VOODOO AND DEVICE DRIVER
PROGRAMMER’'S REFERENCE MANUAL

“If you think the universeis big, you should see the source code.” — Frank and Ernest

Scott Streit
San Diego State University
08/16/2000

Table Of Contents

[, DESCRIPTIONoiiiiiitiitiieerereeeere st e sr e es e s se s s e s e se e e e s e ns e e e s e s e e e e s e e R e e e e e s e neeseerene e e nnenresennenrenennennenes 4
[1. VOODOO DESIGNcoiiiiiiiitireeiiitiseeesresee et r e s es e sr e s s e s e nn e e s e s a e e e s e s s ne e e e rene e e nrenrenennenre e nnennenes 4
L VO 5L I TSP 4
IV. SETTING THE SHUTTER POSITION FOR AN EXPOSUREcocoiitiiiircereeenreeee e 4
V. THE VOODOQO C LIBRARY ...ttt st st re e s e e sre e e re e e s see e reseeseareseesesreseesesneseesesneneerenneneas 4
V1. CONTROLLER CONFIGURATION BIT DEFINITIONS ..ot 6
VIlI. DEVICE DRIVER INSTALLATION ..ottt ettt sre e ne e neseesesnesneseenesneneenennennas 8
VIll. PClI BOARD - DEVICE DRIVER INTERACTIONc.coiiiiiiiieieriereeie ettt st see et e seeresaeneas 8
1. CONFIQUIELION REGISLE'S.cveiteueetireeiete sttt sttt ettt sttt s b st se b bt e b e s b et eb e s e et ebe s e e e ebeebeseebesbeneebesbeneebesbeneebenbeneas 8
CONLIOI/SEAIUS REGISLEN'S. ...ttt ettt e b bbbt bt b et b e s e et b e st e Rt e bt s b et e be s b et ebe st eneebe st e e sbentene 9
Host Interface Control REGISIEr (HCTR)cvcuviiiiieiiiereeeste ettt eb e er e r e e r e e ene e 10
Host Interface StatuS REGISIEN (HSTR) ..ottt st sttt ne st e ene b e 10

Host Command Vector REGISIEr (HCVR) ..ottt ettt et st b et ae e besne b 11

RS o AV 21U 1 1 OSSOSO 11
DSP Manual CommMand REJISLEN........cc.cruiiuerierterieeiieiee e rte sttt et st aess e besae s b e s bt aeeae e e enbesaeabesbesbesbe st anteseesbesaesaeas 11
BOard DeStiNatiON REGISLENc.iiiiieiiriiieterie ettt st s s bt s bt e bt b et e st bt s b e n e e b e st e s e b e nb et enenean 12
Command Argument REGISIEIS 1-5 ...ttt b et e e e e b e bt sbeeb e et et e se e beseesbeenas 12
DMA Host Kernel Buffer AdAreSs L REQISLENcciiriiiiieeiie ettt sttt s ne st se e b e 12
DMA Host Kernel Buffer AdAreSS 2 REGISLENc.ciireiiirieiierieesresiee st se e e 13

3. CaMErATADIE REGISLEIS ...ttt bbb e a bbbt b et et b bt b e bbbt e 13
4070 201 1= £ TSP RST 13
LS 1= 1 10 TSP PRRTOR 13
VI, DEVICE DRIVER USAGE........ccot ittt sttt sttt b s bbbt b sttt b et st b et ebe b 14
IR oo = o OO O SOUROTSURPRRTR 14

2ol (o= TSSO PSTURPSTRPN 14

LG 1= [SO 15

7o 1) TSSOSO 15
X. DSP COMMANDS ...ttt ettt et b e s e bt b s e e bt e b e st e bt e b e e e bt s b et e b e s b et ebe s b et e bt s b et e bt s b et e besbe e b ee 17
1. TESE DAALINK (TDL) cueitiietirieiete sttt sttt sttt et b e et b e bbbt b e s b et b e se et eb e e b e se e bt ebesbebeebeseeneebeseenenben 17

2. READ MEMOINY (RDM) ...ttt b bbbt bttt b bbbt b e b et b et e e b e b et st nean 18
3. WITEMEMONY (WRM) ..ttt b et b e st b bbbt b e bbb et bt b et e b e b et eb et e e b st enes 18
4. POWES ON (PON) ...ctiiiiiitirteiirtesietest st eteste sttt et se st bess st ab e st e st s b e s e e st e b e s e eh e e bt s b es e e bt sb e s e e bt s b ene e bt s e e neeb e s b en s ebe s b e e enenbenes 18
5. Start EXPOSUIE (SEX) ..ttt bbb bbb bbb et h et b e bt nn s 19

6. REAAOUL IMAJE (RDI) ...ttt bbb b et b et b bbbt bt b e b et bt e e b e b et st nnn 19

7. ADOI EXPOSUrE (ABR) ...ttt bbb et b bbb bbbt bbb b b n e nn 19

8. RESEL CONLIOIES (RST) ...ttt ittt b bbbt h ekt be b et et e b et et bt b ettt e e eae e 19
9. OPEN SNULLET (OSH)veeeiiiteieeieete sttt ettt sttt b et b e et eb e s e et b e se e st e b e s e e st e b e seeb e e bese e bt ebene ekt ebeseenenbeneas 19
10. ClOSE SNULLEN (CSH) ...ttt sttt ettt ettt s e et b e et b e s bt b e s e et b e b e bt b et e bt s b e e e bt s b et e bt b et st et 20
11, RESUME TAIE (IDL) ettt ettt et e et b e st b e et b e e he b s et b e e bt e bt b et e bt s b et e bt s b et e b be e et et 20
S (o) Lo LY (I) OSSOV UR PR 20
O B = 10101 = (0 TP U TPV UR USSR PRTRTPRPRTN 20
14, REA TOMPEIGIUIE.......ceeueiteeete ettt sttt sttt st be b et be b et b e s b et e b e s b et eb e s e e st e b e s b et e b e s b e st eb e e b et e be s b et ebesbe e e besbe e ebe et 21
15. LOoad APPIICALION (LDA) ...uiiiiiteieeieete ettt b et b et h b et b e e bt bt se bt b e se e bt e b e seeb e e b e se e bt ebese st et e seeneere 21
16. Load Timing OF ULHITY FilE......cooiiiieeeie ettt ettt st b e st be e b 21
A o= o . O I T OSSOSO 22
LS 10 1< 0 o] OOV P 22
19. Set Gain N0 SPEEA (SGIN) .. .c.eeueiieietirieriete ettt sttt b bbb e b s b et eb e sb et eb e seeseebeebeseebeebeseeneebeseeneeten 22
XI. DSPVECTOR COMMAND QUICK REFERENCE..........ccootiiiieiieicne sttt 23
XIl. DSP AND DRIVER REPLY QUICK REFERENCE...........cccectiiiiiiiitniee et 24

XI. SEQUENCE OF DSP COMMANDSooititriitititsieie sttt st et e sesse st et e be st sssbesese b esa s sbesesesba st ssesanesbesesens
XIV. APPENDIX A ettt bbbt e b b s £ b2 Rt s £ s b e bt e £ A e R £ e b b e £ A e b e e e b e b e b e b e bt eE e b e b e e e b e bt se et ebe e b s 25
1. Controller Setup SeqUENCE PSEUAD COUE.........ciuiiiireieeiereeie ettt sttt eae et se e et bt sbesbe e e enteseesbesaesaeas 25

2. EXPOSUre SEqUENCE PSEUAOD COUEcoiuiiiiieiie ettt sttt se et et sbe et eeese et e saeebeeaeeseese e e aneeseesbesaesbenneenean 27
XV EXAMPLE ..ttt b et b et e b b s e b ekt £ bk e ee £ e b e £ e b b e £ e A e b e e e b e b e e R b e Re e e b e bt e b e Rt se b e R e b n 30
30

XVI. REVISION HISTORY ...ttt st e s s h bbb a e a bbb en e sn s r b sr e s

|. DESCRIPTION

This document describes the commands an application would use to obtain an image from a
device connected to the new PCI board. The device driver contains four functions and a number of
commands useful for communicating with the connected device. The PCl board's digital signal
processor (DSP) contains a group of commands for obtaining image data. Each DSP command is a
sequence of device driver commands. The commands and their device driver sequences are
described here.

