

	DSP56300 Family Manual
	24-Bit Digital Signal Processor
	Chapter�1 Introduction
	1.1 Core Overview 1-2
	1.1.1 Data Arithmetic Logic Unit (Data ALU) 1-2
	1.1.2 Address Generation Unit (AGU) 1-3

	1.2 Program Control Unit (PCU) 1-4
	1.3 On-chip Instruction Cache Controller 1-5
	1.4 Port A External Memory Interface 1-6
	1.5 Phase Lock Loop (PLL) and Clock Generator 1-6
	1.6 Hardware Debugging Support 1-7
	1.7 Direct Memory Access (DMA) 1-7
	1.8 Introduction to Digital Signal Processing 1-8
	1.9 Summary of Features 1-11
	1.10 Manual Organization 1-12

	Chapter 2 Core Architecture Overview
	2.1 Core Buses 2-2
	2.2 Core Processing 2-3
	2.3 Processing States 2-5
	2.3.1 Normal Processing State 2-5
	2.3.2 Exception Processing State (Interrupt Processing) 2-6
	2.3.2.1 Hardware Interrupt Source 2-8
	2.3.2.2 Software Interrupt Sources 2-9
	2.3.2.3 Interrupt Priority Structure 2-9
	2.3.2.4 Instructions Preceding the Interrupt Instruction Fetch 2-12
	2.3.2.5 Interrupt Types 2-13
	2.3.2.6 Interrupt Arbitration 2-13
	2.3.2.7 Interrupt Instruction Fetch 2-14
	2.3.2.8 Interrupt Instruction Execution 2-14

	2.3.3 Reset Processing State 2-16
	2.3.4 Wait Processing State 2-17
	2.3.5 Stop Processing State 2-18
	2.3.6 Debug State 2-18

	Chapter�3 Data Arithmetic Logic Unit
	3.1 Introduction 3-1
	3.2 Data ALU Architecture 3-1
	3.2.1 Data ALU Input Registers (X1, X0, Y1, Y0) 3-3
	3.2.2 Multiplier-Accumulator (MAC) Unit 3-3
	3.2.3 Data ALU Accumulator Registers (A2, A1, A0, B2, B1, B0) 3-4
	3.2.4 Accumulator Shifter 3-5
	3.2.5 Bit Field Unit (BFU) 3-5
	3.2.6 Data Shifter/Limiter 3-5
	3.2.6.1 Scaling 3-6
	3.2.6.2 Limiting 3-6

	3.3 Data ALU Arithmetic and Rounding 3-7
	3.3.1 Data Representation 3-7
	3.3.2 Rounding Modes 3-8
	3.3.2.1 Convergent Rounding 3-8
	3.3.2.2 Twos-Complement Rounding 3-10

	3.3.3 Arithmetic Saturation Mode 3-11
	3.3.4 Multiprecision Arithmetic Support 3-12
	3.3.4.1 Double-Precision Multiply Mode 3-13

	3.3.5 Block Floating-Point FFT Support 3-14

	3.4 Data ALU Programming Model 3-15
	3.5 Sixteen-Bit Arithmetic Mode 3-15
	3.5.1 Moves in Sixteen-Bit Arithmetic Mode 3-16
	3.5.1.1 Moves into Registers or Accumulators 3-16
	3.5.1.2 Moves from Registers or Accumulators 3-17
	3.5.1.3 Short Immediate moves 3-19
	3.5.1.4 Scaling and Limiting 3-19

	3.5.2 Sixteen-bit Arithmetic 3-19

	3.6 Pipeline Conflicts 3-20
	3.6.1 Arithmetic Stall 3-21
	3.6.2 Status Stall 3-21
	3.6.2.1 Transfer Stall 3-22

	Chapter�4 Address Generation Unit
	4.1 AGU Architecture 4-1
	4.2 Sixteen-bit Compatibility Mode 4-3
	4.3 Programming Model 4-4
	4.3.1 Address Register Files 4-4
	4.3.2 Stack Extension Pointer 4-5
	4.3.3 Offset Register Files 4-5
	4.3.4 Modifier Register Files 4-6

	4.4 Addressing Modes 4-6
	4.4.1 Register Direct Modes 4-7
	4.4.2 Address Register Indirect Modes 4-7
	4.4.3 PC-relative Modes 4-9
	4.4.4 Special Address Modes 4-9

	4.5 Address Modifier Types 4-10
	4.5.1 Linear Modifier (Mn = $XXFFFF) 4-11
	4.5.2 Reverse-Carry Modifier (Mn = $000000) 4-11
	4.5.3 Modulo Modifier (Mn = Modulus – 1) 4-12
	4.5.4 Multiple Wrap-Around Modulo Modifier 4-13

	Chapter�5 Program Control Unit
	5.1 Overview 5-1
	5.2 PCU Hardware Architecture 5-3
	5.3 Instruction Pipeline 5-3
	5.4 Programming Model 5-4
	5.4.1 Configuration and Status Registers 5-5
	5.4.1.1 Operating Mode Register 5-6
	5.4.1.2 Status Register (SR) 5-11

	5.4.2 Stack and Stack Extension 5-18
	5.4.3 System Stack Configuration and Operation Registers 5-18
	5.4.3.1 Stack Pointer (SP) Register 5-20
	5.4.3.2 Stack Counter (SC) Register 5-22
	5.4.3.3 Stack Size (SZ) Register 5-22

	5.4.4 Program, Loop, and Exception Processing Control 5-23
	5.4.4.1 Program Counter (PC) Register 5-23
	5.4.4.2 Loop Address (LA) Register 5-23
	5.4.4.3 Loop Counter (LC) Register 5-23
	5.4.4.4 Vector Base Address (VBA) Register 5-23

	Chapter�6 PLL and Clock Generator
	6.1 PLL and Clock Signals 6-2
	6.2 PLL Block 6-2
	6.2.1 Frequency Predivider 6-3
	6.2.2 Phase Detector and Charge Pump Loop Filter 6-3
	6.2.3 Voltage Controlled Oscillator (VCO) 6-3
	6.2.3.1 Divide by 2 6-3
	6.2.3.2 Frequency Divider 6-3
	6.2.3.3 PLL Control Elements 6-4
	6.2.3.3.1 Clock Input Division 6-4
	6.2.3.3.2 Frequency Multiplication 6-4
	6.2.3.3.3 Skew Elimination 6-4
	6.2.3.3.4 Clock Generator 6-5
	6.2.3.3.5 Low-Power Divider (LPD) 6-5
	6.2.3.3.6 Internal and External Clock Pulse Generator 6-5
	6.2.3.3.7 Operating Frequency 6-6

	6.3 PLL Programming Model 6-6
	6.4 Clock Synchronization 6-10
	6.5 Design Guidelines for Ripple and PCAP 6-10

	Chapter�7 Debugging Support
	7.1 JTAG Test Access Port 7-2
	7.1.1 Boundary Scan Architecture Overview 7-2
	7.1.2 TAP Controller 7-3
	7.1.3 Boundary Scan Register 7-5
	7.1.4 Instruction Register 7-5
	7.1.4.1 EXTEST (B[3 – 0] = 0000) 7-7
	7.1.4.2 SAMPLE/PRELOAD (B[3 – 0] = 0001) 7-7
	7.1.4.3 IDCODE (B[3 – 0] = 0010) 7-7
	7.1.4.4 CLAMP (B[3 – 0] = 0011) 7-9
	7.1.4.5 HI-Z (B[3 – 0] = 0100) 7-9
	7.1.4.6 ENABLE_ONCE(B[3:0] = 0110) 7-9
	7.1.4.7 DEBUG_REQUEST(B[3 – 0] = 0111) 7-9
	7.1.4.8 BYPASS (B[3 – 0] = 1111) 7-10

	7.1.5 DSP56300 JTAG Restrictions 7-10

	7.2 OnCE‘ Module 7-11
	7.2.1 OnCE Controller 7-12
	7.2.1.1 OnCE Command Register (OCR) 7-13
	7.2.1.2 OnCE Decoder (ODEC) 7-15
	7.2.1.3 OnCE Status and Control Register (OSCR) 7-16

