameters, internal signals must be assigned for each bank in the Logic Analyzer Interface. Click the **Setup View** arrow and select **Bank n** to assign signals a bank at a time or select **All Banks**.

<table>
<thead>
<tr>
<th>Node Name</th>
<th>Location</th>
<th>I/O Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>altera_reserved_lai_0_11</td>
<td>PIN_M26</td>
<td>LVTTL</td>
</tr>
<tr>
<td>altera_reserved_lai_0_12</td>
<td>PIN_M25</td>
<td>LVTTL</td>
</tr>
</tbody>
</table>
To begin assigning signals, double-click in the Name column to launch Node Finder. Within Node Finder click List to display all the design signals. Find the signals of interest, and select the signals from the Node Finder dialog box. As signals are assigned in Node Finder, the LAI schematic in the Logical View begins to reflect the assignments.

NOTE If using a state core, bit 0 of each bank will be reserved for the clock.
The design contains four counters; count1 and count3 are up counters and count2 and count4 are down counters. Assign a counter output per bank, for example, count1 to Bank0, count2 to Bank1, count3 to Bank2, and count4 to Bank3.

Next • "Saving the Logic Analyzer Interface" on page 55

Saving the Logic Analyzer Interface

To save the LAI file perform the following steps:

1. In the File menu, click Save As, the save dialog box opens.
2. In the File name box, enter your desired file name. Click Save.
3. When prompted, click Yes to enable the Logic Analyzer Interface file for the current project.

Next • "Enabling/Disabling the Logic Analyzer Interface" on page 55

Enabling/Disabling the Logic Analyzer Interface

The Logic Analyzer Interface can be enabled and disabled to include and remove the core from the design. This step can be preformed as follows:

1. On the Assignments menu click Settings. The Settings dialog box opens.
2. Under Category, click Logic Analyzer Interface. The Logic Analyzer Interface displays.
3. Make sure Enable Logic Analyzer Interface is checked to include the core.
4. The Logic Analyzer Interface file name displays the full path name of the LAI file.
Click **OK** to continue.

Next • "Compiling the Quartus II Project" on page 56

Compiling the Quartus II Project

The next step is to compile the project. On the **Processing** menu click **Start Compilation**.

NOTE

Warnings during compilation are okay.

To ensure the Logic Analyzer Interface is properly compiled with the project, expand the entity hierarchy in the Project Navigator. If the Logic Analyzer Interface is compiled with the design, the *sld_hub* and *sld_multitap* entities will be shown in the project navigator.

Next • "FYI: Creating Multiple Logic Analyzer Interface Instances in One FPGA" on page 57
FYI: Creating Multiple Logic Analyzer Interface Instances in One FPGA

The Logic Analyzer Interface supports multiple interfaces in a single FPGA. This feature is particularly useful when you want to build LAI configurations that contain different settings. For example, build one LAI instance to perform Registered/State analysis and build another instance that performs Combinational/Timing analysis on the same set of signals. Another example would be to perform Registered/State analysis on portions of the design that are in different clock domains.

To create multiple Logic Analyzer Interfaces, right-click in the Instance Manager window and select Create Instance.
Automated Logic Analyzer Set Up

The FPGA dynamic probe automatically sets up the logic analyzer for the type of Altera LAI core it connects to.

For timing (asynchronous) cores, the FPGA dynamic probe automatically sets up:

- Timing mode.

For state (synchronous) cores, the FPGA dynamic probe automatically sets up:

- State mode.
- Master clock mode.
- Clock signal and edge.

For all types of cores, the FPGA dynamic probe automatically sets up:

- Bus/signal names for the selected bank.

In the logic analyzer module's "Analyzer Setup dialog" (in the online help), you can rename buses/signals (see page 32) and define additional bus/signal names (see page 33), but changing any of the other settings made by the FPGA dynamic probe will interfere with its operation.

You are free to change settings that are untouched by the FPGA dynamic probe (like memory depth, trigger position, or sampling positions); they will not affect the FPGA dynamic probe.
FPGA Dynamic Probe Reference

- FPGA Dynamic Probe Setup Dialog (see page 60)
- Cable Connection Dialog (see page 61)
- Pin Mapping Dialog (see page 61)
- Pin Mapping Edit Dialog (see page 62)
- Select FPGA Configuration File Dialog (see page 64)
- Select Signal Import File Dialog (see page 64)
- Properties Dialog (see page 65)
- Core Details Dialog (see page 65)
- FPGA Dynamic Probe Bank Selection Dialog (see page 67)
- Trim Bus/Signal Names Dialog (see page 67)
- Specifications and Characteristics (see page 69)
The FPGA Dynamic Probe (see page 9) dialog lets you:

- Establish a connection between the logic analyzer and an FPGA with one or more Altera LAI cores.
- Configure the FPGA with a new design file.
- Map FPGA pins to probe pins/pads.
- Import signal names from the FPGA design tool.

<table>
<thead>
<tr>
<th>On</th>
<th>Device</th>
<th>Core</th>
<th>Imported Signals</th>
<th>Pin Mapping</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td>@1 EP...</td>
<td>@1 EPIC20 (MX309841D)</td>
<td>auto_ba_0, Altera_LAI/ba_0, J1</td>
<td>Timing, 4 banks, 6 pins</td>
<td></td>
</tr>
</tbody>
</table>

- **On** (in FPGA device list): The check boxes in this column let you enable or disable a core for use. If you do not want to use a particular core (typically in the multiple core case), you can uncheck its box, and the outputs of the core will be disabled. If a core’s "always on" mode is enabled (see the core Details (see page 65) within its Properties dialog (see page 65)), the core is always enabled and can be probed at powerup (bank 0 will be the selected bank). In this case, the core cannot be disabled, and the check box cannot be unchecked.

- **Cable Connection...**: Opens the Cable Connection dialog (see page 61) for establishing a connection between the logic analyzer and the Altera LAI core.

- **Configure Device...**: Opens the Select FPGA Configuration File dialog (see page 64) for downloading a design into the selected FPGA device.

- **Import Bus/Signals...**: Opens the Select Signal Import File dialog (see page 64) for importing internal FPGA bus/signal names.
Cable Connection Dialog

The Cable Connection dialog lets you specify the type of cable used to connect the logic analyzer to the device under test JTAG port.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing cables</td>
<td>Lets you select a cable that has been set up using the Altera Quartus II Programmer (or design) software.</td>
</tr>
<tr>
<td>No Cable (Demo Mode)</td>
<td>Simulates a cable connection for demonstration purposes.</td>
</tr>
</tbody>
</table>

See Also
- Step 2. Set up the JTAG cable using the programmer software (see page 19)
- Step 3. Establish connection between analyzer and JTAG cable (see page 28)

Pin Mapping Dialog

The Pin Mapping dialog lets you define the logic analyzer probes that are used to connect to the FPGA, and it lets you set up the FPGA pin to probe pin/pad mapping.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin Mapping...</td>
<td>Opens the Pin Mapping dialog (see page 61) for defining the logic analyzer probes that are used to connect to the FPGA and setting up the pin mapping (see Step 6. Map FPGA pins (see page 35)).</td>
</tr>
<tr>
<td>Properties...</td>
<td>Opens the Properties dialog (see page 65) which lets you rename devices and cores as well as display information about the selected Altera LAI core.</td>
</tr>
</tbody>
</table>
Pin Mapping Edit Dialog

The Pin Mapping Edit dialog lets you map the FPGA output pins to the logic analyzer probe pins/pads.

Add Probe...	Opens the "Select the type of probe to add" dialog; when you click **OK**, the Pin Mapping Edit dialog (see page 62) is opened for mapping the FPGA output pins to the probe pins/pads. If your probe doesn’t appear in the list of probe types, you can "download the latest probe definitions from the web" (in the online help).
Edit Probe...	For the selected probe, opens the Pin Mapping Edit dialog (see page 62) for editing the FPGA output pins to probe pin/pad mapping.
Delete Probe	Deletes the selected probe.

See Also

- Step 6. Map FPGA pins (see page 35)
Reference Designator

Identifies the reference designator (in the device under test) of the probe connector, the connectorless probe retention module, or pins probed by flying leads.