II. VOODOO DESIGN

Voodoo has been designed using the Model-View-Controller (MVC) architecture. Use of
this object oriented design method supports component-based software development and eases future
maintanence. Each classfallsinto one of the following three groups:

% The Model, which contains the data. These classes tend to be threads and provide
comminucations to the hardware or perform some task.

% The View is the windows, which takes user input and displays data output.

#* The Controller, which checks the data quality and transfers it between the View
and the Model.

Voodoo's file names are designed to reflect the MV C design. Model class files are named
xxCommand, View class files are named xxWindow/xxDiaog/etc., and Controller class files are
named xxListener, where the “xx” is a developer specified name. Task classes that are not
associated with a window will not have names like xxCommand, but rather will have names that are
descriptive of their task.

[ll. VOODOO API

Developers can find a browsable javadoc API description in the xx/Voodoo/Documents
directory.

IV. SETTING THE SHUTTER POSITION FOR AN EXPOSURE

To set the shutter position for an exposure, read the current controller status from the timing
board address X:0 using the READ_MEMORY vector command. To open the shutter during an
exposure, set bit 11 of the status word to a 1. To close the shutter during an exposure, set bit 11 of
the status word to a 0. The entire status word must then be written back to timing board address X:0
using the WRITE_MEMORY (0x8089) vector command.

V. THE VOODOO C LIBRARY

Currently, Java offers no support for low level device driver system calls. To solve this
problem, VVoodoo has a C library that contains functions for writing image data, manipulating image
data, displaying image data, creating image buffers, and device driver communications. The library
files are accessed by Voodoo through the Java Native Interface (INI). The individual libraries are
discussed here.

Libpcilibc.so

The PCI device driver library. This library contains functions to communcate with
the PCI board.

board.

Copen() Opens a connection to the device driver.

Cclos«() Closes the connection to the device driver.

Cread_image() Reads an image from the device.

Cioctl() Sends anioctl() command to the device driver.
Cread reply() Reads the current value of the device driver's reply buffer.

Libpcimemc.so

The memory library. This library contains functions to communcate with the PCI

Ccreate_memory() Createsthe image buffer for VVoodoo.
Cfree_memory() Destroys the image buffer for VVoodoo.
Cdata_check() Performs a data check on synthetic images.
Cswap_memory() Byte swaps the spedified memory location, the PCI
board and SUN have different endians.
Cget_memory_word() Returns the word located at the specified index.
Cprint_memory() Prints the contents of the memory buffer.
Cfill_memory() Fills the image buffer with test values.

Libdisplibc.so

The display library. Thislibrary contains functions to display an image on
saocimage or ximtool.

Cdisplay() Displays an image using SAOimage or Ximtool (whichever is
open). Note: this function contains Copen_display() and
Cclose _display(), so do not use both.

Copen_display() Opens a connection to saoimage or ximtool. Not used.

Cclose_display() Closes a connection to saoimage or ximtool. Not used.
Libcdl.a The Solaris CDL functions library.
Linux_libcdl.a The Linux CDL functions library.

Libfitslibc.so

The FITSlibrary. Thislibrary contains functionsto writeimage datato aFITS
file.

Cwrite fits data() @ Writesanimageto aFITSfile.

Libsetupcmdlibc.so

The setup library. Thislibrary contains functions to perform any necessary array
setup features.

Cdeinterlace() Deinterlaces the array image according to the specified
selection, which may be one of: 1) seria split, 2) paralle split,
3) CCD quad split, or 4) IR quad split.

Libverlibc.so

The version library. This library contains a function to obtain the current date and
time used for the “about” dialog boxes.

Cdate() Returns the current date and time.

VI. CONTROLLER CONFIGURATION BIT DEFINITIONS

Voodoo provides the user with the ability to set controller properties. The controller setup
window may be displayed by clicking Setup | Controller Setup on Voodoo’ s main window menu bar.
The setup procedure follows the window components from top to bottom. A minimal setup of the
image dimensions must be applied before an exposure can be started.

Part of the controller setup is a 24 bit word called the controller configuration. The bits of
this word determine what hardware options are available. These options are ONLY available after a
Timing board file or application has been applied to the controller. After such time, a tabbed
window can be displayed with al the current available options. Subsequent Timing board
downloads will only result in an update of the existing configuration window.

The controller configuration word is read by sending the vector command
READ_CONTROLLER_STATUS (0x8079) to the PCI board. These bits are subject to change and
can befound in DSPLib in the TIMHDR file. If no configuration word exists, the default values are
used by Voodoo and are listed in the table below. The bit configurations for thisword are as
follows:

Description

23

22

21

20

19

18

17

16

15

14

13

12

11

10

Default Configuration Word

CCD Rev. 3B

CCD Generation |

IR Rev. 4C

IR Coadder

Timing Rev. 4B

Timing Generation |

No Utility Board

Utility Rev. 3

No Shutter

Yes Shutter

No Temperature Control

Nonlinear Temperature Algorithm

Linear Temperature Algorithm

Subarray Not Supported

Subarray Supported

Binning Not Supported

Binning Supported

No Split Readout

Serial Split Readout

Parallel Readout

Both Serial Split and Parallel Readout

MPP Not Supported

MPP Supported

VII. DEVICE DRIVER INSTALLATION

Installation of Voodoo involves one of two methods. Y ou may either manually install the
files or use the automatic install script.

Solaris Installation
% Create the directory (/xxx) where you want to keep the driver files.
% Copy the driver tar file to the new directory and unpack it:

unconpress astropci _Xx_x_X.tar.Z
tar xvf astropci _x_x_x.tar

% Become superuser and run the install script:
.Ilnstall

% Enter the PCI slot number when prompted.

% To unload the driver, use the unix nrodunl oad command.

Linux Installation

% Create the directory (/xxx) where you want to keep the driver files.

% Copy the driver tar file to the new directory and unpack it:
unconpress astropci _x_x_x.tar.Z
tar xvf astropci _x x_x.tar

% Become superuser and run the install script:
.lastro_l oad

IMPORTANT NOTE: The Linux driver currently has no support for loading the
driver at system startrup. Sothe. / astro_| oad script must be run after every
system boot.

% To unload the driver, type:
.lastro_unl oad

VIll. PCI BOARD - DEVICE DRIVER INTERACTION

The device driver communicates with the PCI board through a series of registers located on
the PCI board. The registers are "mapped" by the device driver to produce an equivalent set of
virtual registers that the device driver can access as though it were communicating with the PCI
board registers directly. The registers are broken down into three segments: the configuration
registers, the control/status registers, and the timing table registers.

