Science, technology and detectors for Extremely Large Telescopes

Roberto Gilmozzi, ESO SDW2005, Taormina, 20 June 2005

Acronyms

- ELT = extremely large telescope
 - © Tom Sebring
 - Appropriated as generic term
 - Sometime used as European LT
- GOD = giant optical device
 - © Jerry Nelson (and they said "OWL" showed our *hubris...*)
- FGT = future giant telescope
 - ⇒ Use ELTs as generic term
 - ELD = extremely large detectors are what we need for the future Ah, they also need to be *cheap* and have zero readout noise...

Context: II decade, III millennium AD

- "Maturity" of current generation
 - VLT, Keck, Gemini, Subaru, HET, LBT, GTC, SALT...
 - AO $\rightarrow \lambda/D$ performance, 2nd gen instruments

Interferometry

"Faint object" regime (K~20), astrometry (µas)

· ALMA

- mm, sub-mm "equivalent" of optical facilities

New ground-based telescopes

- 30 to 100m diameter, $\lambda/D \sim mas$
- OWL, CELT+GSMT=TMT, GMT, ...

New space telescopes

- JWST, XEUS, TPF/Darwin precursors...

Detectors improved more than diameters

Confusion about Confusion

Inheritance of the 1980s?

- Poor spatial resolution
 - X-ray "background" (not there any longer...)
 - Overlapping faint galaxies (2" seeing!)
- HDF's: mostly empty (5% covering factor)
- DIFFRACTION LIMIT! remember this
- 3D information
- Absence thereof: does it tell us something?
 - ~10¹¹ galaxies in ~10¹¹ square arcsec → typical size?
- Olbers paradox
 - Can we deduce the "galaxy covering factor"?
- Not easy to predict how the universe looks at milliarcsecond resolution...

Not easy to predict how fast technology develops, either

· 1943

Thomas Watson, chairman of IBM:
"I think there is a world for maybe five computers"

1981

Bill Gates, founder of Microsoft:
"640K ought to be enough for anybody"

Example of progress

R. curvature (mm) surface RMS (nm) θ RMS (arc secs) CIR @ r₀=500mm CIR @ r₀=250mm Strehl

SPEC	Mirror 1	Mirror 2	Mirror 3	Mirror 4 28759.2	
28800+-100	28762.9	28760.0	28762.6		
N/A	22	19.5	17.5	8.5	
N/A	0.080	0.074	0.087	0.062	
nm >0.82(*)	0.875	0.898	0.893	0.975	
N/A	0.935	0.951	0.935	0.981	
>0.25(*)	0.762	0.791	0.824	0.953	
	28800+-100 N/A N/A >0.82(*) N/A	28800+-100 28762.9 N/A 22 N/A 0.080 >0.82(*) 0.875 N/A 0.935	28800+-100 28762.9 28760.0 N/A 22 19.5 N/A 0.080 0.074 >0.82(*) 0.875 0.898 N/A 0.935 0.951	28800+-100 28762.9 28760.0 28762.6 N/A 22 19.5 17.5 N/A 0.080 0.074 0.087 >0.82(*) 0.875 0.898 0.893 N/A 0.935 0.951 0.935	

- Very high spatial frequency errors ~3-7 nm RMS (wavefront)
- Microroughness < 20 Å
- Correction forces typically ~80 N (spec <120 N)
- Matching error measured by direct Hartmann test, negligible (below measurement accuracy)
- All radii of curvature within 3.7 mm
- Provisionally accepted in 1996 (No 1 and 2), 1997, 1999.