<table>
<thead>
<tr>
<th>FPGA Pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lists the FPGA pins used for the Altera LAI core outputs. When dragging these pins onto the pin/pad map, you can select multiple pins using Shift-click or Ctrl-click.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probe Pin/Pad Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagrams probe pins/pads, flying-lead channels, or termination adapter pins, and provides fields for dropping FPGA pin numbers.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logic Analyzer Slot, Pod</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lets you select the logic analyzer module slots/pods to which the probe, flying leads, or termination adapter is connected.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Show Logic Analyzer Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>When checked, the logic analyzer pod channel numbers are displayed in the probe pin/pad diagram next to the pin/pad numbers.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clears all FPGA pins that have been mapped to pins/pads. You can clear individual pin mappings by dragging a pin from the pin/pad diagram back to the FPGA Pins list.</td>
</tr>
</tbody>
</table>

See Also
- Step 7. Map FPGA pins (see page 39)
Select FPGA Configuration File Dialog

The Select FPGA Configuration File dialog lets you select a design file for downloading into an FPGA device on the JTAG chain.

Select Signal Import File Dialog

The Select Signal Import File dialog lets you select the file (from the FPGA design tool) that contains the names of the internal buses/signals that appear on Altera LAI core inputs.

See Also

- Step 5. Import signal names (see page 31)
Properties Dialog

The Properties dialog lets you change device, core, and bank names as well as view detailed information about the core.

<table>
<thead>
<tr>
<th>Device Name</th>
<th>Lets you rename the selected device.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Name</td>
<td>Lets you rename the selected core.</td>
</tr>
<tr>
<td>Bank Name</td>
<td>Lets you rename the selected bank.</td>
</tr>
<tr>
<td>Test Bank Data</td>
<td>Not available with Altera LAI cores.</td>
</tr>
<tr>
<td>Details...</td>
<td>Opens the Core Details dialog (see page 65) which displays information about the selected Altera LAI core.</td>
</tr>
</tbody>
</table>

Core Details Dialog

The Core Details dialog displays information about the selected Altera LAI core.
Core Details

- auto I/O = 0
- PMOD is string
- I/O mode = T2
- Number of banks = 4
- Number of signals per bank = 9
- Number of pins (including top) = 9
- Core drive voltage = LVTTL
- Auto setup = Not available
- "Always on" mode = disabled
FPGA Dynamic Probe Bank Selection Dialog

The FPGA Dynamic Probe (see page 9) Bank Selection dialog lets you:

- Select a different bank of internal signals to probe.
- Rename individual signals (without having to do global trimming) by triple-clicking the signal name.

Run Eye Finder... Opens the “Thresholds and Sample Positions dialog” (in the online help) for running eye finder to automatically adjust the state mode sampling positions. This button is available when probing only state (synchronous) cores. If there are any timing (asynchronous) cores, the logic analyzer is set up in timing mode, and eye finder is not available.

Trim Bus/Signal Names... Opens the Trim Bus/Signal Names dialog (see page 67) for shortening imported FPGA internal bus/signal names.

Properties... Opens the Properties dialog (see page 65) which lets you rename cores and banks as well as display information about the selected Altera LAI core.

See Also • Measurement Steps (see page 27)

Trim Bus/Signal Names Dialog

The Trim Bus/Signal Names dialog lets you specify how imported bus/signal names should be shortened.
If the Signal Name is at least 5 characters long,

- **Remove left most** 2 characters.
- **Remove right most** 2 characters.
- **Remove all except right most** 10 characters.
- **Locate right most Nth occurrence of** the string and remove it and all characters before.
- **Restore original Signal names**

Trimming bus/signal names after initial bank selection may require manual insertion of bus/signal names in waveform listing displays. It is recommended to trim bus/signal names prior to changing bank selection.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the Signal Name is at least</td>
<td>Only bus/signal names longer than this value will be trimmed.</td>
</tr>
<tr>
<td>Remove left most</td>
<td>The number of characters to remove from the beginning of the names.</td>
</tr>
<tr>
<td>Remove right most</td>
<td>The number of characters to remove from the end of the names.</td>
</tr>
<tr>
<td>Remove all except right most</td>
<td>The number of characters to leave at the end of the names.</td>
</tr>
<tr>
<td>Locate right most Nth occurrence of</td>
<td>The string before which all characters from the names are stripped.</td>
</tr>
<tr>
<td>the string</td>
<td></td>
</tr>
<tr>
<td>Restore original Signal names</td>
<td>Undoes the bus/signal name trimming.</td>
</tr>
</tbody>
</table>

See Also
- Step 5. Import signal names (see page 31)
Specifications and Characteristics

The FPGA dynamic probe for Altera FPGAs has these specifications and characteristics:

- Supported Logic Analyzers (see page 69)
- FPGA Dynamic Probe Software Application (see page 69)

Supported Logic Analyzers

<table>
<thead>
<tr>
<th>Standalone logic analyzers:</th>
<th>1680 Series, 1690 Series, 16800 Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modular logic analysis systems:</td>
<td>16900A, 16901A, 16902A, 16902B, 16903A with one or more of the following cards:</td>
</tr>
<tr>
<td></td>
<td>• 16740A, 16741A, 16742A.</td>
</tr>
<tr>
<td></td>
<td>• 16750A, 16751A, 16752A, 16753A, 16754A, 16755A, 16756A.</td>
</tr>
<tr>
<td></td>
<td>• 16760A.</td>
</tr>
<tr>
<td></td>
<td>• 16910A, 16911A, 16950A, 16950B, 16951B.</td>
</tr>
<tr>
<td>A single node-locked FPGA dynamic probe license will enable all modules within a 16900 Series system.</td>
<td></td>
</tr>
</tbody>
</table>

| Triggering capabilities: | Determined by logic analyzer. |
| Supported probing mechanisms: | Soft touch (34-channel and 17-channel), Mictor, Samtec, Flying lead |

FPGA Dynamic Probe Software Application

| Maximum number of devices supported on a JTAG scan chain: | 256 |
| Maximum number of Altera LAI cores supported per FPGA device: | 15 |
The *Agilent Logic Analyzer* application includes the COM Automation Server. This software lets you write programs that control the *Agilent Logic Analyzer* application from remote computers on the Local Area Network (LAN).

In a COM automation program, you can configure a probe by:

- Loading a configuration file (which configures the complete logic analyzer setup).
- Using the "Probe" (in the online help) object's "DoCommands" (in the online help) method with an XML-format string parameter (see Probe Setup, XML Format (see page 73)).

You can get information about a probe's configuration using the Probe object's "QueryCommand" (in the online help) method. Queries supported by the FPGA dynamic probe are listed below.

For more information about logic analyzer COM automation and probe objects in general, see "COM Automation" (in the online help).

XML-Based Queries Supported

The FPGA dynamic probe supports the following XML-based queries (made with the "Probe" (in the online help) object's "QueryCommand" (in the online help) method).

<table>
<thead>
<tr>
<th>Query</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GetAllSetup</td>
<td>Returns the current setup, using the full tag set, used for writing generic configuration files (see the XML format \texttt{<Properties>} element (see page 98)).</td>
</tr>
<tr>
<td>GetProperties</td>
<td>Returns the current setup, using the full tag set, equivalent to "GetAllSetup" (see the XML format \texttt{<Properties>} element (see page 98)).</td>
</tr>
</tbody>
</table>

See Also

- "COM Automation" (in the online help)
- Probe Setup, XML Format (see page 73)
11
Probe Setup, XML Format

When you save logic analyzer configurations to XML format files, setup information for the FPGA dynamic probe is included.

This XML format setup information is also used when writing COM automation programs to control the logic analyzer from a remote computer.