1. Configuration Registers

This is a set of 64 registers (DWORDS) used for configuration, initialization, and error
handling for the PCI DSP. These registers are not manipulated by the user. There is, however, a
driver supplied command that will read a pre-selected subset of these registers purely for
identification and test purposes. The configuration space header is shown below.

Configuration Space Header

ADDRESS

REGISTER

0x0000

Device Id

Vendor Id

0x0004

Status

Command

0x0008

Class Code

Revision Id

0x000C

BIST | HeaderType | Latency Timer

Cache Line Size

0x0010

0x0014

0x0018

0x001C

0x0020

0x0024

Base Address Registers

0x0028

Cardbus Pointer

0x002C

Subsytem Id | Subsystem Vendor Id

0x0030

Expansion ROM Base Address

0x0034

Reserved

0x0038

Reserved

0x003C

Max_Lat | Min_Gnt | Interrupt Pin

Interrupt Line

Control/Status Registers

These 32-bit registers are used to send control commands and receive status replies to and
from the PCI board. There are two command registers, the Host Command Vector Register (HCVR)
and the Manual Command Register. The difference is in the command list and speed. The HCVR
will only take the predefined list of commands specified in Section V, whereas the Manua
Command register will take any three character ascii command that is supported by the DSP.
Sending the predefined commands through the HCVR is faster since some or al of the parameters
(board destination, arg#l, arg#2, etc.) may not change when sending the same command multiple
times, while al parameters must be specified for every use of the Manual Command Register. The
Manual Command Register is useful for developing new commands.

The complete list of registersis as follows:

Host/DSP Control and Status Registers

ADDRESS

Register
0x0000 DSP Reserved
0x0004 DSP Reserved
0x0008 DSP Reserved
0x000C DSP Reserved
0x0010 Host Interface Control Register (HCTR)
0x0014 Host Interface Status Register (HSTR)
0x0018 Host Command Vector Register (HCVR)
0x001C Reply Buffer
0x0020 DSP Manual Command
0x0024 Board Destination
0x0028 Command Argument 1

0x002C Command Argument 2
0x0030 Command Argument 3
0x0034 Command Argument 4
0x0038 Command Argument 5
0x003C Unused

0x0040 DMA Kernel Buffer 1 Address
0x0044 DMA Kernel Buffer 2 Address

Host Interface Control Reqgister (HCTR)

Only three bits of thisregister are used. Two are control bits to set the mode of the PCI board
and the other is aflag indicating the progress of image data transfer to the user's application.

Bit 3 is used during image readout to help synchronize the DMA transfer. Bit 3issetto 1
while the device driver is transferring image data from the kernel's interna buffers to the user's
buffer. The bit is cleared to O while the device driver is waiting for image data. Bits 8 and 9 of this
register are used to set the PCI board mode. If Bits 8 and 9 are set to 0x2, then the PCI board is put
into slave mode. This must be done at the start of a PCI file download and must be completed before
any other commands are sent to the PCI board. Bits 8 and 9 are cleared (0x0) to set the PCI board
back to processing mode at the end of a PCI file download.

Summary:
Bit 3=1 Image buffer busy transferring to user space
0 Image buffer not transferring to user space
Bit8=0& Bit9=1 PCI board set to slave mode for PCI file download
Bit8=0& Bit9=0 PCI board set to normal processing

Host Interface Status Register (HSTR)

This register communicates status information about the PCI DSP. Four bits are used to
determine if an interrupt is pending and one bit is used to determine if the PCI DSP fifo is available
for input. The four interrupt bits are used to distinguish between reply and image buffer interrupts.
A reply interrupt is generated when the DSP communicates a reply from a command back to the user
application. An image interrupt is generated upon the completion of the DSP filling one of the
device driver image buffers.

Summary:
Bit 0=1 Host transmit FIFO is empty, can send command
0 Host transmit FIFO is not empty, cannot send command
Bit 1 =1 Host transmit FIFO is not full
0 Host transmit FIFO isfull
Bit 3=1 Reply Intrerrupt Pending
0 No Reply Interrupt Pending

Bit 4 =1 Image Buffer 1 Intrerrupt Pending

0 No Image Buffer 1 Interrupt Pending
Bit5=1 Image Buffer 2 Interrupt Pending

0 No Image Buffer 2 Interrupt Pending
Bit6 =1 Interrupt pending

0 Nointerrupt pending

Host Command Vector Register (HCVR)
This register is used to send DSP vector commands to the PCI board. See DSP VECTOR
COMMAND QUICK REFERENCE for alist of DSP commands that are sent through this register.

Reply Buffer

The reply buffer is used to receive replies from the PCl board and controller. When a
command or controller property is written to one of the registers listed below, the PCI board
responds by placing a reply in this buffer and generating an interrupt. The device driver claims the
interrupt, reads the reply register, saves the value internally, and signals that a reply has been
received. The device driver initializes the internal representation of the reply to -1. The command
ASTROPCI_GET_REPLY returns the internally saved value if one exists. If not, the function waits
for a signal from the interrupt handler that a reply has been received or a timeout occurs. In both
cases the internal reply value is re-initialized to -1 before the function returns. Writing to any of the
following registers produces areply:

Vector command (HCVR) (address 0x0018),

Manua command (address 0x0020),

Board destination (address 0x0024),

Command argument 1 (address 0x0028),

Command argument 2 (address 0x002C),

Command argument 3 (address 0x0030),

Command argument 4 (address 0x0034),

Command argument 5 (address 0x0038),

Exposure time register (address 0x0080).

Utility options register (address 0x0084),

Camera status register (address 0x0088),

Number of image columns register (address 0x008C),
Number of image rows register (address 0x0090),
Number of columns binned register (address 0x0094),
Number of rows binned register (address 0x0098).

DSP Manual Command Register

This register is used to send user defined or special commands to the PCI, Timing, or Utility
boards. The command may be any three character ascii sequence that is reconized by the installed

DSP program. This register is useful for developing new commands. The following sequence is
used to send amanua command:

1. Set the number of arg registers and the board destination using ioctl command
ASTROPCI_SET _DESTINATION.

2. Set argument register 1 if necessary, using ioctl() command ASTROPCI_SET_ARGL.

3. Set argument register 2 if necessary, using ioctl() command ASTROPCI_SET ARG2.

4. Set argument register 3 if necessary, using ioctl() command ASTROPCI_SET ARGS3.

5. Set argument register 4 if necessary, using ioctl() command ASTROPCI_SET ARGA4.

6. Set argument register 5 if necessary, using ioctl() command ASTROPCI_SET_ARGS.

7. Send the three character ascii command using ioctl() command ASTROPCI_SET _CMDR.

Board Destination Register

This register contains two separate pieces of information. The upper 16 bits contain the
number of arguments associated with the current command. The lower 16 bits specify the board
destination (PCI, Timing or Utility) for the current command. The board destination register should
only be used with the following commands:

Command Valid Boards Command Type
LOAD_APPLICATION O0x807F PCl, Timing Vector (HCVR)
MANUAL_COMMAND 0x100 PCI, Timing, Utility loctl()

TEST_DATA_LINK 0x8085 PCI, Timing, Utility Vector (HCVR)
READ_MEMORY 0x8087 PCl, Timing, Utility Vector (HCVR)
WRITE_MEMORY 0x8089 PCl, Timing, Utility Vector (HCVR)

The board destinations are as follows:

PCI board Ox1
Timing board 0x2
Utility board 0x3

Command Argument Reqisters 1-5

These five registers are used to pass manual command parameters (addresses, byte counts,
etc.) . The meaning of these registers depends on the command context.