The challenges

Sensitivity

- If you want to get spectroscopy of the HDF galaxies you need at least a 30m telescope
- If you want to get spectroscopy of the faintest galaxies discovered by JWST you need at least a 100m
- If you want to get spectroscopy of candidate earth-like planets within 10pc you need at least an 80m

Maximize diameter

The challenges cont'd

• The atmosphere

MCAO simulation

X-4 Pill star P

Total FOV: 2' (diameter) 100m telescope, K-Band FWHM: ~5mas, Sr ~ 30-40% 2 DMs (8k - 9k actuators) 3 NGSs (100x100 Shack-Hartmann)

The challenges cont'd • Site selection

NCEP / NCAR PRECIPITABLE WATER CONTENT 1948-2001

MAX: 53.1889 MIN: -1.70116

Long Term Precipitable Water Content for AN in kg per m2

FRIOWL, University of Fribourgi6

The challenges cont'd

• Wind

- Control system
- Design
- Brute force (enclosure, screens, ...?)
- A lot of work being done (CFD, wind tunnel, experiments, etc)

The challenges cont'd

The instruments

- A LOT of pixels
- "easy" for single point sources
 - Beam size ~ D x slit ~ D x 1/D ~ const
- Not easy at all for other applications
 - Though an F/30 camera is better than a F/0.5!
- Large multiplex required
- Large stability required
- Physics experiment-like approach?
- Active control?

Collaboration ESO-community

 Instrument designs from science cases (see talk by Sandro D'Odorico)

The science case

EXTREMELY LARGE TELESCOPES:

The next step in mankind's quest for the Universe

Science requirements*

- Choice of design driven by science
 - (new science)
 - Terrestrial planets in extra-solar systems
 - Imaging and spectroscopy (exo-biospheres)
 - Virgo or bust!
 - What is the stellar population of ellipticals?
 - Dark matter and dark energy
 - Map DM content (~80%), link to particle physics
 - Star formation history of the Universe
 - Evolution of the Cosmos from Big Bang to today
 - First objects and the re-ionization
 - Primordial stars and their role
 - Direct measurement of deceleration
 - No assumptions, no extrapolations, no models

(*) what we think today we will do with ELTs, which probably has little to do with what we actually will do

We think we know how they form So we expect earth-like ones to exist...

Silhouette Disk Orion 114-426 (J- band)

Density fluctuations in protoplanetary disks

Detecting exo-earths

Quest for high-contrast imaging

- Coronagraphy
- Nulling interferometry
- Multi-Conjugated Adaptive Optics
- eXtreme Adaptive Optics
- Simultaneous Differential Imaging

0.6 arcsec

The spatial resolution challenge

0.6 arcsec

0.6 arcsec

Simultaneous Differential Imaging

Adaptive Optics

Ouadrant 4: 1.625 µm

Four SDI-NACO Images (VLT YEPUN + NACO/SDI)

·@ Specific wavelengths ·Cancel the speckles in real time →Very high contrast (~50k) Today on NaCo, VLT UT4 Hartung, Close, Lenzen et al, A&A July 2004

Simultaneous Views of Titan's Surface and Atmosphere (VLT YEPUN + NACO/SDI)

ESO PR Photo 11b/04 (14 April 2004)

© European Southern Observatory

ESO PR Photo 11c/04 (14 April 2004)

C European Southern Observator

Exo-earths: strong dependence on D

- Accessible volume $\propto D^3$
 - 30m: 20 G stars (*) 60m: 165 G stars 100m: 750 G stars

Sensitivity

Science case $\propto D^4$

- → to reach same S/N:
 - $t_{30m} = 123 \times t_{100m}$
- Spectroscopy D ≥ 80m

(*) ∀ d_{min} = 5 λ/D

Detecting vegetation

Exo-earths: detection comparison

(Angel, 2003)

telescope	U	wave (µı	n) mode	S/N	(earth@10pc, t=24h)
space interf	4x2m	11	nulling	8.4	Darwin, TPF
space filled	7m	0.8	coronagr	5.5-34	JWST or HST successor
Antarctic	21m	11 0.8	nulling	0.52	GMT
ground	30m	11 0.8	nulling coronagr	0.34	Celt, GSMT
ground	100m	11 0.8	coronagr	$\begin{pmatrix} 4.0\\ 46 \end{pmatrix}$	OWL
Antarctic	100m	11 0.8	coronagr coronagr	17 90	BOWL=better OWL

Resolved Stellar populations and Galaxy Formation

Simulated M32 CM Diagram Observed with 30-m Telescope *from GSMT study* • We can learn a lot about the formation and evolution of our nearby neighbours with a 30-m telescope

E.g. Colour-mag diagram reveals multiple stellar pops

• What about a more representative slice of the Universe?