XML elements for the FPGA dynamic probe have the following hierarchy:

<Properties> (see page 98)
 <ATC_II> (see page 75)
 <JTAG_Chain> (see page 88)
 <Devices> (see page 87)
 <Device> (see page 85)
 <Cores> (see page 83)
 <Core> (see page 81)
 <Banks> (see page 80)
 <Bank> (see page 76)
 <Signals> (see page 102)
 <Signal> (see page 100)
 <Labels> (see page 91)
 <Label> (see page 89)
 <NonATCLabels> (see page 92)
 <Label> (see page 90)
 <Assignment> (see page 74)
 <WindowInfo> (see page 107)
 <SymbolInfo> (see page 105)
 <TriggerInfo> (see page 106)
 <PinMapping> (see page 93)
 <DefinedProbes> (see page 84)
 <Probe> (see page 97)
 <Pods> (see page 96)
 <Pod> (see page 95)
 <Signals> (see page 104)
 <Signal> (see page 101)

See Also
- "XML Format" (in the online help)
- Probe Control, COM Automation (see page 71)
<Assignment> Element

The <Assignment> element describes the logic analyzer pod and channel assignments for a Label element (under NonATCLabels).

Attributes

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel</td>
<td>'number'</td>
</tr>
<tr>
<td>Pod</td>
<td>'number'</td>
</tr>
</tbody>
</table>

Parents

This element can have the following parents: <Label> (see page 90).

Example

```xml
<NonATCLabels>
  <Label Name='My Bus 2' Comment='' Handle='131'>
    <Assignment Pod='1' Channel='0' />
    <Assignment Pod='1' Channel='1' />
    <Assignment Pod='1' Channel='2' />
    <Assignment Pod='1' Channel='3' />
    <Assignment Pod='1' Channel='4' />
    <Assignment Pod='1' Channel='5' />
    <Assignment Pod='1' Channel='6' />
    <Assignment Pod='1' Channel='7' />
  </Label>
</NonATCLabels>
```
<ATC_II> Element

The <ATC_II> element describes the selected device, the selected core, and the cable type.

Attributes

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CableType</td>
<td>'number'</td>
</tr>
<tr>
<td>ParallelCablePort</td>
<td>'number'</td>
</tr>
<tr>
<td>ParallelCableSpeed</td>
<td>'number'</td>
</tr>
<tr>
<td>ParallelCableType</td>
<td>'number'</td>
</tr>
<tr>
<td>SelectedCore</td>
<td>'number'</td>
</tr>
<tr>
<td>SelectedDevice</td>
<td>'number'</td>
</tr>
<tr>
<td>USBCableSpeed</td>
<td>'number'</td>
</tr>
</tbody>
</table>

Parents

This element can have the following parents: <Properties> (see page 98).

Example

```xml
<ATC_II SelectedDevice='1' SelectedCore='0' CableType='0'
    ParallelCableType='0' ParallelCableSpeed='2' ParallelCablePort='0'
    USBCableSpeed='0'/>
```
<Bank> Element

The <Bank> element describes a bank within an Altera LAI core.

Attributes

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CalibrationBank</td>
<td>'F' (false) or 'T' (true)</td>
</tr>
<tr>
<td>Name</td>
<td>'string'</td>
</tr>
<tr>
<td>NumDataPins</td>
<td>'number'</td>
</tr>
<tr>
<td>State2X</td>
<td>'F' (false) or 'T' (true)</td>
</tr>
</tbody>
</table>

Children

This element can have the following children: <Signals> (see page 102), <NonATCLabels> (see page 92), <WindowInfo> (see page 107), <SymbolInfo> (see page 105), <TriggerInfo> (see page 106).

Parents

This element can have the following parents: <Banks> (see page 80).

Example

```xml
<Bank Name='Bank-0' CalibrationBank='F' NumDataPins='16' State2X='F'>
  <Signals>
    <Signal>
      <Labels>
        <Label Name='/s2mon/tid' Bit='0' />
      </Labels>
    </Signal>
    <Signal>
      <Labels>
        <Label Name='/s2mon/tid' Bit='1' />
      </Labels>
    </Signal>
    <Signal>
      <Labels>
        <Label Name='/s2mon/tid' Bit='2' />
      </Labels>
    </Signal>
    <Signal>
      <Labels>
        <Label Name='/s2mon/tid' Bit='3' />
      </Labels>
    </Signal>
    <Signal>
      <Labels>
        <Label Name='/s2mon/tid' Bit='4' />
      </Labels>
    </Signal>
  </Signals>
</Bank>
```
<Signals>
 <Signal>
 <Labels>
 <Label Name="/s2mon/tid" Bit='6' />
 </Labels>
 </Signal>
 <Signal>
 <Labels>
 <Label Name="/s2mon/tid" Bit='7' />
 </Labels>
 </Signal>
 <Signal>
 <Labels>
 <Label Name="/s2mon/lastackid" Bit='0' />
 </Labels>
 </Signal>
 <Signal>
 <Labels>
 <Label Name="/s2mon/lastackid" Bit='1' />
 </Labels>
 </Signal>
 <Signal>
 <Labels>
 <Label Name="/s2mon/lastackid" Bit='2' />
 </Labels>
 </Signal>
 <Signal>
 <Labels>
 <Label Name="/s2mon/lastackid" Bit='3' />
 </Labels>
 </Signal>
 <Signal>
 <Labels>
 <Label Name="/s2mon/lastackid" Bit='4' />
 </Labels>
 </Signal>
 <Signal>
 <Labels>
 <Label Name="/s2mon/lastackid" Bit='5' />
 </Labels>
 </Signal>
 <Signal>
 <Labels>
 <Label Name="/s2mon/lastackid" Bit='6' />
 </Labels>
 </Signal>
 <NonATCLabels />
</Signals>
<WindowInfo WindowHandle='1' WindowSettings=' <Setup> <Sampling PerDivision='5 ns' Delay='0 s'> <Clear/> <BusSignals> <BusSignal Module='My 1682D-1' Name='My Bus' DefaultBase='Hex'>
Color='hFFFFFF' Height='30'/>

<BusSignal Module='My 1682D-1'
Name='/s2mon/tid' DefaultBase='Hex'
Color='hFFFFFF' Height='30'/>

<BusSignal Module='My 1682D-1'
Name='/s2mon/s2mstate'
DefaultBase='Hex'
Color='hFFFFFF' Height='30'/>

<BusSignal Name='Time'
Color='hFFFFFF'
Height='30'/>

</BusSignals>

</Setup />

</WindowInfo WindowsHandle='2' WindowSettings=''

<BusSignals>

<Clear/>

<BusSignal Module='My 1682D-1'
Name='Sample Number'
Color='hFFFFFF'
Alignment='Right'
Width='112'/>

<BusSignal Module='My 1682D-1'
Name='My Bus 1'
DefaultBase='Hex'
Color='hFFFFFF'
Alignment='Right'
Width='113'/>

<BusSignal Name='Time'
DefaultBase='Absolute'
Color='hFFFFFF'
Alignment='Right'
Width='152'/>

<BusSignal Module='My 1682D-1'
Name='/s2mon/tid'
DefaultBase='Hex'
Color='hFFFFFF'
Alignment='Right'
Width='113'/>

<BusSignal Module='My 1682D-1'
Name='/s2mon/s2mstate'
DefaultBase='Hex'
Color='hFFFFFF'
Alignment='Right'
Width='120'/>

</BusSignals>

</SymbolInfo ModuleHandle='1' SymbolSettings=''

<Module>

<BusSignalSetup>

<BusSignals>

<BusSignal Name='My Bus 1'/>

<Folder Name='Core 0 FPGA Probe'
Comment='Created by FPGA Dynamic Probe-1'>
<BusSignal Name='/s2mon/tid'/>
<BusSignal Name='/s2mon/s2mstate'/>
</Folder>

</BusSignals>

</BusSignalSetup>

<NetlistImport/>

<Config TimeOfTrigger='1.110240661 Gs'
CorrelatedTriggerTime='0 s'
UserSkewTime='0 s'
SystemTrigger='T'/>

</Module>

</TriggerInfo ModuleHandle='1' TriggerSettings=''

</Module>
<Trigger Mode='State' Type='Normal'>
 <StoreQual Mode='Custom'>
 <Event ParensNeeded='F'>
 <Anything/></Event>
 </StoreQual>
 <Step Number='1'>
 <If>
 <Event ParensNeeded='F'>
 <BusSignal Name='/s2mon/tid' Bit='All' Operator='Equals' Value='h3F'/>
 </Event>
 <Occurrence Value='1' Mode='Eventual'/>
 <Action>
 <TriggerAction Operator='Fill Memory'>
 <StoreQual Mode='Custom'>
 <Event ParensNeeded='F'>
 <DefaultStore/></Event>
 </StoreQual>
 </TriggerAction>
 </Action>
 </If>
 </Step>
</Trigger>
<Config TimeOfTrigger='1.110240661 Gs' CorrelatedTriggerTime='0 s' UserSkewTime='0 s' SystemTrigger='T'/>
</Module>
</Bank>
<Banks> Element

The <Banks> element contains descriptions of banks within an Altera LAI core.