DMA Host Kernel Buffer Address 1 Register

The device driver uses two kernel allocated buffers for intermediate image storage. The
address of the first buffer is passed to the PCl board DSP through this register. This address is
assigned each time a user's application opens a connection to the device driver. The address does not
change until the device driver is re-opened.

DMA Host Kernel Buffer Address 2 Register

The device driver uses two kernel allocated buffers for intermediate image storage. The
address of the second buffer is passed to the PCI board DSP through this register. This address is
assigned each time a user's application opens a connection to the device driver. The address does not
change until the device driver is re-opened.

3. Camera Table Registers

The camera registers are used to communicate camera parameters such as array size and
exposure time to the PCI board. These parameters are written to a set of registers that act like a
table. The ascii sequence ‘DON’ is returned upon writing any parameters to the table. No
commands are required to begin processing of this table. The PCI board retrieves these values as
needed. See the following table.

Camera Table

ADDRESS REGISTER
0x0080 Exposure Time
Utility Options
0x0084 (1 = open shuitter,

0 = close shutter)
0x0088 Camera Status
0x008C Number Of Image Columns
0x0090 Number Of Image Rows
0x0094 Number Of Columns Binned
0x0098 Number Of Rows Binned

4. Image Buffers

The device driver alocates two image buffers in the open() entry point. The buffers are
131072 bytes each in size, which is fixed by the PCI DSP. The two buffers work together to
efficeintly transfer data from the controller to the user application. While one buffer is transferring
it's contents to the user application, the other isfilling with data. The buffers go back and forth until
all the data has been transferred.

5. Interrupts

Interrupts are used to communicate one of four occurances between the device driver and PCI
board. 1) The PCI board has a new reply, 2) data transfer to image buffer 1 has completed, 3) data
transfer to image buffer 2 has completed, and 4) an abort readout command has been received by the
PCI board.

A reply interrupt is acknowledged when bits 3 and 6 of the status register (HSTR) are high
(). Thedevice driver claims the interrupt, saves the reply in an internal variable, and signals that a
reply has been received.

An image buffer interrupt is acknowledged when bits 4 and 6 of the status register (HSTR)
are high (1) for image buffer 1 and when bits 5 and 6 are high (1) for image buffer 2. The device
driver clams the interrupt and signals that the appropriate buffer is full and ready to be transferred to
user space.

The abort readout command causes the PCI board to generate an interrupt, which is claimed
by the device driver only when bit 6 of the status register (HSTR) is high (1). The device driver
then clears both image buffer interrupts to stop any data transfer and sets a flag that informs the
read() function that the current readout has been aborted and all data transfer should cease.

VIlll. DEVICE DRIVER USAGE

The device driver has four main entry points available for interaction with the camera. The
four entry points are: open(), close(), read(), and ioctl(). To use these functions, the user must
include the system file fcntl.h.

1. open()

Opens a connection to the requested device. This function must succeed before any further
access to the device may occur. See the open(9E) man pages. Returns O for success or -1 for
failure.

Usage:
int file descriptor = open(const char *device node, int mode)

device node

Is one of nodes /dev/astropciO or /dev/astropcil. These nodes are created
during the driver installation process and corrospond to pci board 1 and 2
(depending on the number of boards you have).

mode

Is the constant O_ RDWR (Open for reading and writing) supplied by the
system file fentl.h.

file descriptor
Is an integer reference to the opened device.

2. close()

Closes a connection to the requested device. Returns O for success or -1 for failure.

Usage:
close(int file descriptor)

file descriptor

Is the integer returned from the open() instruction.

3. read()

Used to read an image from the camera. This instruction does not produce an image. To
produce an image, a specified sequence of commands must proceed this instruction. This function
merely reads the image data from the camera and passes it to the user's application. A double
buffering sheme is used to facilitate the readout process. After an exposure completes, the PCI DSP
writes image data to the first buffer. When the buffer is full an interrupt is generated and the DSP
beginsto fill the second buffer. Meanwhile, the interrupt from the first buffer being full is caught by
the driver’s interrupt handler and signals the read function to begin copying buffer 1 to the user
application buffer. When the DSP completes writing to buffer 2, it generates an interrupt signaling
the read function to copy buffer 2 to user space. Meanwhile, buffer 1 is again being filled. This
process continues until all the image data has been copied to the user's application program. Note
that the PCI DSP and the driver communicate during this process to prevent the buffers from being
overwritten before they can be copied to the user application. The kernel buffer sizeis 131072 bytes
(65536 pixels @ 16 bpp). This value is fixed by the PCI DSP and should NEVER be altered.
Returns O for success or -1 for failure.

Usage:

read(int file descriptor, void *user buffer, int bytes)

file descriptor
Is the integer returned from the open() function.

user buffer

Is apointer to a buffer where the user wantsthe image datato be stored asa
result of thisinstruction.

bytes
Are the number of bytesto be read.
4. ioctl()

This is the "do all" instruction. Used to pass parameters, set controller states, receive
controller status, and issue controller commands. Returns O for success or -1 for failure.

Usage:
ioctl(int file descriptor, int command, int *arg)

file descriptor
Is the integer returned from the open() function.

command
Is one of the commands described below.

arg

Is avariable used to send parameters and receive values associated with the
execution of the specifed command.

The command parameter may have one of the following values. Each value is an integer
constant defined in the astropci_io.h file:

ASTROPCI_GET_HSTR (0x6)

Get the current value of the PCI DSP Host Status Register.
ASTROPCI_GET_HCTR (0x5)

Get the current value of the PCI DSP Host Control Register.
ASTROPCI_GET_REPLY (0x3)

Get the current reply. This command “itself” does not generate areply, it only returns the reply from
a previous command.

ASTROPCI_GET_CONFIG_INFO (0x314)

Returns the configuration space register values. No reply is generated by this command.
ASTROPCI_SET_HCTR (0x115)

Set the current value of the PCI DSP Host Control Register. No reply is generated by this command.
ASTROPCI_SET_HCVR (0x117)

Set the current value of the PCI DSP Host Control Vector Register. The reply value depends on the
command sent. See DSP VECTOR COMMAND QUICK REFERENCE

ASTROPCI_SET_CMDR (0x100)

Set the current value of the manual command register. This command generatesa‘DON’ for areply
value.

ASTROPCI_SET_DESTINATION (0x111)

Set the current value of the board destination register. This command generatesa‘DON’ for areply
value.

ASTROPCI_SET_ARG1 (0x105)

Set the current value of the manual command argument 1 register. This command generates a
‘DON'’ for areply value.

ASTROPCI_SET_ARG2 (0x106)

Set the current value of the manual command argument 2 register. This command generates a
‘DON'’ for areply value.

ASTROPCI_SET_ARG3 (0x107)

Set the current value of the manual command argument 3 register. This command generates a
‘DON'’ for areply value.

ASTROPCI_SET_ARGA4 (0x108)

Set the current value of the manual command argument 4 register. This command generates a
‘DON’ for areply value.