- 3 hour exposure
- Diffraction-limited observation
- Outer field (µI = 28)
- Realistic IMF plus population synthesis to two magnitudes below MSTO

Simulated M87 field observed with 100-m telescope

Simulated observations with a 50m by Peter Linde

Need ~100m to reach Virgo Need AO-corrected imaging over 10 arcsec - preferably in optical

Cosmology: 96% of Universe unaccounted for

It is indeed embarrassing that 95% of the universe is unaccounted for: even the dark matter is of quite uncertain nature, and the dark energy is a complete mystery Sir Martin Rees, Astronomer Royal
Measure of cosmic parameters with primary distance indicators

Note: NOT H_NOT O

WMAP has shown that the Universe is flat

Science with OWL: a practical case

- The cosmic SN rate up to z ~ 10
 - Simulations of OWL observations yield:
 - Jx3+Hx3+Kx7: ≥ 200 SNe (extrapolating Miralda & Riess 1997) or ≥ 400 SNe (MDP 1998)
 - Light curves, photometric redshifts (galaxy & SN)
 - Spectroscopy $\Re \sim 50: \sim 50-100$ SNe at z < 4.5

- Spectral classification:

- SNe Ia visible up to z ~ 5
 - Blind below 2400A, K last useful band
- SNe II visible up to z ~ 10
 - Strong UV emitters (time-dilated UV flash)
- · Pop III SNe (?)
 - Possibly much brighter and visible to z ~ 20

ES

Requirements from this case

- Field of view
 - 2x2 arcminutes
- Resolution
 - Diffraction limited at J
- Pixel size: 0.5 λ/D ~ 1.6 mas
 ₱ 75,000 x 75,000 > 5 G pix

(that's >1m² for 15 μm pixels) (at present cost of 10¢/pix this would be ~ **\$500 million**) (hopefully controllers will be manageable by then)

What can be done?

- Resize science case
 - Factors of a few are possible
- Smart focal plane coverage
 - Observe only where is needed
- This may reduce 10x-20x
- Need for a break-through
 - eg: mass production of astronomygrade detectors should decrease cost
 - Volume up by > 100x

Back to dark matter...

Gravitational Lens in Galaxy Cluster Abell 1689 O HUBBLESITE org

z=49.000

As for WMAP, this experiment with OWL would provide a direct cosmological measurement, albeit a different one: the Universe acceleration around z ~ 5

Direct Measurement of q

- Intersect measurement of cosmic deceleration
 - from 10 cm/s accuracy Lyα forest R.V. over 10 years (Loeb 1998; Cristiani et al. 2002)
- scientific feasibility ensured from:
 - M_v < 17.5 QSO samples done (HIRES/KECK UVES/VLT)
 - high R.V. accuracy reached for exo-planets (e.g. HARPS)
 - high collecting power

Direct Measurement of q

More challenges: cost

- Break the historical D^{2.6} cost law
 - Innovative designs
 - Industrial involvement
 - To determine early in the process what is feasible
 - "New" concepts (e.g. serialized production)
 - New to the art of telescope making, that is
 - "Built-in" maintenance concepts
 - Running a facility with a goal of ~3% of capital per year
- Constrain budget to a "reasonable" total
 - e.g. cost_{OWL,100m} < cost JWST,6m</sub> < cost_{HST,2.4m}
- Make design scalable where possible

Industrial data Applies to conceptually simple items (e.g. segments, structural nodes)

Feasibility – progress of technology

Glass-making

- Slowly evolving technology Þ
- Not easily scal Segmen tation, N.Y., 193 >
- A

Optical figuring

- >
- Rapid evolution Realmentation >
- Scalable (somewilat ×

Wavefront control

- In-situ control of performance >
- Dealing with inevitable error sources >
- **Tolerances relaxation** ×
- Scalable N