Children
This element can have the following children: <Bank> (see page 76).

Parents
This element can have the following parents: <Core> (see page 81).

Example

```
<Banks>
  <Bank Name='Bank 0' CalibrationBank='F' NumDataPins='16' State2X='F'>
    ...
  </Bank>
  <Bank Name='Bank 1' CalibrationBank='F' NumDataPins='16' State2X='F'>
    ...
  </Bank>
  <Bank Name='Bank 2' CalibrationBank='F' NumDataPins='16' State2X='F'>
    ...
  </Bank>
  <Bank Name='Bank 3' CalibrationBank='F' NumDataPins='16' State2X='F'>
    ...
  </Bank>
  <Bank Name='Test Bank' CalibrationBank='T' NumDataPins='16' State2X='F'>
    ...
  </Bank>
</Banks>
```
<Core> Element

The <Core> element describes a core within a device on the JTAG chain.

Attributes

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClockPodIndex</td>
<td>'number'</td>
</tr>
<tr>
<td>CoreCannotBeMaster</td>
<td>'F' (false) or 'T' (true)</td>
</tr>
<tr>
<td>CoreIsMaster</td>
<td>'F' (false) or 'T' (true)</td>
</tr>
<tr>
<td>Latency</td>
<td>'number'</td>
</tr>
<tr>
<td>MinimumPeriod</td>
<td>'number'</td>
</tr>
<tr>
<td>Name</td>
<td>'string'</td>
</tr>
<tr>
<td>NumBanks</td>
<td>'number'</td>
</tr>
<tr>
<td>NumPins</td>
<td>'number'</td>
</tr>
<tr>
<td>NumSignals</td>
<td>'number'</td>
</tr>
<tr>
<td>SelectedBank</td>
<td>'number'</td>
</tr>
<tr>
<td>SelectedForUse</td>
<td>'F' (false) or 'T' (true)</td>
</tr>
<tr>
<td>SelectedSignal</td>
<td>'number'</td>
</tr>
<tr>
<td>StateMode</td>
<td>'F' (false) or 'T' (true)</td>
</tr>
<tr>
<td>TDM_1X</td>
<td>'F' (false) or 'T' (true)</td>
</tr>
<tr>
<td>TestBankAvailable</td>
<td>'F' (false) or 'T' (true)</td>
</tr>
<tr>
<td>TestBankMode</td>
<td>'number'</td>
</tr>
<tr>
<td>Type</td>
<td>'number'</td>
</tr>
<tr>
<td>ThresholdCode</td>
<td>'number'</td>
</tr>
</tbody>
</table>

Children

This element can have the following children: <Banks> (see page 80), <PinMapping> (see page 93).

Parents

This element can have the following parents: <Cores> (see page 83).

Example

```xml
<Core Name='Core-1' Type='0' SelectedBank='0' SelectedSignal='1'
      NumBanks='5' NumSignals='16' NumPins='17' StateMode='T' TDM_1X='T'
      ThresholdCode='92' TestBankAvailable='T' ClockPodIndex='0'
      SelectedForUse='T' CoreIsMaster='T' CoreCannotBeMaster='F'
      MinimumPeriod='-1' TestBankMode='2' Latency='4'>
  <Banks>
    <Bank Name='Bank 0' CalibrationBank='F' NumDataPins='16'
           State2X='F'>
      ...
    </Bank>
  </Banks>
</Core>
```
State2X='F'>
...
</Bank>

<?Bank Name='Bank 2' CalibrationBank='F' NumDataPins='16'
State2X='F'>
...
</Bank>

<?Bank Name='Bank 3' CalibrationBank='F' NumDataPins='16'
State2X='F'>
...
</Bank>

<?Bank Name='Test Bank' CalibrationBank='T' NumDataPins='16'
State2X='F'>
...
</Bank>
</Banks>

<?PinMapping Attached='T' ModuleHandle='1'>
<?DefinedProbes>
 <?Probe Name='J1' Type='E5346A 34-ch Micror single-ended probe'>
 <?Pods>
 <?Pod Index='0' />
 <?Pod Index='1' />
 </Pods>
 <?Signals>
 ...
 </Signals>
 </Probe>
</DefinedProbes>
</PinMapping>
</Core>
<Cores> Element

The <Cores> element contains descriptions of cores within a device on the JTAG chain.

Children
This element can have the following children: <Core> (see page 81).

Parents
This element can have the following parents: <Device> (see page 85).

Example

```xml
<Core Name='Core 0' Type='0' SelectedBank='0' SelectedSignal='-1'
 Num Banks='5' Num Signals='16' Num Pins='9' State Mode='T'
 TDM_1X='F' Threshold Code='92' Test Bank Available='T'
 Clock Pod Index='0' Selected For Use='T' Core Is Master='F'
 Core Cannot Be Master='F' Minimum Period='0' Test Bank Mode='2'
 Latency='4'>
 <Banks>
   ...
 </Banks>
 <Pin Mapping Attached='T' Module Handle='1'>
   ...
 </Pin Mapping>
</Core>

<Core Name='Core 1' Type='0' SelectedBank='0' SelectedSignal='-1'
 Num Banks='2' Num Signals='9' Num Pins='9' State Mode='F'
 TDM_1X='T' Threshold Code='92' Test Bank Available='F'
 Clock Pod Index='2' Selected For Use='T' Core Is Master='T'
 Core Cannot Be Master='F' Minimum Period='0' Test Bank Mode='0'>
 <Banks>
   ...
 </Banks>
 <Pin Mapping Attached='T' Module Handle='1'>
   ...
 </Pin Mapping>
</Core>
</Cores>
```
<DefinedProbes> Element

The <DefinedProbes> element contains defined probes.

Children
This element can have the following children: <Probe> (see page 97).

Parents
This element can have the following parents: <PinMapping> (see page 93).

Example
<DefinedProbes>
 <Probe Name='J1' Type='E5346A 34-ch Mictor single-ended probe'>
 <Pods>
 <Pod Index='0'/>
 <Pod Index='1'/>
 </Pods>
 <Signals>
 <Signal Name='ATD0' Pin='38' PinMapIndex='0' ClockChannel='F' />
 <Signal Name='ATD1' Pin='36' PinMapIndex='1' ClockChannel='F' />
 <Signal Name='ATD2' Pin='34' PinMapIndex='2' ClockChannel='F' />
 <Signal Name='ATD3' Pin='32' PinMapIndex='3' ClockChannel='F' />
 <Signal Name='ATD4' Pin='30' PinMapIndex='4' ClockChannel='F' />
 <Signal Name='ATD5' Pin='28' PinMapIndex='5' ClockChannel='F' />
 <Signal Name='ATD6' Pin='26' PinMapIndex='6' ClockChannel='F' />
 <Signal Name='ATD7' Pin='24' PinMapIndex='7' ClockChannel='F' />
 <Signal Name='ATD8' Pin='22' PinMapIndex='8' ClockChannel='F' />
 <Signal Name='ATD9' Pin='20' PinMapIndex='9' ClockChannel='F' />
 <Signal Name='ATD10' Pin='18' PinMapIndex='10' ClockChannel='F' />
 <Signal Name='ATD11' Pin='16' PinMapIndex='11' ClockChannel='F' />
 <Signal Name='ATD12' Pin='14' PinMapIndex='12' ClockChannel='F' />
 <Signal Name='ATD13' Pin='12' PinMapIndex='13' ClockChannel='F' />
 <Signal Name='ATD14' Pin='10' PinMapIndex='14' ClockChannel='F' />
 <Signal Name='ATCK' Pin='6' PinMapIndex='16' ClockChannel='T' />
 </Signals>
 </Probe>
</DefinedProbes>
<Device> Element

The <Device> element describes a device on the JTAG chain.