ASTROPCI_SET_ARGS5 (0x109)

Set the current value of the manual command argument 5 register. This command generates a
‘DON’ for areply value.

ASTROPCI_SET_EXPTIME (0x119)

Set the current exposure time in the cameratiming table. This command generatesa‘DON’ for a
reply value.

ASTROPCI_SET_NCOL S (0x120)

Set the current number of array columnsin the cameratiming table. Thiscommand generates a
‘DON’ for areply value.

ASTROPCI_SET_NROWS (0x121)

Set the current number of array rowsin the cameratiming table. Thiscommand generatesa‘DON’
for areply value.

ASTROPCI_SET_IMAGE_BUFFERS (0x122)

Sets the address of the image data buffers. No reply value is generated by this command.
ASTROPCI_SET_UTIL_OPTIONS (0x123)

Supports future utility board options. This command generatesa‘DON’ for areply value.
ASTROPCI_FLUSH_REPLY_BUFFER (0x124)

Clearsthe device reply buffer and sets the driver’ sinterna reply value to
REPLY BUFFER_EMPTY. No reply valueis generated by this command.

ASTROPCI_SET_BINNING_COL S (0x125)

Sets the image binning parameter in the columns direction. This command generatesa‘DON’ for a
reply value.

ASTROPCI_SET_BINNING_ROWS (0x126)

Sets the image binning parameter in the rows direction. This command generatesa‘DON’ for a
reply value.

ASTROPCI_ABORT_READ (0x302)
Aborts the current image readout. This command generatesa‘DON’ for areply value.

X. DSP COMMANDS
This section describes pre-defined manual commands for the controller.

1. Test Data Link (TDL)

A user defined data value is sent to the specified board (timing, utility, pci) and returned as a
reply. Used to test board communications.

Sequence Of Commands:

1. Writedatato Argl register (data = any 24 bit hexadecimal value) using ioctl().
2. Write TEST_DATA_LINK command (0x8085) to HCV R register using ioctl().
3. Read reply buffer using ioctl(), should equal the data written to Argl register

2. Read Memory (RDM)

Used to read the contents of a DSP memory location from one of the controller boards
(timing, utility, pci).

Sequence of Commands:
1. Writetypeto Argl register using ioctl().
type='_R' (ROM)
X' (DSP X memory space)
"Y' (DSPY memory space)
' P (DSP program memory space)
2. Write addressto Arg2 register usingioctl().
address = any hexadecimal address in the specified type range
3. Write READ_MEMORY command (0x8087) to the HCVR register using ioctl().
4. Read reply buffer using ioctl(), which will contain the data value.

3. Write Memory (WRM)

Used to write to a DSP memory location on one of the controller boards (timing, utility, pci).

Sequence of Commands:
1. Writetypeto Argl register using ioctl().
type="' R (ROM)
X' (DSP X memory space)
"Y' (DSPY memory space)
' P (DSP program memory space)
2. Write addressto Arg2 register using ioctl().
address = any hexadecimal address in the specified type range
3. Write data to Arg3 register using ioctl(). (data = any 24 bit hex value)
4. Write WRITE_ MEMORY command (0x8089) to the HCVR register using ioctl().
5. Read reply buffer using ioctl(), should equal ascii string 'DON'.

4. Power On (PON)

Used to turn the controller power on. This command must be done before any other
commands are sent to the controller.

Sequence of Commands:
1. Write POWER_ON command (0x808D) to the HCVR register using ioctl().
2. Read reply buffer using ioctl(), should equal ascii string 'DON'.

5. Start Exposure (SEX)

Used to start an exposure.

Sequence of Commands:
1. Write START_EXPOSURE command (0x809B) to the HCVR register using ioctl().
2. Read reply buffer using ioctl(), should equal ascii string 'DON".

6. Readout Image (RDI)
Used to readout the image data from the controller into the user's application.

Sequence of Commands:

1. Write READ_IMAGE command (0x809D) to the HCVR register using ioctl ().
2. Call read() command with the number of image data bytesto receive.

3. Read reply buffer using ioctl(), should equal ascii string 'DON'.

7. Abort Exposure (ABR)

Used to abort the current exposure. This command only aborts the exposure and not the
readout.

Sequence of Commands:
1. Write ABORT_EXPOSURE command (0x80A1) to the HCVR register using ioctl().
2. Read reply buffer using ioctl(), should equal ascii string 'DON".

8. Reset Controller (RST)
Used to reset the controller.

Sequence of Commands:
1. Write RESET_CONTROLLER command (0x80A1) to the HCVR register using ioctl().
2. Read reply buffer using ioctl(), should equal 'SYR' (system reset).

9. Open Shutter (OSH)

Opens the camera shutter.

Sequence of Commands:

1. Write_OPEN_SHUTTER command (0x80A9) to the HCVR register using ioctl() command
ASTROPCI_SET_UTIL_OPTIONS.

2. Read reply buffer using ioctl(), should equal 'DON'.

10. Close Shutter (CSH)

Closes the camera shutter.

Sequence of Commands:

1. Write_CLOSE_SHUTTER command (0x80AB) to the HCVR register using ioctl() command
ASTROPCI_SET_UTIL_OPTIONS.

2. Read reply buffer using ioctl(), should equal 'DON'.

11. Resume Idle (IDL)

Puts the controller in idle mode.

Sequence of Commands:

1. Write RESUME_IDLE_MODE command (0x8097) to the HCVR register using ioctl() command
ASTROPCI_SET_HCVR.

2. Read reply buffer using ioctl(), should equal 'DON'.

12. Stop Idle (STP)

Takes the controller out of idle mode.

Sequence of Commands:

1. Write STOP_IDLE_MODE command (0x8095) to the HCVR register using ioctl() command
ASTROPCI_SET_HCVR.

2. Read reply buffer using ioctl(), should equal 'DON'.

13. Set Temperature

Sets the array target temperature.

Sequence of Commands:
1. Writethe desired temperature value to the ARG register using ioctl().

2. Write SET_ARRAY_TEMPERATURE command (0x80AD) to the HCVR register using ioctl()
command ASTROPCI_SET HCVR.

3. Read reply buffer using ioctl(), should equal 'DON'.

14. Read Temperature

Reads the current array temperature.

Sequence of Commands:

1.

2.

Write READ_ARRAY_TEMPERATURE command (Ox80AF) to the HCVR register using
ioctl() command ASTROPCI_SET_HCVR.

Read reply buffer using ioctl(), should equal 'DON'.

15. Load Application (LDA)

Loads aROM application. The timing and utility boards have up to four user defined
applications stored in their ROM's. These may be used in place of afile download.

Sequence of Commands:

1

4,

Set the board destination (timing or utility) using ioctl() command
ASTROPCI_SET_DESTINATION.

Write the desired application number to the argl register using ioctl().

Write LOAD_APPLICATION command (0x807F) to the HCVR register using ioctl() command
ASTROPCI_SET_HCVR.

Read reply buffer using ioctl(), should equal 'DON'.

16. Load Timing or Utility File

Load a timing or utility file. Thisis not a single command, but rather a sequence of write
memory commands.

Sequence of Commands:

1
2.

Open thefile.

Search thefile for the TIMBOOT or UTILBOOT keywords. If found, set the board destination
(timing or utility) usingioctl() command ASTROPCI_SET_DESTINATION. Else, exit with an
unknown file.