	7.2.2 OnCE Memory Breakpoint Logic 7-17
	7.2.2.1 OnCE Memory Address Latch (OMAL) 7-18
	7.2.2.2 OnCE Memory Limit Register 0 (OMLR0) 7-18
	7.2.2.3 OnCE Memory Address Comparator 0 (OMAC0) 7-18
	7.2.2.4 OnCE Memory Limit Register 1 (OMLR1) 7-19
	7.2.2.5 OnCE Memory Address Comparator 1 (OMAC1) 7-19
	7.2.2.6 OnCE Breakpoint Control Register (OBCR) 7-19
	7.2.2.7 OnCE Memory Breakpoint Counter (OMBC) 7-21

	7.2.3 Cache Support 7-21
	7.2.3.1 OnCE Trace Logic 7-22

	7.2.4 Methods of Entering Debug Mode 7-23
	7.2.5 Trace Buffer 7-26
	7.2.6 OnCE Commands and Serial Protocol 7-27
	7.2.7 OnCE Module Examples 7-29
	7.2.7.1 Checking Whether the Chip Has Entered Debug Mode 7-29
	7.2.7.2 Polling the JTAG Instruction Register 7-29
	7.2.7.3 Saving Pipeline Information 7-29
	7.2.7.4 Reading the Trace Buffer 7-30
	7.2.7.5 Displaying a Specified Register 7-31
	7.2.7.6 Displaying X Memory Area Starting at Address $xxxxxx 7-31
	7.2.7.7 Returning From Debug Mode to Normal Mode to Current Program 7-32
	7.2.7.8 Returning from Debug Mode to Normal Mode to a New Program 7-32

	7.3 Examples of JTAG-OnCE Interaction 7-33
	7.3.1 Address Trace Mode 7-36

	Chapter�8 Instruction Cache
	8.1 Instruction Cache Architecture 8-2
	8.2 Cache Programming Model 8-3
	8.2.1 Cache Operation 8-4
	8.2.1.1 Program Fetch 8-4
	8.2.1.2 Cache Hit 8-4
	8.2.1.3 Cache Word Miss When Burst Mode Is Disabled 8-4
	8.2.1.4 Cache Word Miss When Burst Mode Is Enabled 8-5
	8.2.1.5 Sector Miss 8-5

	8.2.2 Default Mode After Hardware Reset 8-6

	8.3 Cache Locking 8-6
	8.4 Cache Unlocking 8-6
	8.5 Flushing the Cache 8-7
	8.6 Data Transfers to/from Instruction Cache 8-8
	8.6.1 DMA Transfers 8-8
	8.6.2 Software-Controlled Transfers 8-8

	8.7 Using the Instruction Cache in Real-Time Applications 8-9
	8.8 Debugging Instruction Cache Operation 8-10

	Chapter�9 External Memory Interface (Port A)
	9.1 Signal Description 9-2
	9.2 Port Operation 9-5
	9.2.1 SRAM Support 9-5
	9.2.2 DRAM Support 9-7
	9.2.2.1 DRAM In-Page Access 9-10
	9.2.2.2 DRAM Out-of-Page Access 9-10

	9.3 Port A Disable 9-11
	9.4 Bus Handshake and Arbitration 9-11
	9.5 Bus Arbitration Signals 9-11
	9.5.1 The Arbitration Protocol 9-12
	9.5.2 Arbitration Scheme 9-13
	9.5.3 Bus Arbitration Example Cases 9-14
	9.5.3.1 Case 1—Normal 9-14
	9.5.3.2 Case 2—Bus Busy 9-14
	9.5.3.3 Case 3—Low Priority 9-14
	9.5.3.4 Case 4—Default 9-14
	9.5.3.5 Case 5—Bus Lock during Read-Modify-Write Instructions 9-14
	9.5.3.6 Case 6—Bus Parking 9-15

	9.6 Port A Control 9-15
	9.6.1 Address Attribute Registers (AAR0–AAR3) 9-15
	9.6.2 Bus Control Register 9-18
	9.6.3 DRAM Control Register 9-21

	Chapter�10 DMA Controller
	10.1 DMA Operational Overview 10-3
	10.1.1 Basic Address Modes 10-3
	10.1.2 Special Address Modes 10-4
	10.1.3 Unmatched Source and Destination Dimensions 10-4
	10.1.4 DMA Triggers (Request Sources) 10-5
	10.1.5 Transfer Mode 10-5

	10.2 Timing (Core Clock Cycles) 10-6
	10.2.1 Non-Overlap Between DMA Channels 10-6
	10.2.2 Overlap between DMA Channel and Core 10-7

	10.3 Channel Priority 10-7
	10.3.1 Priority Between DMA Channels 10-7
	10.3.2 Priority Between a DMA Channel and the Core 10-8

	10.4 Special Uses of DMA With the Bus Interface Unit 10-9
	10.4.1 Byte Packing 10-9
	10.4.1.1 DRAM In-Page Accesses using DMA 10-9
	10.4.1.2 End-of-Block-Transfer Interrupt 10-9

	10.5 DMA Controller Programming Model 10-10
	10.5.1 DMA Source Address Registers (DSR0–DSR5) 10-10
	10.5.2 DMA Destination Address Registers (DDR[5 – 0]) 10-11
	10.5.3 DMA Counters (DCO[5 – 0]) 10-11
	10.5.3.1 DMA Counter Mode A—Single Counter 10-11
	10.5.3.2 DMA Counter Mode B—Dual Counter 10-12
	10.5.3.3 Circular Buffer (Length Less Than or Equal to 4K) 10-13
	10.5.3.3.1 DMA Counter Modes C, D and E—Triple Counter 10-13

	10.5.3.4 Circular Buffer (Length Greater Than 4K) 10-15
	10.5.3.5 DMA Control Registers (DCR[5 – 0]) 10-16
	10.5.3.5.1 Non-3D Addressing Modes (D3D = 0) 10-21
	10.5.3.5.2 3D Modes (D3D = 1) 10-22

	10.5.3.6 DMA Offset Registers (DOR[3 – 0]) 10-24
	10.5.3.7 DMA Status Register (DSTR) 10-24

	10.6 DMA Restrictions 10-26

	Chapter�11 Operating Modes and Memory Spaces
	11.1 DSP56300 Family Core Memory Map 11-2
	11.1.1 X Data Memory Space 11-3
	11.1.2 Internal X I/O Space 11-3
	11.1.3 Switchable Internal or External X I/O Memory 11-5
	11.1.3.1 Reserved Space for X ROM or RAM 11-5
	11.1.3.2 External X Data Memory 11-5
	11.1.3.3 Internal X Memory 11-5

	11.1.4 Y Data Memory Space 11-6
	11.1.4.1 Internal/External Y I/O Space 11-6
	11.1.4.2 Switchable Internal or External Y I/O Memory 11-6
	11.1.4.3 Reserved Space for Y ROM or RAM 11-6
	11.1.4.4 External Y Data Memory 11-6
	11.1.4.5 Internal Y Memory 11-6

	11.1.5 Program Memory 11-7
	11.1.5.1 Bootstrap ROM Space 11-7
	11.1.5.2 Reserved Space for Program ROM 11-7
	11.1.5.3 External Program Memory 11-7
	11.1.5.4 Internal Program Memory 11-7
	11.1.5.5 Internal Instruction Cache RAM 11-8

	11.2 Sixteen-Bit Compatibility Mode 11-8
	11.3 Memory Switch Mode 11-9

	Chapter 12 Guide to the Instruction Set
	12.1 Instruction Formats and Syntax 12-1
	12.2 Operand Lengths 12-3
	12.2.1 Data ALU Registers 12-4
	12.2.2 AGU Registers 12-5
	12.2.3 Program Control Registers 12-5
	12.2.4 Data Organization in Memory 12-6

	12.3 Instruction Groups 12-6
	12.3.1 Arithmetic Instructions 12-7
	12.3.2 Logical Instructions 12-9
	12.3.3 Bit Manipulation Instructions 12-10
	12.3.4 Loop Instructions 12-11
	12.3.5 Move Instructions 12-11
	12.3.6 Program Control Instructions 12-12