Attributes

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDCFilename</td>
<td>'string'</td>
</tr>
<tr>
<td>Configurable</td>
<td>'F' (false) or 'T' (true)</td>
</tr>
<tr>
<td>FPGAFilename</td>
<td>'string'</td>
</tr>
<tr>
<td>IRLength</td>
<td>'number'</td>
</tr>
<tr>
<td>Name</td>
<td>'string'</td>
</tr>
<tr>
<td>NumCores</td>
<td>'number'</td>
</tr>
<tr>
<td>SelectedForUse</td>
<td>'F' (false) or 'T' (true)</td>
</tr>
<tr>
<td>Type</td>
<td>'number'</td>
</tr>
<tr>
<td>UserRegNum</td>
<td>'number'</td>
</tr>
</tbody>
</table>

Children

This element can have the following children: <Cores> (see page 83).

Parents

This element can have the following parents: <Devices> (see page 87).

Example

```xml
<Device Name='Device 1' Type='0' NumCores='2' UserRegNum='1'
         Configurable='T' IRLength='6' CDCFilename='C:\Documents and
         Settings\user\My Documents\Agilent Technologies\Logic
         Analyzer\Config Files\demo\Altera_demo_V8.cdc'
         FPGAFilename='C:\Documents and Settings\user\My Documents\Agilent
         Technologies\Logic Analyzer\Config Files\demo\Altera_demo_V8.bit'
         SelectedForUse='F'>
  <Cores>
    <Core Name='Core 0' Type='0' SelectedBank='0' SelectedSignal='-1'
           NumBanks='5' NumSignals='16' NumPins='9' StateMode='T'
           TDM_1X='F' ThresholdCode='92' TestBankAvailable='T'
           ClockPodIndex='0' SelectedForUse='T' CoreIsMaster='F'
           CoreCannotBeMaster='F' MinimumPeriod='-1' TestBankMode='2'
           Latency='4'>
      <Banks>
        ...
      </Banks>
      <PinMapping Attached='T' ModuleHandle='1'>
        ...
      </PinMapping>
    </Core>
    <Core Name='Core 1' Type='0' SelectedBank='0' SelectedSignal='-1'
           NumBanks='2' NumSignals='9' NumPins='9' StateMode='F'
           TDM_1X='T' ThresholdCode='92' TestBankAvailable='F'
           ClockPodIndex='2' SelectedForUse='T' CoreIsMaster='T'
           CoreCannotBeMaster='F' MinimumPeriod='-1' TestBankMode='0'>
      <Banks>
        ...
      </Banks>
    </Core>
  </Cores>
</Device>
```
11 Probe Setup, XML Format

```xml
</Banks>
<PinMapping Attached='T' ModuleHandle='1'>
    ...
</PinMapping>
</Core>
</Cores>
</Device>
```
<Devices> Element

The <Devices> element contains descriptions of the devices on the JTAG chain.

Children
This element can have the following children: <Device> (see page 85).

Parents
This element can have the following parents: <Properties> (see page 98).

Example
<Devices>
 <Device Name='Device 0' Type='0' NumCores='0' UserRegNum='0' Configurable='F' IRLength='8' CDCFilename='' FPGAFilename='' SelectedForUse='F'>
 <Cores/>
 </Device>
 <Device Name='Device 1' Type='0' NumCores='2' UserRegNum='1' Configurable='T' IRLength='6' CDCFilename='C:\Documents and Settings\user\My Documents\Agilent Technologies\Logic Analyzer\Config Files\demo\Altera_demo_V8.cdc' FPGAFilename='C:\Documents and Settings\user\My Documents\Agilent Technologies\Logic Analyzer\Config Files\demo\Altera_demo_V8.bit' SelectedForUse='F'>
 <Cores>
 <Core Name='Core 0' Type='0' SelectedBank='0' SelectedSignal='-1' NumBanks='5' NumSignals='16' NumPins='9' StateMode='T' TDM_1X='F' ThresholdCode='92' TestBankAvailable='T' ClockPodIndex='0' SelectedForUse='T' CoreIsMaster='F' CoreCannotBeMaster='F' MinimumPeriod='-1' TestBankMode='2' Latency='4'>
 <Banks>
 ...
 </Banks>
 <PinMapping Attached='T' ModuleHandle='1'>
 ...
 </PinMapping>
 </Core>
 <Core Name='Core 1' Type='0' SelectedBank='0' SelectedSignal='-1' NumBanks='2' NumSignals='9' NumPins='9' StateMode='F' TDM_1X='T' ThresholdCode='92' TestBankAvailable='F' ClockPodIndex='2' SelectedForUse='T' CoreIsMaster='T' CoreCannotBeMaster='F' MinimumPeriod='-1' TestBankMode='0'>
 <Banks>
 ...
 </Banks>
 <PinMapping Attached='T' ModuleHandle='1'>
 ...
 </PinMapping>
 </Core>
 </Cores>
 </Device>
</Devices>
<JTAG_Chain> Element

The <JTAG_Chain> element describes the number of devices and the number of Altera LAI cores on the JTAG chain.

Attributes

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NumATC_II</td>
<td>'number'</td>
</tr>
<tr>
<td>NumDevices</td>
<td>'number'</td>
</tr>
</tbody>
</table>

Parents

This element can have the following parents: <Properties> (see page 98).

Example

<JTAG_Chain NumDevices='3' NumATC_II='2' />
<Label> Element

The <Label> element describes a label within a signal.

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bit</td>
<td>'number'</td>
</tr>
<tr>
<td></td>
<td>Name</td>
<td>'string'</td>
</tr>
</tbody>
</table>

Parents This element can have the following parents: <Labels> (see page 91).

Example <Label Name='/s2mon/tid' Bit='0' />
<Label> Element (under NonATCLabels)

The <Label> element describes a bus/signal name within the NonATCLabels element.

Attributes

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment</td>
<td>'string'</td>
</tr>
<tr>
<td>Handle</td>
<td>'number'</td>
</tr>
<tr>
<td>Name</td>
<td>'string'</td>
</tr>
</tbody>
</table>

Children

This element can have the following children: <Assignment> (see page 74).

Parents

This element can have the following parents: <NonATCLabels> (see page 92).

Example

```xml
<NonATCLabels>
  <Label Name='My Bus 2' Comment='' Handle='131'>
    <Assignment Pod='1' Channel='0' />
    <Assignment Pod='1' Channel='1' />
    <Assignment Pod='1' Channel='2' />
    <Assignment Pod='1' Channel='3' />
    <Assignment Pod='1' Channel='4' />
    <Assignment Pod='1' Channel='5' />
    <Assignment Pod='1' Channel='6' />
    <Assignment Pod='1' Channel='7' />
  </Label>
</NonATCLabels>
```
<Labels> Element

The <Labels> element contains descriptions of labels within a signal.

Children
This element can have the following children: <Label> (see page 89).

Parents
This element can have the following parents: <Signal> (see page 100).

Example

```
<Labels>
  <Label Name='/s2mon/tid' Bit='0' />
</Labels>
```
The `<NonATCLabels>` element contains a bank's bus/signal names that were not imported from a .cdc file or were renamed (for example, the Calibration Bus or any other renamed or additionally defined bus/signal names).

Children
This element can have the following children: `<Label>` (see page 90).

Parents
This element can have the following parents: `<Bank>` (see page 76).

Example
```
<NonATCLabels>
  <Label Name='My Bus 2' Comment='' Handle='131'>
    <Assignment Pod='1' Channel='0' />  
    <Assignment Pod='1' Channel='1' />  
    <Assignment Pod='1' Channel='2' />  
    <Assignment Pod='1' Channel='3' />  
    <Assignment Pod='1' Channel='4' />  
    <Assignment Pod='1' Channel='5' />  
    <Assignment Pod='1' Channel='6' />  
    <Assignment Pod='1' Channel='7' />  
  </Label>
</NonATCLabels>
```
<PinMapping> Element

The `<PinMapping>` element contains descriptions of pin mapping within an Altera LAI core.