Search filefor keyword"_DATA". If found, extract address and memory type (X, Y, P, R, D).
If address less than 0x4000, continue. Else resume search.

While next valueisnot a" ", perform Write Meomory (WRM) command. Increment the address
and check that a'DON' was received for areply. If not, then report an error and stop download.

Go to 4 and repeat until all the data in the current block has been written.
Go to 3 and repeat for the rest of thefile.
Closethefile.

17. Load PCI File

Load a PCI boot file. Thisisnot a single command, but rather a sequence of write memory
commands.

Sequence of Commands:

1. Set the PCI board to "slave mode" by clearing the HTF bits 8 and 9 (Host Transfer Flags) and bit
3 of the host control register (HCTR) by using theioctl() command ASTROPCI_SET_HCTR.

2. Writethe PCI_DOWNLOAD (0x808B) command to the host vector command register (HCVR)
using theioctl command ASTROPCI_SET_HCVR.

3. Write the magic value 0x555AAA to the argl register using the ioctl() command
ASTROPCI_SET_ARGL.

. Openthefile.
. Look for the start of data” DATA P'.

If found, get the next line which contains the number of words to transfer and the starting
address.

7. Write the number of words to the argl register using the ioctl() command
ASTROPCI_SET _ARGL.

Write the address to the argl register using the ioctl() command ASTROPCI_SET_ARGL.

Throw away the next line and while the current word count is less than the total word count
(from 7) minus 2, read in a data value and write it to the argl register using theioctl() command
ASTROPCI_SET_ARGL. Before writing to the argl register, check for an intermixed "_DATA"
tag. If found throw out and continue.

10. Set bit 3 of the host control register (HCTR) by using the ioctl() command
ASTROPCI_SET_HCTR.

11. Read reply buffer usingioctl(), should equal 'DON'.

[S2INNF N

18. Dimensions

Sets the array dimensions.

Sequence of Commands:

1. Write the number of array columnsto the cameratiming table using the ioctl() command
ASTROPCI_SET_NCOLS.

Read reply buffer using ioctl(), should equal 'DON'.

Write the number of array rows to the camera timing table using the ioctl() command
ASTROPCI_SET_NROWS.

4. Read reply buffer using ioctl(), should equal 'DON'.
19. Set Gain and Speed (SGN)

Sets the controller gain and speed. The gain refers to the output amplifier and speed refers to
the data conversion rate.

Sequence of Commands:

1. Writethe desired gain value to the argl register using the ioctl() command
ASTROPCI_SET_ARGL1.

2. Write the desired speed value to the arg2 register using the ioctl() command
ASTROPCI_SET_ARG2.

3. Writethe ascii string 'SGN' to the command register using the ioctl() command
ASTROPCI_SET_HCVR.

4. Read reply buffer usingioctl(), should equal 'DON'.

Xl. DSP VECTOR COMMAND QUICK REFERENCE
The full list of DSP vector commands and exptected replies is given in the following table.

Command Expected Reply
READ_CONTROLLER_STATUS 0x8079 Controller Config Word
WRITE_CONTROLLER STATUS 0x807B ‘DON’

RESET CONTROLLER 0x807D ‘SYR’
LOAD_APPLICATION Ox807F ‘DON’

PCI_PC RESET 0x8081 ‘DON’
READ_PCI_STATUS 0x8083 ‘DON’
TEST_DATA_LINK 0x8085 Data Value Sent
READ_MEMORY 0x8087 Data Vaue At Mem Location
WRITE_ MEMORY 0x8089 ‘DON’
RESERVED 1 0x808B n/a

POWER_ON 0x808D ‘DON’

POWER_OFF 0x808F ‘DON’

SET_BIAS VOLTAGES 0x8091 ‘DON’
CLEAR_ARRAY 0x8093 ‘DON’
STOP_IDLE_MODE 0x8095 ‘DON’

RESUME IDLE MODE 0x8097 ‘DON’
READ_EXPOSURE_TIME 0x8099 Current Elapsed Time
START_EXPOSURE 0x809B ‘DON’
READ_IMAGE 0x809D ‘DON’
ABORT_READOUT Ox809F ‘DON’
ABORT_EXPOSURE Ox80A1 ‘DON’

PAUSE EXPOSURE Ox80A3 ‘DON’
RESUME_EXPOSURE O0x80A5 ‘DON’

RESERVED_2 Ox80A7 n/a

OPEN_SHUTTER 0x80A9 ‘DON’

CLOSE_SHUTTER Ox80AB ‘DON’
SET_ARRAY_TEMPERATURE Ox80AD ‘DON’
READ_ARRAY_TEMPERATURE Ox80AF Current Array Temperature
PCI_DOWNLOAD O0x802F None

XIl. DSP AND DRIVER REPLY QUICK REFERENCE
Thefull list of DSP and driver replies are given in the following table.

Ascii Reply Hex Equivalent Description
DON 0x00444F4E Done
ERR 0x00455252 Error
SYR 0x00535952 System Reset
TOUT 0x544F5554 Timeout
NO REPLY OXFFFFFFFF Reply Buffer Empty

Xlll. SEQUENCE OF DSP COMMANDS

To use the functions and commands described in this document, the following sequence
would typically take place.

1. Open adevice driver connection using open().
2. Perform any necessary setup commands using ioctl().
- Load PCI File
Reset Controller
Load Application or File
Power On
Set Gain
Set Idle
Set Array Temperature
Set Array Dimensions
3. Take an exposure using ioctl() and read().
- Set Exposure Time
- Start Exposure
- Readout Image Data
4. Save the image.
5. Close the device driver connection using close().

XIV. APPENDIX A

1. Controller Setup Sequence Pseudo Code

/
[
{

| Check for PCl downl oad.
f (do PCl downl oad) then

If (PCl filename does not exist) then
Print error nessage and continue.

El se

}

If (reply not equal

Cal |

function to performPCl file downl oad.

to ‘DON or if TIMEQUT) then

Print error nessage and continue.

If (do reset controller) then

Reset the controller using the ioctl() comand ASTROPCI _SET HCVR with an argunent val ue of
0x807D (RESET_CONTROLLER) .

If (reply not equal to ‘SYR or if TIMEQUT) then
Print error nessage and conti nue.

}

If (do hardware test) then

If (do PCl hardware test) then

}

Cal cul ate data increment: data_incr = MAX_TEST_VALUE/ NUM OF PCl _TESTS

Loop over the NUM OF_PCl _TESTS

{

Set the board destination to the PCl board using the ioctl() conmand
ASTROPCI _SET_DESTI NATI ON and argunent val ue of 0x10000001 (# of args << 16 |
board id).

Set the argument 1 register using the ioctl() comand ASTROPCI _SET_ARGL wi th
the current data value as the argument.

Use the ioctl() comand ASTROPCI _SET HCVR wi th an argunent val ue of 0x8085
(TEST_DATA LI NK) .

If (reply not equal to sent data value or if TIMEQUT) then
Print error nessage and conti nue.

I ncrenent data value: data = data + data_incr.

If (do timng hardware test) then

}

Cal cul ate data increnment: data_incr = MAX TEST VALUE/ NUM OF TI M TESTS

Loop over the NUM OF_TI M TESTS

{

Set the board destination to the timng board using the ioctl () conmmand
ASTROPCI _SET_DESTI NATI ON and ar gunent val ue of 0x10000002 (# of args << 16 |
board id).