Reosc, St Pierre du Perray, 1999

Large structures are predictable

Green Bank 100-m, 7,300 tons 8 years construction 75 Mio. USD

6,700 m² collecting area Angular resolution 0.001 arc seconds (visible)

Structural design

- Fractal design, serially produced modules
- > Low mass 13,600 tons ... Volumic mass ~ 1/60th of current telescopes
- > High structural stiffness
 2.6 Hz 1st locked rotor eigenfrequency

Main optics

- > Primary mirror 3,048 all-identical segments
- > Secondary mirror 216 all-identical segments

Optical design

m, segmented M3 - Aspheric, 8.2-m, thin <u>active</u> meniscus 4-elements COFFERIOR M4 - Aspheric, 8.1-m, thin active meniscus M6 - Flat, 2.2-m, Exit pupil, field stabilization M1 - Spherical, M5 - Aspheric, 100-m, f/1.2, segmen 3.5-m, focusing 10 arc min f/6

Field of view

M2 - Flat, 25.6-

FRACTAL DESIGN

All dimensions as multiple of segment size

- > Standardization
- Ease of integration
- Ease of maintenance
- Optimal loads transfers

Controlled optical system

Pre-setting Metrology: Correction: Phasing Metrology: Correction: **Field Stabilization** Metrology: Correction: Active optics Metrology: Correction: Adaptive optics

0

0

0 0

Metrology: Correction:

- bring optical system into linear regime internal, tolerances ~ 1-2 mm, ~5 arc secs re-position Corrector, M3 / M4 / M5
- keep M1 and M2 phased within tolerances Edge sensors, Phasing WFS Segments actuators
- cancel "fast" image motion Guide probe M6 tip-tilt (flat, exit pupil, 2.35-m)
- finish off alignment / collimation
- relax tolerances, control performance & prescription Wavefront sensor(s) Rotation & piston M5; M3 & M4 active deformations
- atmospheric turbulence, residuals
 Wavefront sensor(s)
 M5, M6, ...

Controlled opto-mechanical system IV – Phasing

Mach-Zehnder calibration sensor

Interferogram (ideal conditions)

Complex geometry, But fully predictable

Localized signal

2k x 2k camera sufficient for adequate sampling

Piston, Tip, and Tilt: Examples

"First Light" for NAOS-CONICA at VLT YEPUN (November 25, 2001)

C European Southern Observatory

Adaptive Optics

	Today	2008	2015	2019
IR Deformable Mirrors	LBT (JWST)	Prototype	OWL 1st Gen.	2 nd Gen.
Diameter	1-m (2-m)	0.3-m	2-m	4-m
Actuator spacing	30 mm	15 mm	20-25 mm	10 mm
XAO corrector		1000		Moems/Pzt
Detector	256x256 ?		512x512	1kx1k
AO real time control	TAN DRA		Almost OK	
Reference stars	NGS (LGS)		NGS	NGS / LGS

- > High sky coverage in the near-IR (better filling of metapic
- > LGS needed ~2018; lower number of LGS,
- > Cone effect requires novel approaches e.g. PIGS (Ragazzoni et al)

640mm

Existing Large Adaptive Mirror Technology

MMT: **336 act** 640mm diam 2.0mm thick 31 mm/act (Jan 2003)

911mm

LBT (2 units): 672 act 911mm diam 1.6mm thick 31 mm/act (in production)

Cost estimate (capital investment, 2002 M€)

SUMMARY	MEuros
OPTICS	406
Primary & secondary mirror units	355.2
M3 unit	14.4
M4 unit	21.4
M5 temporary unit	5.3
M6 temporary unit	10.1
ADAPTIVE OPTICS	110
M5/M6 design & prototypes	10
M6 AO unit	25
M5 AO unit	35
XAO units	20
LGS	20