	12.4 Guide to Instruction Descriptions 12-13
	12.4.1 Notation 12-14
	12.4.2 Condition Code Computation 12-18

	12.5 Instruction Partial Encoding 12-22
	12.5.1 Partial Encodings for Use in Instruction Encoding 12-22
	12.5.2 Parallel Instruction Encoding of the Operation Code 12-29
	12.5.2.1 Multiply Instruction Encoding 12-29
	12.5.2.2 Non-Multiply Instruction Encoding 12-30

	Chapter 13 Instruction Set
	Appendix A Instruction Timing and Restrictions
	A.1 Overview A-1
	A.2 Instruction Sequence Delays A-10
	A.2.1 External Bus Wait States A-10
	A.2.2 Instruction Fetch Delays A-11
	A.2.3 Data ALU Interlock A-11
	A.2.4 Address Register Interlocks A-11
	A.2.5 Stack Extension Delays A-13
	A.2.6 Program Flow Control Delays A-15
	A.2.6.1 JMP to LA or to LA – 1 A-15
	A.2.6.2 RTI to LA or to LA – 1 A-15
	A.2.6.3 Conditional Instructions A-15
	A.2.6.4 Interrupt Abort A-16
	A.2.6.5 Degenerated DO loop A-16
	A.2.6.6 Annulled REP and DO A-16

	A.3 Instruction Sequence Restrictions A-16
	A.3.1 Restrictions Near the End of DO Loops A-16
	A.3.2 General DO Restrictions A-19
	A.3.3 ENDDO Restrictions A-23
	A.3.4 BRKcc Restrictions A-23
	A.3.5 RTI and RTS Restrictions A-24
	A.3.6 SR Manipulation Restrictions A-24
	A.3.7 SP/SC and SSH/SSL Manipulation Restrictions A-24
	A.3.8 Fast Interrupt Routines A-25
	A.3.9 REP Restrictions A-25
	A.3.10 Stack Extension Restrictions A-26
	A.3.11 Stack Extension Enable Restrictions A-26

	A.4 Peripheral Pipeline Restrictions A-27
	A.4.1 Polling a Peripheral Device for Write A-27
	A.4.2 Writing to a Read-Only Register A-28
	A.4.3 XY Memory Data Move A-28

	A.5 Sixteen-Bit Compatibility Mode Restrictions A-28

	Appendix B Benchmark Programs
	B.1 Benchmarks B-2
	B.1.1 Real Multiply B-3
	B.1.2 N Real Multiplies B-4
	B.1.3 Real Update B-5
	B.1.4 N Real Updates B-6
	B.1.5 Real Correlation or Convolution (FIR Filter) B-7
	B.1.6 Real * Complex Correlation or Convolution (FIR Filter) B-8
	B.1.7 Complex Multiply B-10
	B.1.8 N Complex Multiplies B-11
	B.1.9 Complex Update B-12
	B.1.10 N Complex Updates B-13
	B.1.11 Complex Correlation or Convolution (FIR Filter) B-15
	B.1.12 Nth Order Power Series (Real) B-17
	B.1.13 Second Order Real Biquad IIR Filter B-18
	B.1.14 N Cascaded Real Biquad IIR Filter B-19
	B.1.15 N Radix-2 FFT Butterflies (DIT, In-Place Algorithm) B-20
	B.1.16 True (Exact) LMS Adaptive Filter B-21
	B.1.17 Delayed LMS Adaptive Filter B-24
	B.1.18 FIR Lattice Filter B-26
	B.1.19 All Pole IIR Lattice Filter B-28
	B.1.20 General Lattice Filter B-30
	B.1.21 Normalized Lattice Filter B-32
	B.1.22 [1 ¥ 3][3 ¥ 3] Matrix Multiplication B-34
	B.1.23 N Point 3 ¥ 3 2-D FIR Convolution B-35
	B.1.24 Viterbi Add-Compare-Select (ACS) B-38
	B.1.25 Parsing a Data Stream B-41
	B.1.26 Creating a Data Stream B-42
	B.1.27 Parsing a Hoffman Code Data Stream B-45

	Appendix C From CDR Process to HiP Process
	C.1 Voltage C-2
	C.2 Operating Frequency C-2
	C.3 Port A Timings C-2
	C.4 Memory Block Size C-3

	Chapter�1 Introduction
	The Motorola DSP56300 family of digital signal processors uses a programmable, 24-bit, fixed-poin...
	Figure�1-1. DSP56300 Family-Based DSP Chip

	The combination of powerful instruction set, multiple internal buses, DMA channels, on-chip progr...
	1.1 Core Overview
	One Million Instructions Per Second (MIPS) per MHz of operating speed
	Object code compatible with the DSP56000 core
	Highly parallel instruction set
	Data Arithmetic Logic Unit (Data ALU)
	Address Generation Unit (AGU)
	Program Control Unit (PCU)
	On-chip Instruction Cache Controller
	External Memory Interface (Port A)
	Phase Lock Loop (PLL)
	Hardware debugging support (JTAG TAP, OnCETM module, and Address Trace Mode)
	Six-Channel Direct Memory Access (DMA) Controller
	Reduced power dissipation
	— Very low power CMOS design
	— Wait and Stop low-power standby modes
	— Fully-static logic
	1.1.1 Data Arithmetic Logic Unit (Data ALU)
	The Data Arithmetic Logic Unit (Data ALU) performs all the arithmetic and logical operations on d...
	Fully pipelined 24 ¥ 24-bit parallel Multiplier-Accumulator (MAC) unit
	Bit Field Unit, comprising a 56-bit parallel barrel shifter (fast shift and normalization; bit st...
	Conditional ALU instructions
	24-bit or 16-bit arithmetic support under software control
	Four 24-bit input general purpose registers: X1, X0, Y1, and Y0
	Six Data ALU registers (A2, A1, A0, B2, B1, and B0) that are concatenated into two general purpos...
	Two data bus shifter/limiter circuits

	The Data ALU registers can be read or written over the X Data Bus (XDB) and the Y Data Bus (YDB) ...
	The Multiplier-Accumulator (MAC) unit comprises the main arithmetic processing unit of the DSP563...
	The multiplier executes 24-bit ¥ 24-bit, parallel fractional multiplies between twos-complement s...

	1.1.2 Address Generation Unit (AGU)
	The Address Generation Unit (AGU) performs the effective address calculations for addressing data...
	Linear
	Modulo
	Multiple wrap-around modulo
	Reverse-carry

	These arithmetic types easily allow creation of data structures in memory for FIFOs (queues), del...
	Linear addressing—Useful for general-purpose addressing
	Modulo addressing—Useful for creating circular buffers for FIFOs
	Multiple wrap-around modulo addressing—Useful for decimation, interpolation and waveform generati...
	Reverse-carry (bit-reverse) addressing—Useful for 2k-point FFT addressing

	The AGU is divided into halves, each with its own Address Arithmetic Logic Unit (Address ALU), on...
	Each Address ALU contains a 24-bit full adder, which is an offset adder. A second full adder—whic...

	1.2 Program Control Unit (PCU)
	The Program Control Unit (PCU) performs instruction fetch, instruction decoding, hardware DO loop...
	Program Decode Controller (PDC): Decodes the 24-bit instruction loaded into the instruction latch...
	Program Address Generator (PAG): Contains the hardware for program address generation, system sta...
	Program Interrupt Controller (PIC): Arbitrates among all interrupt requests (internal interrupts ...