Set the argunent 1 register using the ioctl() comand ASTROPCI _SET _ARGL with
the current data value as the argunent.

Use the ioctl () conmand ASTROPCI _SET_HCVR with an argunent val ue of 0x8085
(TEST_DATA LI NK) .

If (reply not equal to sent data value or if TIMEQOUT) then
Print error nessage and conti nue.

Increnent data value: data = data + data_incr.

If (do utility hardware test) then

Cal cul ate data increnent: data_incr = MAX TEST _VALUE/ NUM OF_UTI L_TESTS

Loop over the NUM OF UTIL_TESTS
{

Set the board destination to the utility board using the ioctl() command
ASTROPCI _SET_DESTI NATI ON and argunent val ue of 0x10000003 (# of args << 16 |

board id).

Set the argunment 1 register using the ioctl() comuand ASTROPCI _SET _ARGL with

the current data value as the argunent.

Use the ioctl() comand ASTROPCI _SET_HCVR wi th an argunent val ue of 0x8085

(TEST_DATA_LI NK) .

If (reply not equal to sent data value or if TIMEQUT) then
Print error nessage and conti nue.

Increnent data value: data = data + data_incr.

}
If (do timing file load) then

If (file does not exist) then
Print error nessage and conti nue.

El se
{ . . .
Call function to load timng DSP file.
If (timing file load failed or if TIMEQOUT) then
Print error nessage and conti nue.
}

}
If (do timng application) then

If (application nunber not between 0 and 3) then
Print error nessage and conti nue.

board

El se

{
Set the board destination to the timing board using the ioctl() comrmand
ASTROPCI _SET_DESTI NATI ON and argunent val ue of 0x10000002 (# of args << 16 |
id).
Set the argunment 1 register using the ioctl() comand ASTROPCI _SET_ARGL with the
application nunber as the argunent.
Use the ioctl() comand ASTROPCI _SET _HCVR wi th an argunent val ue of 0x807F
(LOAD_APPLI CATI ON) .
If (reply not equal to ‘DON or if TIMEOUT) then

Print error nessage and conti nue.
}

}
If (do utility file load) then

If (file does not exist) then
Print error nessage and conti nue.

El se
{ . . .
Call function to load utility DSP file.
I'f (utility file load failed or if TIMEOUT) then
Print error nessage and conti nue.
}

}
If (do utility application) then

If (application nunber not between 0 and 3) then
Print error nessage and conti nue.

El se

{

Set the board destination to the utility board using the ioctl () conmand

ASTROPCI _SET_DESTI NATI ON and argunent val ue of 0x10000003 (# of args << 16 |

id).

board

Set the argument 1 register using the ioctl() command ASTROPCI _SET _ARGL with the

application nunber as the argunent.

Use the ioctl() comand ASTROPCI _SET_HCVR wi th an argunent val ue of 0x807F
(LOAD_APPLI CATI ON) .

If (reply not equal to ‘DON or if TIMEQUT) then
Print error nessage and conti nue.

}

If (do power on) then

Reset the controller using the ioctl() comand ASTROPCI _SET HCVR with an argunent val ue of
0x808D (PONER_ON) .

If (reply not equal to ‘DON or if TIMEQUT) then
Print error nessage and continue.

}

If (do set tenperature) then

Set the argument 1 register using the ioctl() comand ASTROPCI _SET_ARGL with the target
tenperature as the argunent.

Use the ioctl() comand ASTROPCI _SET_HCVR wi th an argunment val ue of 0x80AD
(SET_ARRAY_TEMPERATURE) .

If (reply not equal to ‘DON or if TIMEQUT) then
Print error nessage and continue.

}
If (do idle) then

If (set to idle) then

Use the ioctl() comand ASTROPCI _SET _HCVR wi th an argunent val ue of 0x8097
(RESUME_I DLE_MODE) .
El se

Use the ioctl() comuand ASTROPCI _SET_HCVR wi th an argument val ue of 0x8095
(STOP_| DLE_MODE) .

If (reply not equal to ‘DON) then
Print error nessage and conti nue.

}
If (do set dinensions) then

/1 Set the nunber of colums.

Use the ioctl () command ASTROPCI _SET_NCOLS with the argument val ue set to the nunber of inage
col ums.

If (reply not equal to ‘DON or if TIMEOUT) then
Print error nessage and conti nue.

/1 Set the nunber of rows.

Use the ioctl () comand ASTROPCI _SET _NROAS with the argunment value set to the nunber of inage
rows.

If (reply not equal to ‘DON or if TIMEOUT) then
Print error nessage and conti nue.

Set a variable that |lets the exposure function know that the mnimumcontroller setup has
been appli ed.

/1 Setup the controller configuration.

If (do timing (app or file) ORdid timing (app or file)) then

{
Get the controller configuration status word using the ioctl () conmand
ASTROPCI _SET_HCVR wi th an argunent val ue of 0x8079 (READ_CONTROLLER STATUS) .
If (reply equals ‘ERR) then
Set controller configuration status word to default value of 0x020000
(DEFAULT_CONFI G_WORD) .
Call the function with the controller configuration status word to create the
control |l er configuration w ndow.
}

2. Exposure Sequence Pseudo Code

/1 Set the shutter position. Do this by reading the current controller status from
/1 the timng board address X: 0. If “open shutter”, bit 11 of the status is set to
/1 a 1, otherwise, bit 11 is cleared (set to a 0). The entire status word is then
// witten back to the timng board address X 0.
I'f (current shutter position != previous position) then
{
Set current shutter position equal to new shutter position.
Set t he board destination to t he timng boar d usi ng t he ioctl()
ASTROPCI _SET_DESTI NATI ON and argunent val ue of 0x00020002 (# of args << 16 | board id).
If (reply not equal to ‘DON) then
Print error nessage and return.
Set the menory type to X space by using the ioctl() conmand ASTROPCI _SET_ARGL with an
argunent value of ‘__ X .
Read the <current controller status from address O by using the ioctl()
ASTROPCI _SET_HCVR and ar gurment 0x8087 (READ_MEMCORY).
Read the reply (ASTROPCI _GET_REPLY), which will be the current controller status.
Set t he board destination to t he timng board usi ng t he ioctl ()
ASTROPCI _SET_DESTI NATI ON and argunent val ue of 0x00030002 (# of args << 16 | board id).
If (reply not equal to ‘DON) then
Print error nessage and return.
Set the menory type to X space by using the ioctl() command ASTROPCI _SET_ARGL with an
argunent value of ‘__ X .
If (do open shutter) then
Wite the current controller status ORd with (1 << 11) to address O by using the
ioctl () command ASTROPCI _SET_HCVR and ar gument 0x8089 (WR TE_MEMORY).
El se
Wite the current controller status ORd with ~(1 << 11) to address 0 by using the
ioctl () comand ASTROPCI _SET_HCVR and ar gunent 0x8089 (WR TE_MEMORY).
If (reply not equal to ‘DON) then
Print error nessage and return.
}

/1 Set the exposure tine.

Set the board destination to the utility board using the ioctl () conmand ASTROPCI _SET_DESTI NATI ON and

argunment val ue of 0x00010003 (# of args << 16 | board id).

If (reply not equal to ‘DON) then
Print error nessage and return.

Set the exposure tinme using the ioctl() command ASTROPCI _SET_EXPTIME with the exposure tine as the

ar gument .