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attached</td>
<td>'F' (false) or 'T' (true)</td>
</tr>
<tr>
<td>ModuleHandle</td>
<td>'number'</td>
</tr>
</tbody>
</table>

Children This element can have the following children: `<DefinedProbes>` (see page 84).

Parents This element can have the following parents: `<Core>` (see page 81).

Example

```xml
<PinMapping Attached='T' ModuleHandle='1'>
  <DefinedProbes>
    <Probe Name='J1' Type='E5346A 34-ch Mictor single-ended probe'>
      <Pods>
        <Pod Index='0'/>
        <Pod Index='1'/>
      </Pods>
      <Signals>
        <Signal Name='ATD0' Pin='38' PinMapIndex='0' ClockChannel='F'/>
        <Signal Name='ATD1' Pin='36' PinMapIndex='1' ClockChannel='F'/>
        <Signal Name='ATD2' Pin='34' PinMapIndex='2' ClockChannel='F'/>
        <Signal Name='ATD3' Pin='32' PinMapIndex='3' ClockChannel='F'/>
        <Signal Name='ATD4' Pin='30' PinMapIndex='4' ClockChannel='F'/>
        <Signal Name='ATD5' Pin='28' PinMapIndex='5' ClockChannel='F'/>
        <Signal Name='ATD6' Pin='26' PinMapIndex='6' ClockChannel='F'/>
        <Signal Name='ATD7' Pin='24' PinMapIndex='7' ClockChannel='F'/>
        <Signal Name='ATD8' Pin='22' PinMapIndex='8' ClockChannel='F'/>
        <Signal Name='ATD9' Pin='20' PinMapIndex='9' ClockChannel='F'/>
        <Signal Name='ATD10' Pin='18' PinMapIndex='10' ClockChannel='F'/>
        <Signal Name='ATD11' Pin='16' PinMapIndex='11' ClockChannel='F'/>
        <Signal Name='ATD12' Pin='14' PinMapIndex='12' ClockChannel='F'/>
        <Signal Name='ATD13' Pin='12' PinMapIndex='13' ClockChannel='F'/>
        <Signal Name='ATD14' Pin='10' PinMapIndex='14' ClockChannel='F'/>
      </Signals>
    </Probe>
  </DefinedProbes>
</PinMapping>
```
<PinMapping>
 <DefinedProbes>
 <Probe>
 <Signals>
 <Signal Name='ATCK' Pin='6' PinMapIndex='16' ClockChannel='T' />
 </Signals>
 </Probe>
 </DefinedProbes>
</PinMapping>
<Pod> Element

The `<Pod>` element describes the pod index used within a defined probe.

Attributes

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>'number'</td>
</tr>
</tbody>
</table>

Parents

This element can have the following parents: `<Pods>` (see page 96).

Example

```xml
<Pod Index='0'/>
```
<Pods> Element

The <Pods> element contains the pods used by a defined probe.

Children
This element can have the following children: <Pod> (see page 95).

Parents
This element can have the following parents: <Probe> (see page 97).

Example

```xml
<Pods>
  <Pod Index='0'/>
  <Pod Index='1'/>
</Pods>
```
<Probe> Element

The <Probe> element describes a defined probe.

Attributes

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>'string' (name of connector in device under test)</td>
</tr>
<tr>
<td>Type</td>
<td>'string' (name of probe)</td>
</tr>
</tbody>
</table>

Children

This element can have the following children: <Pods> (see page 96), <Signals> (see page 104).

Parents

This element can have the following parents: <DefinedProbes> (see page 84).

Example

```xml
<Probe Name='J1' Type='E5346A 34-ch Mictor single-ended probe'>
  <Pods>
    <Pod Index='0'/>
    <Pod Index='1'/>
  </Pods>
  <Signals>
    <Signal Name='ATD0' Pin='38' PinMapIndex='0' ClockChannel='F' />
    <Signal Name='ATD1' Pin='36' PinMapIndex='1' ClockChannel='F' />
    <Signal Name='ATD2' Pin='34' PinMapIndex='2' ClockChannel='F' />
    <Signal Name='ATD3' Pin='32' PinMapIndex='3' ClockChannel='F' />
    <Signal Name='ATD4' Pin='30' PinMapIndex='4' ClockChannel='F' />
    <Signal Name='ATD5' Pin='28' PinMapIndex='5' ClockChannel='F' />
    <Signal Name='ATD6' Pin='26' PinMapIndex='6' ClockChannel='F' />
    <Signal Name='ATD7' Pin='24' PinMapIndex='7' ClockChannel='F' />
    <Signal Name='ATD8' Pin='22' PinMapIndex='8' ClockChannel='F' />
    <Signal Name='ATD9' Pin='20' PinMapIndex='9' ClockChannel='F' />
    <Signal Name='ATD10' Pin='18' PinMapIndex='10' ClockChannel='F' />
    <Signal Name='ATD11' Pin='16' PinMapIndex='11' ClockChannel='F' />
    <Signal Name='ATD12' Pin='14' PinMapIndex='12' ClockChannel='F' />
    <Signal Name='ATD13' Pin='12' PinMapIndex='13' ClockChannel='F' />
    <Signal Name='ATD14' Pin='10' PinMapIndex='14' ClockChannel='F' />
    <Signal Name='ATCK' Pin='6' PinMapIndex='16' ClockChannel='T' />
  </Signals>
</Probe>
```
<Properties> Element

The <Properties> element contains setup information for the FPGA dynamic probe.

Children

This element can have the following children: <ATC_II> (see page 75), <JTAG_Chain> (see page 88), <Devices> (see page 87).

Parents

This element can have the following parents: "<Probe>" (in the online help).

When used in COM automation, this element is returned by the "QueryCommand method" (in the online help)'s GetAllSetup and GetProperties queries. You can also use this element string as an XMLCommand with the "DoCommands method" (in the online help) to configure the FPGA dynamic probe.

Example

<Properties>
 <ATC_II SelectedDevice='1' SelectedCore='1' CableType='0'
 ParallelCableType='0' ParallelCableSpeed='2'
 ParallelCablePort='0' USBCableSpeed='0'/>
 <JTAG_Chain NumDevices='2' NumATC_II='2'/>
 <Devices>
 <Device Name='Device 0' Type='0' NumCores='0' UserRegNum='0'
 Configurable='F' IRLength='8' CDCFilename=''
 FPGAFilename='' SelectedForUse='F'>
 <Cores/>
 </Device>
 <Device Name='Device 1' Type='0' NumCores='2' UserRegNum='1'
 Configurable='T' IRLength='6' CDCFilename='C:\Documents
 and Settings\user\My Documents\Agilent Technologies\Logic
 Analyzer\Config Files\demo\Altera_demo_V8.cdc'
 FPGAFilename='C:\Documents and Settings\user\My
 Documents\Agilent Technologies\Logic Analyzer\Config
 Files\demo\Altera_demo_V8.bit' SelectedForUse='F'>
 <Cores>
 <Core Name='Core 0' Type='0' SelectedBank='0'
 SelectedSignal='-1' NumBanks='5' NumSignals='16'
 NumPins='9' StateMode='T' TDM_1X='F'
 ThresholdCode='92' TestBankAvailable='T'
 ClockPodIndex='0' SelectedForUse='T'
 CoreIsMaster='F' CoreCannotBeMaster='F'
 MinimumPeriod='-1' TestBankMode='2' Latency='4'>
 <Banks>
 ...
 </Banks>
 <PinMapping Attached='T' ModuleHandle='1'>
 ...
 </PinMapping>
 </Core>
 ...
 </Cores>
 </Device>
 </Devices>
</Properties>
ClockPodIndex='2' SelectedForUse='T' CoreIsMaster='T'
CoreCannotBeMaster='F' MinimumPeriod='1'
TestBankMode='0'>
 <Banks>
 ...
 </Banks>
 <PinMapping Attached='T' ModuleHandle='1'>
 ...
 </PinMapping>
</Core>
</Cores>
</Device>
</Devices>
</Properties>
<Signal> Element (under Bank)

The <Signal> element describes a signal within a bank.

Children
This element can have the following children: <Labels> (see page 91).