	PCU features include:
	Position independent code (PIC) support
	Addressing modes optimized for DSP applications (including immediate offsets)
	On-chip instruction cache controller
	On-chip memory-expandable hardware stack
	Nested hardware DO loops
	Fast auto-return interrupts
	Program Address Trace mode support

	1.3 On-chip Instruction Cache Controller
	The instruction cache functions as a buffer memory between external memory and the DSP core proce...
	Software controlled Cache Enable (CE) bit in the Extended Mode Register (EMR) in the Status Regis...
	Instruction Cache size of 1024 or 24-bit words
	8-way, fully associative instruction cache with sectored placement policy
	1- to 4-word transfer granularity
	Least recently used (LRU) sector replacement algorithm
	Transparent operation (i.e., no user management is required)
	Individual sector locking/unlocking
	Global cache flush controlled by software
	Cache controller status observable via the JTAG/OnCE port

	1.4 Port A External Memory Interface
	Port A is an external memory interface for memory expansion or memory-mapped I/O. Its programmabl...
	The Address Attribute (AA) lines operate as memory-mapped chip selects or as address lines to ext...

	1.5 Phase Lock Loop (PLL) and Clock Generator
	The clock generator in the DSP56300 core is composed of two main blocks:
	Phase Lock Loop (PLL): Clock-input division, frequency multiplication, and skew elimination
	Clock Generator (CLKGEN): Low-power division and clock pulse generation and change of low-power D...

	The PLL allows the processor to operate at a high internal clock frequency using a low frequency ...
	A lower frequency clock input reduces the overall electromagnetic interference generated by a sys...
	The ability to oscillate at different frequencies reduces costs by eliminating the need to add ad...

	1.6 Hardware Debugging Support
	The DSP56300 core provides a dedicated user-accessible Test Access Port (TAP) based on the IEEE 1...
	An On-chip Emulation (OnCE) port supports hardware and software development on the DSP56300 core ...
	A third debugging feature is the Address Trace mode, which reflects internal Program RAM accesses...

	1.7 Direct Memory Access (DMA)
	The Direct Memory Access (DMA) block permits data transfers without the interaction of the core p...
	Six DMA channels supporting internal and external accesses
	One-, two-, and three-dimensional transfers (including circular buffering)
	End-of-block-transfer interrupts
	Triggering from interrupt lines and all peripherals

	1.8 Introduction to Digital Signal Processing
	Digital signal processing is the arithmetic processing of real-time signals that are sampled at r...
	Filtering
	Convolution (mixing two signals)
	Correlation (comparing two signals)
	Rectification, amplification, and/or transformation

	Historically, all of these functions require analog circuits. Only recently has semiconductor tec...
	Figure�1-2. Analog Signal Processing

	The equivalent circuit using a DSP is shown in Figure 1-3. This application requires an Analog-to...

	DSP Operation
	Figure�1-3. Digital Signal Processing
	The DSP output is processed by a D/A converter and is low-pass filtered to remove the effects of ...
	Fewer components
	Stable, deterministic performance
	No filter adjustments
	Wide range of applications
	Filters with much closer tolerances
	High noise immunity
	Easily implemented adaptive filters
	Built-in self-test capability
	Better power supply rejection

	The DSP56300 family is not a custom IC designed for a particular application; it is designed as a...
	Figure 1-4 shows the following key attributes of a DSP:
	Multiply/Accumulate (MAC) operation
	Fetching up to two operands per instruction cycle for the MAC
	Program control to provide versatile operation
	Input/output to move data in and out of the DSP

	The MAC operation is the fundamental operation used in DSP. The DSP56300 family of processors has...

	FIR Filter
	Figure�1-4. Mapping DSP Algorithms into Hardware
	1.9 Summary of Features
	The high throughput of the DSP56300 family of processors makes them well-suited for wireless and ...
	Speed: The DSP56300 family supports most high-performance DSP applications.
	Precision: The data paths are 24 bits wide, providing 144 dB of dynamic range; intermediate resul...
	Parallelism: Each on-chip execution unit, memory, and peripheral operates independently and in pa...

	— An instruction pre-fetch
	— A 24-bit ¥ 24-bit multiplication
	— A 54-bit addition
	— Two data moves
	— Two address-pointer updates using either linear or modulo arithmetic
	Flexibility: While many other DSPs need external communications circuitry to interface with perip...
	Sophisticated Debugging: Motorola’s On-Chip Emulation (OnCE) technology allows simple, inexpensiv...
	Phase Locked Loop (PLL)-Based Clocking: The PLL allows the chip to use almost any available exter...
	Invisible Pipeline: The seven-stage instruction pipeline is essentially invisible to the programm...
	Instruction Set: The instruction mnemonics are similar to those used for microcontroller units, m...
	Low Power: Designed in CMOS, the DSP56300 family consumes very little power. Two additional low-p...

	1.10 Manual Organization
	This manual describes the DSP56300 family Central Processing Unit in detail. Use this manual in c...
	This manual presents practical information to help the user accomplish the following:
	Understand the operation and instruction set of the DSP56300 family
	Write code for DSP algorithms
	Write code for general control tasks
	Write code for communication routines
	Write code for data manipulation algorithms

	Table 1-1 describes the contents of each chapter and each appendix.
	Table�1-1 DSP Family Manual Chapters (Continued)

	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	A
	B
	C
	D
	E
	Note: The latest electronic version of this document as well as other DSP documentation (includin...

	Chapter 2 Core Architecture Overview
	This chapter describes the DSP56300 family core, a powerful DSP engine that can execute an instru...
	The DSP56300 core is composed of:
	External Memory Expansion Port (Port A)—See Chapter 9
	Data Arithmetic Logic Unit (Data ALU)—See Chapter 3
	Address Generation Unit (AGU)—See Chapter 4
	Instruction Cache Controller—See Chapter 8
	Program Control Unit (PCU)—See Chapter 5
	Direct Memory Access (DMA) Controller—See Chapter 10
	PLL Clock Generator—See Chapter 6
	JTAG Test Access Port and On-Chip Emulation (OnCE) module—See Chapter 7

	To minimize the total system cost for customer applications, the DSP56300 core external memory in...
	The core is designed for low power consumption in Normal and Wait and Stop modes. In Normal mode,...
	Low-power features of the DSP56300 family core include the following:
	Very low-power CMOS design
	Low-power Wait standby mode
	Ultra-low power Stop mode
	Power management units for further power reduction
	Fully static logic, with operation frequency down to DC

	Sixteen-bit Compatibility mode enables full compatibility to object code written for the DSP56000...
	2.1 Core Buses
	The following 24-bit buses provide data exchange between the main core blocks:
	Global Data Bus
	GBD
	Between Program Control Unit and other core structures
	Peripheral I/O Expansion Bus
	PIO_EB
	To peripherals
	Program Memory Expansion Bus
	PM_EB
	To Program ROM
	Program Data Bus
	PDB
	Carries program data throughout the core
	Program Address Bus
	PAB
	Carries program memory addresses throughout the core
	X Memory Expansion Bus
	XM_EB
	To X memory
	X Memory Data Bus
	XDB
	Carries X data throughout the core
	X Memory Address Bus
	XAB
	Carries X memory addresses throughout the core
	Y Memory Expansion Bus
	YM_EB
	To Y Memory
	Y Memory Data Bus
	YDB
	Carries Y data throughout the core
	Y Memory Address Bus
	YAB
	Carries Y memory addresses throughout the core
	DMA Data Bus
	DDB
	Transfers data with DMA channels
	DMA Address Bus
	DAB
	Transfers address information with DMA channels
	Figure 2-1 is a block diagram of the DSP56303, a member of the DSP56300 family. The diagram illus...
	Figure�2-1. DSP56303 Block Diagram
	Note: The registers in the core are discussed in detail in the chapters on the individual functio...

	2.2 Core Processing
	As for all DSPs, the operation of the DSP56300 core is a combination of software and hardware int...
	Instruction Set: The instruction set provides the programming language for processing the algorit...
	Core Modules: These circuits transfer and modify data. They are generally configured through inte...
	Processing States: Core processing states modify the operation of the core processor and the core...

	— Normal: The typical operating mode in which code loads into the core processor and executes.
	— Exception: An event interrupts the normal execution flow. The processor halts normal processing...
	— Reset: All execution halts and the processor and its registers in all peripherals are restored ...
	— Wait: Typically invoked by the WAIT instruction; the application requires only minimal processi...
	— Stop: Typically invoked by using the STOP instruction; the application does not require immedia...
	— Debug: Application developers can operate the system under the control of the JTAG Test Access ...