/1 Cet the inmge byte size.
Cal cul ate i mage byte count from setup info.

/1 Check for nultiple exposures.
If (do nmultiple exposures) then
Set nunber of exposures.
El se
Set nunber of exposure to 1.

/1 Start executing the exposures.
Loop over the nunber of exposures

{
Di splay the elapsed tinme as O.
If (delay before starting the exposure) then
sl eep for del ay*1000 seconds.
El se conti nue.

Start the exposure using the ioctl() command ASTROPCI _SET HCVR and argunent
(START_EXPOSURE) .

If (reply not equal to ‘DON) then
print error message and return.

I f (exposure_tine > 5 seconds) then

if (using controller exposure time counter) then

Read t he el apsed exposur e tinme usi ng the ioctl() command
ASTROPCI _SET_HCVR and ar gument 0x8099 (READ EXPCSURE_TI MVE) .

/1 The controllers start value may be initially |l ess than O.
Wil e (el apsed_exposure_tine < 0)

Read the el apsed exposure tinme, as above, until the elapsed time equals O.
Set the elapsed tinme to O and display the el apsed tine.

Wi |l e (el apsed_exposure_tine < (exposure_time-5))

{

Sleep for 0.5 seconds.

Wi | e (pause equal s true)
Sl eep for 0.25 seconds

If (change exposure tinme equals true) then
Set the board destination to the utility board using the ioctl()
conmmand ASTROPCI _SET_DESTI NATI ON and argunent val ue of 0x10000003 (# of
args << 16 | board id).
/1 Check for zero exposure tine (and tines less than 5
/'l seconds) and set exposure tine to 5100 ns if true. This // is to
all ow the PCl board to take control for the
/1 remaining 5 seconds. The 5100 ns is required because the // PCl DSP
expects the READ | MAGE (0x809D) command to be
/1 issued, but the PClI DSP does not accept commands when the // el apsed
exposure tinme is 5 seconds or |ess.
If (exposure_time < 5 seconds) then

Exposure_tine = 5100 ns.
Set the new exposure time using the ioctl () conmand
ASTROPCI _SET_EXPTI ME with the exposure tinme as the argunent.
Di spl ay the new el apsed exposure tine.
/'l Check for exposure time set to zero and break imediately // if it
is.
If (exposure_time <= 5 seconds) then
Br eak.

}

If (using controller exposure tine counter) then
Read the el apsed exposure tinme using the ioctl() command
ASTROPCI _SET_HCVR and ar gunent 0x8099 (READ_EXPOSURE_TI ME) .

El se el apsed_tine = el apsed_tine + 0.5 seconds.

Di spl ay the el apsed tine.

}

Display a 5 for the el apsed tine.

}
Print a message informng the user that the exposure has conplete.

/1 Readout the inage.
Set the board destination to the PCl board using the ioctl () command ASTROPCI _SET_ DESTI NATI ON
and argurment value of Ox1 (# of args << 16 | board id).

/1 This does not need to be done for exposure tinmes greater than 5 seconds because // it is
built into the controller for times |less than 5 seconds.
I f (exposure_tine > 5 seconds) then
Start the data flow fromthe controller using the ioctl () command ASTROPCl _SET_HCVR
and argument 0x809D (READ_| MAGE) .

Start reading image data using read() and the nunber of inage bytes as an argunent.

If (reply not equal to ‘DON) then
Print and error nessage and return.

If (beep after readout) then
Ri ng the system bel | .

/1 The SUN swaps the inage data, so unswap it.
Call Cswap_nenory() function in the |ibpcinmenc.so |library.

If (the inage needs to be de-interlaced) then

Call Cdeinterlace() function in the libsetupcndlibc.so library.

If (the i nmage needs to be displayed) then

If (cannot display) then
Print error nessage and continue

Call Cdisplay() function in the |libdisplibc.so library.

If (the i mage needs to be saved) then

}

If (auto-increnent the filenanme equals true) then

I ncrenent the fil enane

Wite the FITS file

If (inage is synthetic and want to check data) then

}

XV. EXAMPLE
For a complete example of using the C DSPLibrary, please see the file “mreadout_pci.c”

supplied with the C DSPLibrary.

XVI. REVISION HISTORY

DATE
11/22/1999
01/11/2000
02/08/2000

03/02/2000

06/27/2000

07/25/2000

08/16/2000

AUTHOR

Cal | Cdata_check() function in the |ibpcimenc.so library.

CHANGE

Scott Streit
Scott Streit
Scott Streit

Scott Streit

Scott Streit

Scott Streit

Scott Streit

Initial
Updated example, original had bugs.

Added Section Il subsections 4 and 5, added Section VI,
and misc. minor changes.

Added bit 0 info for HSTR, added info for downloading
timing, utility, and PCI files under section IV. Updated reply
buffer info in section II.

Converted document to MS Word.

Added reply values to ioctl() and vector command lists.
Updated board destination section.

Merged driver and voodoo docs into one programmers
manual.

	I. DESCRIPTION
	II. VOODOO DESIGN
	III. VOODOO API
	IV. SETTING THE SHUTTER POSITION FOR AN EXPOSURE
	V. THE VOODOO C LIBRARY
	
	
	
	Libpcilibc.so
	Libpcimemc.so
	Libdisplibc.so
	Libfitslibc.so
	Libsetupcmdlibc.so
	Libverlibc.so

	VI. CONTROLLER CONFIGURATION BIT DEFINITIONS
	V
	VII. DEVICE DRIVER INSTALLATION
	
	
	
	Solaris Installation
	Linux Installation

	VIII. PCI BOARD - DEVICE DRIVER INTERACTION
	
	1. Configuration Registers

	Configuration Space Header
	
	Control/Status Registers
	Host Interface Control Register (HCTR)
	Host Interface Status Register (HSTR)
	Host Command Vector Register (HCVR)
	Reply Buffer
	DSP Manual Command Register
	Board Destination Register
	Command Argument Registers 1-5
	DMA Host Kernel Buffer Address 1 Register
	DMA Host Kernel Buffer Address 2 Register

	3. Camera Table Registers
	4. Image Buffers
	5. Interrupts

	VIIII. DEVICE DRIVER USAGE
	
	1. open()
	2. close()
	3. read()
	4. ioctl()

	X. DSP COMMANDS
	
	1. Test Data Link (TDL)
	2. Read Memory (RDM)
	3. Write Memory (WRM)
	4. Power On (PON)
	5. Start Exposure (SEX)
	6. Readout Image (RDI)
	7. Abort Exposure (ABR)
	8. Reset Controller (RST)
	9. Open Shutter (OSH)
	10. Close Shutter (CSH)
	11. Resume Idle (IDL)
	12. Stop Idle (STP)
	13. Set Temperature
	14. Read Temperature
	15. Load Application (LDA)
	16. Load Timing or Utility File
	17. Load PCI File
	18. Dimensions
	19. Set Gain and Speed (SGN)

	XI. DSP VECTOR COMMAND QUICK REFERENCE
	XII. DSP AND DRIVER REPLY QUICK REFERENCE
	XIII. SEQUENCE OF DSP COMMANDS
	XIV. APPENDIX A
	
	1. Controller Setup Sequence Pseudo Code
	2. Exposure Sequence Pseudo Code

	XV. EXAMPLE
	XVI. REVISION HISTORY