Parents
This element can have the following parents: <Signals> (see page 102).

Example
```xml
<SIGNAL>
  <Labels>
    <Label Name='/s2mon/tid' Bit='0' />
  </Labels>
</Signal>
```
<Signal> Element (under Probe)

The `<Signal>` element describes a signal within a defined probe.

Attributes

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClockChannel</td>
<td>'F' (false) or 'T' (true)</td>
</tr>
<tr>
<td>Name</td>
<td>'string'</td>
</tr>
<tr>
<td>PinMapIndex</td>
<td>'number'</td>
</tr>
</tbody>
</table>

Parents

This element can have the following parents: `<Signals>` (see page 104).

Example

```xml
<Signal Name='ATD0' Pin='38' PinMapIndex='0' ClockChannel='F' />`
<Signals> Element (under Bank)

The <Signals> element contains descriptions of signals within a bank.

**Children**
This element can have the following children: <Signal> (see page 100).

**Parents**
This element can have the following parents: <Bank> (see page 76).

**Example**
```
<Signals>
 <Signal>
 <Labels>
 <Label Name='/s2mon/tid' Bit='0' />
 </Labels>
 </Signal>
 <Signal>
 <Labels>
 <Label Name='/s2mon/tid' Bit='1' />
 </Labels>
 </Signal>
 <Signal>
 <Labels>
 <Label Name='/s2mon/tid' Bit='2' />
 </Labels>
 </Signal>
 <Signal>
 <Labels>
 <Label Name='/s2mon/tid' Bit='3' />
 </Labels>
 </Signal>
 <Signal>
 <Labels>
 <Label Name='/s2mon/tid' Bit='4' />
 </Labels>
 </Signal>
 <Signal>
 <Labels>
 <Label Name='/s2mon/tid' Bit='5' />
 </Labels>
 </Signal>
 <Signal>
 <Labels>
 <Label Name='/s2mon/tid' Bit='6' />
 </Labels>
 </Signal>
 <Signal>
 <Labels>
 <Label Name='/s2mon/tid' Bit='7' />
 </Labels>
 </Signal>
 <Signal>
 <Labels>
 <Label Name='/s2mon/lastackid' Bit='0' />
 </Labels>
 </Signal>
</Signals>
```
<Signals>
    <Signal>
        <Labels>
            <Label Name='/s2mon/lastackid' Bit='1' />
        </Labels>
    </Signal>
    <Signal>
        <Labels>
            <Label Name='/s2mon/lastackid' Bit='2' />
        </Labels>
    </Signal>
    <Signal>
        <Labels>
            <Label Name='/s2mon/lastackid' Bit='3' />
        </Labels>
    </Signal>
    <Signal>
        <Labels>
            <Label Name='/s2mon/lastackid' Bit='4' />
        </Labels>
    </Signal>
    <Signal>
        <Labels>
            <Label Name='/s2mon/lastackid' Bit='5' />
        </Labels>
    </Signal>
    <Signal>
        <Labels>
            <Label Name='/s2mon/lastackid' Bit='6' />
        </Labels>
    </Signal>
</Signals>
<Signals> Element (under Probe)

The <Signals> element contains the signals used by a defined probe.

Children
This element can have the following children: <Signal> (see page 101).

Parents
This element can have the following parents: <Probe> (see page 97).

Example
<Signals>
  <Signal Name='ATD0' Pin='38' PinMapIndex='0' ClockChannel='F' />
  <Signal Name='ATD1' Pin='36' PinMapIndex='1' ClockChannel='F' />
  <Signal Name='ATD2' Pin='34' PinMapIndex='2' ClockChannel='F' />
  <Signal Name='ATD3' Pin='32' PinMapIndex='3' ClockChannel='F' />
  <Signal Name='ATD4' Pin='30' PinMapIndex='4' ClockChannel='F' />
  <Signal Name='ATD5' Pin='28' PinMapIndex='5' ClockChannel='F' />
  <Signal Name='ATD6' Pin='26' PinMapIndex='6' ClockChannel='F' />
  <Signal Name='ATD7' Pin='24' PinMapIndex='7' ClockChannel='F' />
  <Signal Name='ATD8' Pin='22' PinMapIndex='8' ClockChannel='F' />
  <Signal Name='ATD9' Pin='20' PinMapIndex='9' ClockChannel='F' />
  <Signal Name='ATD10' Pin='18' PinMapIndex='10' ClockChannel='F' />
  <Signal Name='ATD11' Pin='16' PinMapIndex='11' ClockChannel='F' />
  <Signal Name='ATD12' Pin='14' PinMapIndex='12' ClockChannel='F' />
  <Signal Name='ATD13' Pin='12' PinMapIndex='13' ClockChannel='F' />
  <Signal Name='ATD14' Pin='10' PinMapIndex='14' ClockChannel='F' />
  <Signal Name='ATD15' Pin='8' PinMapIndex='15' ClockChannel='F' />
  <Signal Name='ATD16' Pin='6' PinMapIndex='16' ClockChannel='F' />
</Signals>
<SymbolInfo> Element

The <SymbolInfo> elements contain the module bus/signal symbol settings associated with a particular bank.

Attributes

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ModuleHandle</td>
<td>'number'</td>
</tr>
<tr>
<td>SymbolSettings</td>
<td>'string'</td>
</tr>
</tbody>
</table>

Parents

This element can have the following parents: <Bank> (see page 76).

Example

```
<SymbolInfo ModuleHandle='1' SymbolSettings=''
 <Module>
 <BusSignalSetup>
 <BusSignals>
 <BusSignal Name='My Bus 1'/>
 <Folder Name='Core 0 FPGA Probe'
 Comment='Created by FPGA Dynamic Probe-1'/>
 <BusSignal Name='/s2mon/tid'/>
 <BusSignal Name='/s2mon/s2mstate'/>
 </Folder>
 </BusSignals>
 <NetlistImport/>
 </BusSignalSetup>
 <Config TimeOfTrigger='1.110240661 Gs'
 CorrelatedTriggerTime='0 s'
 UserSkewTime='0 s'
 SystemTrigger='T'/>
 </Module>
'/>
```

See Also

- "<Module> Element (under Configuration Setup)" (in the online help)
<TriggerInfo> Element

The <TriggerInfo> elements contain the module trigger settings associated with a particular bank.

Attributes

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ModuleHandle</td>
<td>'number'</td>
</tr>
<tr>
<td>TriggerSettings</td>
<td>'string'</td>
</tr>
</tbody>
</table>

Parents

This element can have the following parents: <Bank> (see page 76).

Example

```
<TriggerInfo ModuleHandle='1' TriggerSettings='...'>
 <Module>
 <Trigger Mode='State' Type='Normal';>
 <StoreQual Mode='Custom';>
 <Event ParensNeeded='F';>
 <BusSignal Name='/s2mon/tid'; Bit='All'; Operator='Equals'; Value='h3F';/>
 </Event>
 </StoreQual>
 </Trigger>
 <Step Number='1';>
 <If>
 <Event ParensNeeded='F';>
 <BusSignal Name='/s2mon/tid'; Bit='All'; Operator='Equals'; Value='h3F';/>
 </Event>
 </If>
 <Step>
 <Config TimeOfTrigger='1.110240661 Gs'; CorrelatedTriggerTime='0 s'; UserSkewTime='0 s'; SystemTrigger='T';/>
 <Module>
 </Module>
 </Step>
 </Step>
 </If>
 </Step>
 </Step>
 </Module>
 </Module>
</TriggerInfo>
```

See Also

- "<Module> Element (under Configuration Setup)" (in the online help)
The `<WindowInfo>` elements contain the display window settings associated with a particular bank.

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WindowHandle</td>
<td>'number'</td>
</tr>
<tr>
<td>WindowSettings</td>
<td>'string'</td>
</tr>
</tbody>
</table>

Parents

This element can have the following parents: `<Bank>` (see page 76).

Example