	2.3 Processing States
	The following paragraphs describe the DSP56300 core processing states.
	2.3.1 Normal Processing State
	The Normal processing state is associated with instruction execution. DSP56300 core instructions ...
	All double-word instructions
	Instructions with an addressing mode that requires more than one cycle for the address calculation
	Instructions causing a change of flow

	Instruction pipelining allows overlapping of instruction execution so that a pipeline stage of a ...
	Each instruction requires a minimum of seven clock cycles to fetch, decode, and execute. This res...
	Table�2-1 Instruction Pipeline

	n1
	n2
	n3
	n3e
	n4
	n5
	n6
	n7
	n8
	n9
	n10
	n1
	n2
	n3
	n3e
	n4
	n5
	n6
	n7
	n8
	n9
	n1
	n2
	n3
	n3e
	n4
	n5
	n6
	n7
	n8
	n1
	n2
	n3
	n3e
	n4
	n5
	n6
	n7
	n1
	n2
	n3
	n3e
	n4
	n5
	n6
	n1
	n2
	n3
	n3e
	n4
	n5
	n1
	n2
	n3
	n3e
	n4
	2.3.2 Exception Processing State (Interrupt Processing)
	The Exception Processing state is associated with interrupts that are generated by conditions ins...
	1. A hardware interrupt is synchronized with the DSP56300 core clock, and the interrupt pending f...
	2. All pending interrupts (external and internal) are arbitrated to select the interrupt to be pr...
	3. The interrupt controller freezes the program counter (PC) and fetches two instructions at the ...
	4. The interrupt controller inserts the two instructions into the instruction stream and releases...
	When a fast interrupt executes, the state of the machine is not saved on the stack if neither of ...
	Note: Any Jump to Subroutine (JSR) instructionmakes the interrupt long (for example, JScc, BSSET,...

	One of the main uses of interrupts is to transfer data between DSP memory or registers and a peri...
	Exceptions may originate from any of the 128 vector addresses listed in Table 2-2. Exceptions may...

	Table�2-2 Interrupt Sources (Continued)

	VBA:$00
	3
	VBA:$02
	3
	VBA:$04
	3
	VBA:$06
	3
	VBA:$08
	3
	VBA:$0A
	3
	VBA:$0C
	3
	VBA:$0E
	3
	VBA:$10
	0–2
	VBA:$12
	0–2
	VBA:$14
	0–2
	VBA:$16
	0–2
	VBA:$18
	0–2
	VBA:$1A
	0–2
	VBA:$1C
	0–2
	VBA:$1E
	0–2
	VBA:$20
	0–2
	VBA:$22
	0–2
	VBA:$24
	0–2
	VBA:$26
	0–2
	:
	:
	VBA:$FE
	0–2
	The 128 interrupts are prioritized into four levels. Level 3, the highest priority level, is not ...
	2.3.2.1 Hardware Interrupt Source
	Two types of hardware interrupts to the DSP56300 core exist: internal and external. The internal ...
	Stack Error
	Illegal Instruction
	Debug Request
	Trap
	DMAs
	Peripherals

	Each internal interrupt source is serviced if it is not masked. When serviced, the interrupt requ...
	The edge-triggered interrupts are latched as pending on the high-to-low transition of the interru...
	When the IRQA, IRQB, IRQC and IRQD interrupts are disabled in the interrupt priority register, th...
	Note: On all external, level-sensitive interrupt sources, the interrupt should be serviced (that ...

	2.3.2.2 Software Interrupt Sources
	There are two software interrupt sources:
	Illegal Instruction Interrupt (III): The III is a Non-Maskable Interrupt (IPL 3) that is serviced...
	TRAP: A Non-Maskable Interrupt (IPL 3) that is serviced immediately after the TRAP or TRAPcc inst...

	2.3.2.3 Interrupt Priority Structure
	Four interrupt priority levels (IPLs) exist. IPLs are numbered from 0 (the lowest level) to 3 (th...
	Hardware Reset
	Illegal Instruction Interrupt (III)
	Stack Error
	TRAP
	NMI
	Debug

	The interrupt mask bits (I1, I0) in the SR reflect the current processor priority level and indic...
	Table�2-3 Status Register Interrupt Mask Bits�
	The DSP56300 core has two interrupt priority registers: IPRC that is dedicated for DSP56300 core ...

	D5L1
	D5L0
	D4L1
	D4L0
	D3L1
	D3L0
	D2L1
	D2L0
	D1L1
	D1L0
	D0L1
	D0L0
	DxL1: 0
	DMA 0/1/2/3/4/5 IPL
	IDL2
	IDL1
	IDL0
	ICL2
	ICL1
	ICL0
	IBL2
	IBL1
	IBL0
	IAL2
	IAL1
	IAL0
	IxL2
	(See Table 2-5)
	IRQ A/B/C/D mode
	IxL1:0
	(See Table 2-4)
	IRQ A/B/C/D IPL
	Figure�2-1. Interrupt Priority Register C (IPRC)

	PerCL 1
	PerCL 0
	PerBL 1
	PerBL 0
	PerAL 1
	PerAL 0
	Per9L 1
	Per9L 0
	Per8L 1
	Per8L 0
	Per7L 1
	Per7L 0
	Per6L 1
	Per6L 0
	Per5L 1
	Per5L 0
	Per4L 1
	Per4L 0
	Per3L 1
	Per3L 0
	Per2L 1
	Per2L 0
	Per1L 1
	Per1L 0
	Figure�2-2. Interrupt Priority Register P (IPRP)
	Table�2-4 Interrupt Priority Level Bits

	0
	0
	No
	—
	0
	1
	Yes
	0
	1
	0
	Yes
	1
	1
	1
	Yes
	2
	Table�2-5 External Interrupt Trigger Mode Bit

	0
	Level
	1
	Negative Edge
	If more than one exception is pending when an instruction executes, the interrupt with the highes...
	Table�2-6 Exception Priorities Within an IPL (Continued)
	2.3.2.4 Instructions Preceding the Interrupt Instruction Fetch
	The following conditions apply to instructions preceding an interrupt instruction fetch:
	Every instruction requiring more than one cycle to execute is aborted when it is fetched in the c...
	Aborted instructions are fetched again when program control returns from the interrupt routine. T...
	If the first interrupt word fetch occurs in the cycle following the fetch of a one-word-one-cycle...
	During an interrupt instruction fetch, two instruction words are fetched — the first from the int...

	2.3.2.5 Interrupt Types
	Two types of interrupt routines can be used: fast and long. The fast routine consists of the two ...
	Note: Status is not preserved during a fast interrupt routine; therefore, instructions that modif...

	If one of the instructions in the fast routine is a JSR, then a long interrupt routine is formed....
	Only the long interrupt routine should be terminated by an RTI. Long interrupt routines are inter...
	Note: Do not use RTI for fast interrupts.

	2.3.2.6 Interrupt Arbitration
	External interrupts are internally synchronized with the processor clock before their interrupt-p...

	2.3.2.7 Interrupt Instruction Fetch
	The interrupt controller generates an interrupt instruction fetch address, which points to the fi...