Diffraction-limited instrumentation (acceptable étendue !) Assumes "friendly site"

- Average seismicity (0.2g)
- Moderate altitude
- Average wind speed
- Moderate investment in infrastructures

MECHANICS	185	1000
Azimuth		53.8
Elevation		34.9
Cable wraps		5.0
Azimuth bogies (incl. motors)		14.7
Altitude Bogies & bearings		5.7
Mirror shields		15.0
Adapters		6.0
Erection		50.0
CONTROL SYSTEMS (*)	17	
Telescope Control System		5.0
M1 Control System		8.0
M2 Control System		2.0
Active optics Control System		2.0
CIVIL WORKS	170	-
Enclosure		40.4
Technical facilities		35.0
Site infrastructure		25.0
Concrete		70.0
INSTRUMENTATION	50	
INSTRUMENTATION		50
Total without contingency	939	938.9
(*) High level cs only; local cs included	d in subsyster	ns

Cost estimates (industrial studies)

Primary & secondary mirror segments; 1.8-m; polished, prices ex works.

Blanks: SiC (2 suppliers A and B) with overocatings (3 suppliers 1, 2, 3) Glass-Ceramics (2 suppliers C and D)

Polishing: 2 suppliers, only one shown (both agree within 10%)

Schedule estimate

1st light 2016, start of science 2017, completion 2021

Faster path to science start

- > Order 8-m blanks in 2008
- > Order (competitive) final designs of enclosure & structure in 2008
- > Order competitive Preliminary designs of M6 in 2008
- ⇒ <u>1st light 2014, 50-m science 2015, completion 2019 (TBC);</u> Requires advanced commitment of M€ ~55 in phase B (2006-2010)

2. Faster path to completion

- Advanced order of segments raw material (~50% of blanks cost)
- Moderate increase segments storage capacity on-site
- > Moderate increase of maintenance capacity (or better coatings...)
- Count on faster progress of AO technology / concepts
- → Cost TBD (probably low), <u>completion in 2018 ?</u>

NB: alternatives mostly a cash flow problem

Near future

Phase A report end-2005

ELT Design Study

OWL Concept Design Report

Concept design review

- FP6 EC-funded technology development programme
- > 31.5 M€, approved, running
- > 30 partners under ESO's lead

2006-2010 OWL Phase B

- > Estimated cost 43 M€
- Major design contracts (subsystems)
- Prototyping, breadboards
- Site selection (2008)

See also www.eso.org

Conclusions

OWL is a concept already at an advanced stage of design

- Design supported by analysis & competitive industrial studies
- Cost estimate > 50% completed, supported by competitive studies
- Cost-effective design principles & solutions allow major jump in capability

Substantial science at early stage

- Schedule constrained by funding, not by technology
- Progressive implementation of capabilities
- > 60-m with IR AO in 2017, 100-m with MCAO in 2019

European-wide technology & concepts development

- Industrial & academic synergy
- > ELTs "building blocks", design-independent

<u>Concerns</u>

- > Adaptive optics
- > Wind
- > Pavlov
- Money
- > Detectors

...and solutions

Gradual implementation, max. time for R&D SiC segments, embedded wind screens, etc. Think seeing = 0.001 arc seconds, v=37-38 Open to suggestions. It's up to you, guys!

Cast of characters

E. Brunetto **Optomechanics**

•

M. Dimmler Control Systems

R. Gilmozzi Prime Investigator (PI)

M. le Louarn Adaptive Optics

P. Dierickx Project Management / Engineering

F. Gonte Wavefront Control

System Analysis /

E. Marchetti Adaptive Optics -

M. Quattri Enclosure / Infrastructure

G. Monnet

Instrumentation

Co-PI.

M. Sarazin Site Selection

N. Yaitskova Wavefront Control

L. Noethe Wavefront Control

T. Sadibekova Site Selection

C. Verinaud Adaptive Optics

MAD(*) manager (*) Multi-conjugate Adaptive optics Demonstrator