```
<WindowInfo WindowHandle='1' WindowSettings=''
 <Setup>
 <Sampling PerDivision=''5 ns' Delay=''0 s''/>
 <BusSignals>
 <Clear/>
 <BusSignal Module='My 1682D-1'
 Name='My Bus 1' DefaultBase=''Hex''
 Color=''hFFFFFF'' Height=''30''/>
 <BusSignal Module='My 1682D-1'
 Name='/s2mon/tid' DefaultBase=''Hex''
 Color=''hFFFFFF'' Height=''30''/>
 <BusSignal Module='My 1682D-1'
 Name='/s2mon/s2mstate'
 DefaultBase=''Hex'' Color=''hFFFFFF'' Height=''30''/>
 <BusSignal Name='Time'
 DefaultBase='Absolute' Color=''hFFFFFF'' Height=''30''/>
 </BusSignals>
 </Setup>
</WindowInfo>
```

```
<WindowInfo WindowHandle='2' WindowSettings=''
 <Setup>
 <Clear/>
 <BusSignal Module='My 1682D-1'
 Name='Sample Number'
 Color=''hFFFFFF'' Alignment='Right' Width='112''/>
 <BusSignal Module='My 1682D-1'
 Name='My Bus 1'
 DefaultBase=''Hex'' Color=''hFFFFFF'' Alignment='Right' Width='113''/>
 <BusSignal Module='My 1682D-1'
 Name='/s2mon/tid'
 DefaultBase=''Hex'' Color=''hFFFFFF'' Alignment='Right' Width='113''/>
 <BusSignal Module='My 1682D-1'
 Name='/s2mon/s2mstate'
 DefaultBase=''Hex'' Color=''hFFFFFF'' Alignment='Right' Width='120''/>
 </BusSignals>
 </Setup>
</WindowInfo>
```
Probesetup, XML Format

<BusSignals/>

See Also

- "<Window> Element (under Configuration Setup)" (in the online help)
Index

Symbols

.bit FPGA configuration file, 64
.lai FPGA signal import file, 64

A

activity not on FPGA dynamic probe, 44
Altera FPGA dynamic probe, 3
Altera JTAG cable programmer software, 18
Altera LAI core, selecting, 28
Altera LAI core, selecting signal banks, 39
Altera LAI cores, enabling/disabling, 60
Altera software, problem locating, 42
Assignment, XML element, 74
ATC_II, XML element, 75
automated logic analyzer set up (FPGA dynamic probe), 58

B

B4656A FPGA dynamic probe for Altera FPGAs, 13
Bank, XML element, 76
banks (Altera LAI core), selecting, 39
Banks, XML element, 80
bus/signal names, adding FPGA, 33
bus/signal names, renaming FPGA, 32
bus/signal names, trimming FPGA, 32

C

cable connection, selecting type of, 28
captured data, invalidation of, 39
clock activity indicators, 45
COM automation, FPGA dynamic probe, 71
concepts, FPGA dynamic probe for Altera FPGAs, 47
configuration file, FPGA, 64
configure FPGA device, 30
connection to Altera LAI core, establishing, 28
Core Details dialog, 65
core name, 65
Core, XML element, 81
core name, 65
cores (Altera LAI), enabling/disabling, 60
cores, multiple, mapping to two halves of the same probe, 35
cores, XML element, 83

D
data, invalidation of, 39
d debug pins (FPGA), mapping to probes and pods, 35
d debug pins (FPGA), probing, 11
d debug pins, FPGA, 62
DefinedProbes, XML element, 84
demo mode, FPGA dynamic probe, 61
design (FPGA tools), 69
design steps for FPGA dynamic probe, 15
device name, 65
Device, XML element, 85
Devices, XML element, 87
disabling/enabling Altera LAI cores, 60

E

enabling/disabling Altera LAI cores, 60
error, script, 43

F

firewall, Quartus II Programmer port number, 24
FPGA bus/signal names, adding, 33
FPGA configuration file, 64
FPGA debug pins, 62
FPGA debug pins, mapping to probes and pods, 35
FPGA debug pins, probing, 11
FPGA Dynamic Probe Bank Selection dialog, 67
FPGA dynamic probe characteristics, 69
FPGA Dynamic Probe Setup dialog, 60
FPGA dynamic probe specifications, 89
FPGA dynamic probe, automated logic analyzer set up, 58
FPGA dynamic probe, design steps, 15
FPGA dynamic probe, installing and licensing, 13
FPGA dynamic probe, measurement steps, 27
FPGA dynamic probe, no activity, 44
FPGA dynamic probe, state mode measurements, 45
FPGA imported bus/signal names, renaming, 32
FPGA imported bus/signal names, trimming, 32
FPGA Probe, bus/signal name folder, 33
FPGA signal names, importing from LAI file, 31
FPGA, downloading configuration bits, 30

H

hostname of JTAG server, 25

I

imported FPGA bus/signal names, renaming, 32
imported FPGA bus/signal names, trimming, 32
installing FPGA signal names from LAI file, 31
installing the FPGA dynamic probe, 13
invalidation of captured data, 39

J

JTAG cable programmer software, Altera, 18
JTAG cable, establishing a connection, 28
JTAG cable, setting up, 19
JTAG scan chain, devices on, 28
JTAG scan chain, maximum number of devices, 69
JTAG server, 21
JTAG_Chain, XML element, 88

L

Label, XML element, 89
Label, XML element (under NonATCLabels), 90
Labels, XML element, 91
LAI core, compiling the project (example), 56
LAI core, configuring parameters (example), 49
LAI core, creating (example), 48
LAI core, enabling/disabling (example), 55
LAI core, inserting (example), 48
LAI core, mapping internal signals to banks (example), 53
LAI core, mapping the clock signal (example), 50
LAI core, mapping to I/O pins (example), 51
LAI core, multiple instances (example), 57
LAI core, saving (example), 55
LAI file, importing FPGA signal names from, 31
licensing the FPGA dynamic probe, 13
local JTAG server, 21
logic analyzer probing of FPGA debug pins, 11
logic analyzer set up, automated by FPGA dynamic probe, 58

M

mapping FPGA debug pins to probes and pods, 35
mapping multiple cores to two halves of the same probe, 35
measurement steps for FPGA dynamic probe, 27
measurements on FPGA internal signals, 39
multiple cores, mapping to two halves of the same probe, 35

new (FPGA dynamic) probe, 28
no activity on FPGA dynamic probe, 44
NonATCLabels, XML element, 92
notices, 2

On column in FPGA Dynamic Probe Setup dialog, 60
overview, FPGA dynamic probe, 9

Pin Mapping dialog, 61
Pin Mapping Edit dialog, 62
PinMapping, XML element, 93
Pod, XML element, 95
pods, logic analyzer, 62
pods, mapping FPGA debug pins to, 35
Pods, XML element, 96
preparation steps, 17
probe, mapping multiple cores to two halves of the same, 35
Probe, XML element, 97
Probes toolbar, 39
probes, adding/editing, 61
probes, mapping FPGA debug pins to, 35
probing of FPGA debug pins, 11
Programmer software, Altera Quartus II, 18
Properties dialog, 65
Properties, XML element, 98

Quartz II Programmer software, Altera, 18

Reference designator, 62
reference, FPGA dynamic probe, 59
remote JTAG server, 21
rename individual signals, 35, 67
renaming imported FPGA bus/signal names, 32

script error, 43
Select FPGA Configuration File dialog, 64
Select Signal Import File dialog, 64
server, JTAG, 21
signal banks (Altera LAI core), selecting, 39
signal import file, FPGA, 64
signal names (FPGA), importing from LAI file, 31
Signal, XML element, 100, 101
signal/bus names, adding FPGA, 33
signal/bus names, renaming FPGA, 32
signal/bus names, trimming FPGA, 32
Signals, XML element, 102, 104
state mode measurements in FPGA dynamic probe, 45
SymbolInfo, XML element, 105

timing zoom disabled by FPGA dynamic probe, 39
tool tip, mapping FPGA debug pins, 35
trademarks, 2
TriggerInfo, XML element, 106
Trim Bus/Signal Names dialog, 67
trimming imported FPGA bus/signal names, 32
triple-click to rename individual signals, 31, 67
troubleshooting, FPGA dynamic probe, 41

USB Blaster device driver, 20

WindowInfo, XML element, 107

XML format, FPGA dynamic probe, 73