	2.3.2.8 Interrupt Instruction Execution
	Interrupt instruction execution is considered “fast” if neither of the instructions of the interr...
	Table�2-7 Fast Interrupt Pipeline

	n1
	n2
	ii1
	ii2
	n3
	n4
	n1
	n2
	ii1
	ii2
	n3
	n4
	n1
	n2
	ii1
	ii2
	n3
	n4
	n1
	n2
	ii1
	ii2
	n3
	n4
	n1
	n2
	ii1
	ii2
	n3
	n4
	n1
	n2
	ii1
	ii2
	n3
	n4
	n1
	n2
	ii1
	ii2
	n3
	n4
	Execution of a fast interrupt routine always conforms to the following rules:
	1. The processor status is not saved.
	2. The fast interrupt routine can modify the status of the normal instruction stream (for example...
	3. The PC, which contains the address of the next instruction to be executed in normal processing...
	4. The fast interrupt returns without an RTI.
	5. Normal instruction fetching resumes using the PC following the completion of the fast interrup...
	6. A fast interrupt is not interruptible.
	7. A JSR instruction within the fast interrupt routine forms a long interrupt routine.
	Table�2-8 Long Interrupt Pipeline�

	n1
	n2
	ii1
	ii2
	n3
	sr1
	sr2
	sr3
	sr4
	sr5
	sr6
	n3
	n4
	n5
	n6
	n7
	n1
	n2
	jsr
	ii2
	n3
	sr1
	sr2
	sr3
	rti
	sr5
	sr6
	n3
	n4
	n5
	n6
	n1
	n2
	jsr
	—
	—
	sr1
	sr2
	sr3
	rti
	—
	—
	n3
	n4
	n5
	n1
	n2
	jsr
	—
	—
	sr1
	sr2
	sr3
	rti
	—
	—
	n3
	n4
	n1
	n2
	jsr
	—
	—
	sr1
	sr2
	sr3
	rti
	—
	—
	n3
	n1
	n2
	jsr
	—
	—
	sr1
	sr2
	sr3
	rti
	—
	—
	n1
	n2
	jsr
	—
	—
	sr1
	sr2
	sr3
	rti
	—
	Execution of a long interrupt routine always adheres to the following rules:
	1. A JSR to the starting address of the interrupt service routine is located at one of the two in...
	2. During execution of the JSR instruction, the PC and SR are stacked. The interrupt mask bits of...
	3. The interrupt service routine can be interrupted (that is, nested interrupts are supported), b...
	4. The long interrupt routine, which can be any length, should be terminated by an RTI, which res...
	Either of the two instructions of the fast interrupt can be the JSR instruction that forms the lo...
	Note: A REP instruction is treated as a single two-word instruction, regardless of how many times...

	If a non-interruptible code sequence is desired, change the IPL bits to the desired mask level. D...

	2.3.3 Reset Processing State
	The DSP device enters reset processing state when the external RESET pin is asserted (a hardware ...
	1. Internal peripheral devices are reset.
	2. The modifier registers (M0–M7) are set to $FFFFFF.
	3. The interrupt priority registers are cleared.
	4. The Bus Control Register (BCR), the Address Attribute Registers (AAR3–AAR0) and the DRAM Contr...
	5. The Stack Pointer (SP) and the Stack Counter (SC) are cleared.
	6. The following bits of the SR are cleared:
	— Rounding mode (RM) bit (Bit 21)
	— Arithmetic Saturation mode (SM) bit (Bit 20)
	— Cache Enable (CE) bit (Bit 19)
	— Sixteen-bit Arithmetic (SA) mode bit (Bit 17)
	— DO Forever (FV) flag bit (Bit 16)
	— DO Loop Flag (LF) bit (Bit 15)
	— Double Precision Multiply (DM) mode bit (Bit 14)
	— Sixteen-bit Compatibility (SC) mode bit (Bit 13)
	— Scaling (S[1 – 0]) bits (Bit 11 and Bit 10)
	— Condition Code bits (SR[7 – 0])
	7. The following bits of the SR are set:

	— Core Priority (CP[1 – 0]) bits (Bit 23 and Bit 22)
	— Interrupt (I[1 – 0]) mask bits (Bit 9 and Bit 8)
	8. The Instruction Cache Controller is initialized as described in Chapter�8, Instruction Cache.
	9. The Cache Enable (CE) bit in SR and the Burst mode bit in OMR are cleared.
	10. The PLL Control register is initialized as described in Chapter�6, PLL and Clock Generator.
	11. The Vector Base Address Register (VBA) is cleared.
	The DSP56300 core remains in the Reset state until RESET is deasserted. Upon leaving the Reset st...

	2.3.4 Wait Processing State
	The Wait processing state is a low-power consumption state that occurs when the WAIT instruction ...

	2.3.5 Stop Processing State
	The Stop processing state is the lowest power consumption mode that occurs when the STOP instruct...
	1. A low level is applied to the IRQA pin (IRQA asserted).
	2. A low level is applied to the RESET pin (RESET asserted).
	3. A low level is applied to the DE pin.
	Any of these actions enables the oscillator and, after a clock stabilization delay, clocks to the...

	1. If the exit from Stop state was caused by a low level on the RESET pin, then the processor ent...
	2. If the exit from Stop state was caused by a low level on the IRQA pin, then the processor serv...
	3. If the exit from Stop state was caused by a low level on the DE pin, then the processor enters...
	For minimum power consumption during the Stop state at the cost of longer recovery time, clear th...

	2.3.6 Debug State
	Debug state is invoked and used with the JTAG/OnCE port. See Chapter�7, Debugging Support for a d...

	Chapter�3 Data Arithmetic Logic Unit
	3.1 Introduction
	This section describes the architecture and the operation of the Data Arithmetic Logic Unit (Data...

	3.2 Data ALU Architecture
	The Data ALU contains the following components:
	Four 24-bit input registers
	A fully pipelined Multiplier-Accumulator (MAC)
	Two 48-bit accumulator registers
	Two 8-bit accumulator extension registers
	A Bit Field Unit (BFU) with a 56-bit barrel shifter
	An accumulator shifter
	Two data bus shifter/limiter circuits
	Figure 3-1 is a block diagram of the Data ALU.

	Bit Field Unit and Barrel Shifter
	Figure�3-1. Data ALU Block Diagram
	The Data ALU registers can be read or written over the X Data Bus (XDB) and the Y Data Bus (YDB) ...
	All the Data ALU operations are performed in two clock cycles in pipeline fashion so that a new i...
	3.2.1 Data ALU Input Registers (X1, X0, Y1, Y0)
	X1, X0, Y1, and Y0 are four 24-bit, general-purpose data registers. They can be treated as four i...

	3.2.2 Multiplier-Accumulator (MAC) Unit
	The Multiplier-Accumulator (MAC) unit is the main arithmetic processing unit of the DSP56300 core...
	The operation of the MAC unit occurs independently and in parallel with XDB and YDB activity, and...
	The 56-bit sum is stored back in the same accumulator. The multiply/accumulate operation is fully...
	The arithmetic unit’s result going into the accumulator can be saturated so that it fits into 48 ...

	3.2.3 Data ALU Accumulator Registers (A2, A1, A0, B2, B1, B0)
	The six Data ALU registers (A2, A1, A0, B2, B1, and B0) form two general-purpose, 56-bit accumula...
	The overflow protection is performed after the contents of the accumulator are shifted according ...
	Automatic sign extension of the 56-bit accumulators is provided when the A or B register is writt...

	3.2.4 Accumulator Shifter
	The accumulator shifter is an asynchronous parallel shifter with a 56-bit input and a 56-bit outp...
	No shift (unmodified)
	24-bit right shift (arithmetic) for DMAC
	16-bit right shift (arithmetic) for DMAC in Sixteen-bit Arithmetic mode
	Force to zero

	3.2.5 Bit Field Unit (BFU)
	The Bit Field Unit (BFU) contains a 56-bit parallel bidirectional shifter with a 56-bit input and...
	Multibit left shift (arithmetic or logical) for ASL, LSL
	Multibit right shift (arithmetic or logical) for ASR, LSR
	1-Bit rotate (right or left) for ROR, ROL
	Bit field merge, insert and extract for MERGE, INSERT, EXTRACT and EXTRACTU
	Count leading bits for CLB
	Fast normalization for NORMF
	Logical operations for AND, OR, EOR, and NOT

	3.2.6 Data Shifter/Limiter
	The data shifter/limiter circuits provide special post-processing on data read from the ALU accum...
	3.2.6.1 Scaling
	The data shifters in the shifters/limiters unit can perform the following data shift operations:
	Scale up—shift data one bit to the left
	Scale down—shift data one bit to the right
	No scaling—pass the data unshifted
	Each data shifter has a 24-bit output with overflow indication. These shifters permit dynamic sca...

	3.2.6.2 Limiting
	In the DSP56300 core, the Data ALU accumulators A and B have eight extension bits. Limiting occur...
	If the contents of the selected source accumulator are represented without overflow in the destin...
	$7FFFFF for 24-bit positive numbers
	$7FFFFF FFFFFF for 48-bit positive numbers
	$800000 for 24-bit negative numbers
	$800000 000000 for 48-bit negative numbers
	This process is called transfer saturation. The value in the accumulator register is not shifted ...

	3.3 Data ALU Arithmetic and Rounding
	The following paragraphs describe the Data ALU data representation, rounding modes, and arithmeti...
	3.3.1 Data Representation
	The DSP56300 core uses a fractional data representation for all Data ALU operations. Figure 2 sho...

	2–47
	Figure�3-2. Bit Weighting and Alignment of Operands
	The number representation for integers is between ± 2 (N – 1); whereas, the fractional representa...

	S
	Figure�3-3. Integer/Fractional Multiplication
	The key difference is in the alignment of the 2N – 1 bit product. In fractional multiplication, t...
	Note: Be aware when multiplying integer numbers that since the DSP56300 core incorporates a fract...

	3.3.2 Rounding Modes
	The DSP56300 core Data ALU rounds the accumulator register to single precision if requested in th...
	3.3.2.1 Convergent Rounding
	Convergent rounding (also called round-to-nearest even number) is the default rounding mode. The ...
	Figure�3-4. Convergent Rounding (No Scaling)

	3.3.2.2 Twos Complement Rounding
	When twos complement rounding is selected by setting the Rounding Mode (RM) bit in the SR, all va...
	Figure�3-5. Twos Complement Rounding (No Scaling)

	3.3.3 Arithmetic Saturation Mode
	Setting the Arithmetic Saturation Mode (SM) bit in the SR limits the arithmetic unit’s result to ...
	Table�3-1 Actions of the Arithmetic Saturation Mode (SM = 1)

	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	1
	1
	1
	0
	0
	1
	0
	1
	1
	1
	0
	1
	1
	1
	The two saturation constants $007FFFFFFFFFFF and $FF800000000000 are not affected by the Scaling ...
	In Arithmetic Saturation mode, the Overflow bit (V bit) in the SR is set if the Data ALU result i...
	Note: The Arithmetic Saturation mode is always disabled during execution of the following instruc...

	3.3.4 Multiprecision Arithmetic Support
	A set of Data ALU operations facilitate multiprecision multiplications. When these instructions a...
	Table�3-2 Acceptable Signed and Unsigned Twos-Complement Multiplication

	MPY/MAC su
	MPY/MAC uu
	DMACss
	DMACsu
	DMACuu
	Figure 3-6 shows how the DMAC instruction is implemented inside the Data ALU.
	Figure�3-6. DMAC Implementation

	Figure 3-7 illustrates the use of these instructions for a double-precision multiplication. The s...
	Figure�3-7. Double-Precision Multiplication Using DMAC

	3.3.4.1 Double-Precision Multiply Mode
	To support existing DSP56000 code, double-precision multiply operations can also be performed wit...
	The double-precision multiply algorithm is shown in Figure 3-8. The ORI instruction sets the DM m...
	In Double-Precision Multiply mode, the behavior of the four specific operations listed in the dou...
	Note: Since the double-precision multiply algorithm uses the Y0 register for all stages, do not c...

	ori #$40,mr ;enter mode
	move x:(r1)+,x0 y:(r5)+,y0 ;load operands
	mpy y0,x0,a x:(r1)+,x1 y:(r5)+,y1 ;LSP*LSP->a
	mac x1,y0,a a0,y:(r0) ;shifted(a)+
	;���MSP*LSP->a
	mac x0,y1,a ;a+LSP*MSP->a
	mac y1,x1,a a0,x:(r0)+ ;shifted(a)+
	;���MSP*MSP->a
	move a,l:(r0)+
	andi #$bf,mr ;exit mode
	; non-restricted Data ALU operation ;pipeline delay
	Figure�3-8. Double-Precision Algorithm

	3.3.5 Block Floating-Point FFT Support
	The Block Floating Point FFT operation requires the early detection of data growth between FFT bu...
	Data growth detection is implemented as a status bit in the SR. The FFT scaling bit S, Bit 7 of t...

	3.4 Data ALU Programming Model
	The Data ALU features 24-bit input/output data registers that can be concatenated to accommodate ...

	*
	Figure�3-9. Data ALU Core Programming Model
	3.5 Sixteen-Bit Arithmetic Mode
	Setting the SA bit in the SR enables the Sixteen-bit Arithmetic mode of operation. In this mode, ...
	In the Sixteen-bit Arithmetic mode of operation, the source operands can be 16-bit, 32-bit, or 40...
	Notes: 1. When switching to and from Sixteen-bit Arithmetic mode, no arithmetic instruction or a ...
	2. Be cautious about exchanging data between Sixteen-bit Arithmetic mode and 24-bit arithmetic mo...
	Figure�3-10. Sixteen-Bit Arithmetic Mode Data Organization

	3.5.1 Moves in Sixteen-Bit Arithmetic Mode
	In Sixteen-bit Arithmetic mode, the Data ALU registers are still read or written as 24- or 48-bit...
	3.5.1.1 Moves into Registers or Accumulators
	When XDB or YDB are moved into a full Data ALU accumulator (A or B), the 16 LSBs of the bus are p...
	When XDB or YDB is moved into a register (X0, X1, Y0 or Y1) or partial accumulator (A0, A1, B0 or...
	When XDB or YDB is moved into the accumulator extension register (A2 or B2), the 8 LSBs of the bu...
	When XDB and YDB are moved into a 48-bit register (X or Y) or partial accumulator (A10 or B10), t...
	Table�3-3 Moves into Registers or Accumulators

	3.5.1.2 Moves from Registers or Accumulators
	When a partial accumulator (A0, A1, B0 or B1) is moved to the XDB or YDB, the 16 MSBs of the sour...
	When a partial accumulator (A10 or B10) is moved to XDB and YDB, the 16 MSBs of the MSP of the so...
	When a full Data ALU accumulator (A or B) is moved to XDB or YDB, scaling and limiting is perform...
	When a full Data ALU accumulator (A or B) is moved to XDB and YDB, scaling and limiting is perfor...
	When a register (X0, X1, Y0 or Y1) is moved to XDB or YDB, the 16 MSBs of the source are transfer...
	When a 48-bit register (X or Y) is moved to XDB and YDB, the 16 MSBs of the high register (X1 or ...
	Note: When a read operation of a Data ALU register (X, Y, X0, X1, Y0 or Y1) immediately follows a...

	Table�3-4 Moves from Registers or Accumulators (Continued)
	16 MSBs of source into 16 LSBs of bus with eight zeros in MSBs
	No scaling or limiting
	Source occupies 8 LSBs of bus
	Next 16 bits are sign extension of Bit 7
	16 MSB of MSP of source (A1 or B1) transferred to 16 LSBs of XDB with eight zeros in MSBs
	16 MSBs of the LSP of source (A0 or B0) transferred to 16 LSBs of YDB with eight zeros in the MSBs.
	No scaling or limiting
	Scaling and limiting performed
	16-bit scaled word placed on 16 LSBs of bus
	Sign extension placed in eight MSBs of bus
	Scaling and limiting performed
	16 MSBs of 32-bit scaled and limited double word placed on XDB 16 LSBs
	Sign extension placed in eight MSBs on bus
	16 LSBs of 32-bit scaled and limited double word placed on 16 LSBs of YDB with eight zeros on the...
	16 MSBs transferred to 16 LSBs of bus with eight zeros in MSBs
	16 MSBs of high register (X1 or Y1) placed on 16 LSBs of XDB with eight zeros on eight MSBs of bus
	16 LSBs of low register (X0 or Y0) placed on 16 LSBs of YDB with eight zeros on eight MSBs of bus

	3.5.1.3 Short Immediate moves
	When an Immediate Short Data MOVE is performed in Sixteen-bit Arithmetic mode and the destination...
	When the destination register is A, B, X0, X1, Y0, or Y1, the 8-bit immediate short operand is in...

	3.5.1.4 Scaling and Limiting
	If scaling is specified, the data shifter virtually concatenates the 16-bit LSP to the 16-bit MSP...
	During the Sixteen-bit Arithmetic mode of operation, the limiting is affected as described below:
	The maximum positive value is $007FFF ($007FFF00FFFF for double precision).
	The maximum negative value is $008000 ($008000000000 for double precision).

	3.5.2 Sixteen-bit Arithmetic
	When an operand is read from a Data ALU register or accumulator to the arithmetic unit, the 8 LSB...
	The arithmetic unit virtually concatenates the 16-bit LSP with the 16-bit MSP to form a continuou...
	The operand and result widths are 16/32/40 instead of 24/48/56.
	The rounding, if specified by the operation, is performed on the Most Significant Bit of the 16-b...
	The arithmetic saturation detection is unchanged, but the saturated values change to $007FFF00FFF...
	In ADC/SBC instructions, the Carry bit C is added/subtracted to the LSB of the 16-bit LSP.
	Logic operations affect only the 16-bit wide word.
	Rotation in rotate instructions is performed on a 16-bit wide word.
	The possible normalization range changes, thus affecting the CLB instruction.
	The DMAC instruction performs a 16-bit arithmetic right shift of the accumulator before accumulat...
	The double-precision multiplication algorithm is not supported, even if the Double-precision Mult...
	The bit parsing instructions (MERGE, EXTRACT, EXTRACTU, and INSERT) are modified by the Sixteen-b...
	In the read-modify-write instructions (BCHG, BCLR, BSET and BTST) and in the Jump/Branch on bit i...

	3.6 Pipeline Conflicts
	No pipeline dependencies exist when the result of the Data ALU is used as a source operand for th...
	3.6.1 Arithmetic Stall
	Since every Data ALU instruction completes in two clock cycles, an interlock condition occurs dur...
	Figure�3-11. Pipeline Conflicts—Arithmetic Stall

	3.6.2 Status Stall
	A second interlock condition, named status stall, occurs during an attempt to read the Status Reg...
	Note: Read Status Register implies a MOVE from SR. Bit manipulation instructions (for example, BS...

	Figure 3-12 describes the cases in which the pipelined nature of the Data ALU generates a status ...
	Figure�3-12. Pipeline Conflicts—Status Stall

	3.6.2.1 Transfer Stall
	A third interlock condition, transfer stall, occurs when the source Data ALU accumulator of the m...
	Figure�3-13. Pipeline Conflicts—Transfer Stall
	Note: A special case of interlock occurs when a 24-bit logic instruction is used and a write oper...

	or x1,a y1,a0

	Chapter�4 Address Generation Unit
	The Address Generation Unit (AGU) is one of three execution units on the DSP56300 core. The AGU p...
	Linear
	Modulo
	Multiple wrap-around modulo
	Reverse-carry
	4.1 AGU Architecture
	The AGU is divided into halves, each with its own Address Arithmetic Logic Unit (Address ALU). Ea...
	Plus one
	Minus one
	Plus the contents of the respective offset register N
	Minus the contents of the respective offset register N
	A second full adder—a modulo adder—adds the summed result of the first full adder to a modulo val...

	Plus one
	Minus one
	The offset N (stored in the respective offset register)
	Minus N to the selected address register
	The offset adder and the reverse-carry adder operate in parallel and share common inputs. The onl...
	Figure 4-1 AGU Block Diagram

	Each Address ALU can update one address register from its respective address register file during...
	The two Address ALUs can generate up to two addresses every instruction cycle:

	One for the PAB, or
	One for the XAB, or
	One for the YAB, or
	One for the XAB and one for the YAB
	The AGU can directly address 16,777,216 locations on each of the XAB, YAB, and PAB. Using a regis...
	The registers are:

	Address Registers R0 – R3 on the Low Address ALU and R4 – R7 on the High Address ALU
	Offset Registers N0 – N3 on the Low Address ALU and N4 – N7 on the High Address ALU
	Modifier Registers M0 – M3 on the Low Address ALU and M4 – M7 on the High Address ALU
	These registers are referred to as Rn for any address register, Nn for any offset register, and M...

	Low Address ALU register triplets
	— R0:N0:M0
	— R1:N1:M1
	— R2:N2:M2
	— R3:N3:M3

	High Address ALU register triplets
	— R4:N4:M4
	— R5:N5:M5
	— R6:N6:M6
	— R7:N7:M7
	The Global Data Bus (GDB) can read from or write to each register. The address output multiplexer...

	4.2 Sixteen-bit Compatibility Mode
	When the Sixteen-bit Compatibility (SC) mode bit is set in the Status Register (SR), AGU operatio...
	MOVE operations to/from any of the AGU registers (R0 – R7, N0 – N7 and M0 – M7) clear the eight M...
	The eight MSBs of any AGU address calculation result are cleared.
	The sign bit of the selected N register is Bit 15 instead of Bit 23.
	The eight MSBs of the address are ignored in the calculations of memory regions.
	In Sixteen-bit Compatibility (SC) mode, proper memory access is not guaranteed for an address reg...

	4.3 Programming Model
	The programmer views the AGU as eight sets of three registers, as shown in Figure 4-2. These regi...
	Figure 4-2 AGU Programming Model

	4.3.1 Address Register Files
	The eight 24-bit address registers R0 – R7 can contain addresses or general-purpose data. The 24-...
	In addition, an address register (Rn) can be pre-updated or post-updated according to the address...
	The address register modification is performed by one of the two modulo arithmetic units. Most ad...

	4.3.2 Stack Extension Pointer
	The hardware stack is an area in internal memory that provides temporary storage during program e...
	The contents of the 24-bit stack Extension Pointer (EP) register point to the stack extension whe...

	4.3.3 Offset Register Files
	The eight 24-bit offset registers, N[0 – 7], contain offset values to increment or decrement addr...

	4.3.4 Modifier Register Files
	The eight 24-bit modifier registers, M0–M7, define the type of address arithmetic performed for a...

	4.4 Addressing Modes
	As listed in Table 4-5, the DSP56300 family core provides four different addressing modes:
	Register Direct
	Address Register Indirect
	PC-relative
	Special
	Table�4-5 Addressing Modes Summary (Continued)

	Data or Control Register
	No
	÷
	÷
	Address Register Rn
	No
	÷
	Address Modifier Register Mn
	No
	÷
	Address Offset Register Nn
	No
	÷
	No Update
	No
	÷
	÷
	÷
	÷
	÷
	(Rn)
	Post-increment by 1
	Yes
	÷
	÷
	÷
	÷
	÷
	(Rn) +
	Post-decrement by 1
	Yes
	÷
	÷
	÷
	÷
	÷
	(Rn) –
	Post-increment by Offset Nn
	Yes
	÷
	÷
	÷
	÷
	÷
	(Rn) + Nn
	Post-decrement by Offset Nn
	Yes
	÷
	÷
	÷
	÷
	(Rn) – Nn
	Indexed by Offset Nn
	Yes
	÷
	÷
	÷
	÷
	(Rn + Nn)
	Pre-decrement by 1
	Yes
	÷
	÷
	÷
	÷
	– (Rn)
	Short/Long Displacement
	Yes
	÷
	÷
	÷
	(Rn + displ)
	Short/Long Displacement
	PC-relative
	No
	÷
	(PC + displ)
	Address Register
	No
	÷
	(PC + Rn)
	Short/Long Immediate Data
	No
	÷
	Absolute Address
	No
	÷
	÷
	÷
	÷
	Absolute Short Address
	No
	÷
	÷
	÷
	Short Jump Address
	No
	÷
	I/O Short Address
	No
	÷
	÷
	Implicit
	No
	÷
	÷
	÷
	4.4.1 Register Direct Modes
	The Register Direct addressing modes specify that the operand is in one or more of the ten Data A...
	Data or Control Register Direct: The operand is in one, two, or three Data ALU register(s), as sp...
	Address Register Direct: The operand is in one of the 24 address registers specified by an effect...

	4.4.2 Address Register Indirect Modes
	The Address Register Indirect modes specify that the address register points to a memory location...
	No Update (Rn)—The operand address is in the address register. The contents of the address regist...
	Example: MOVE x:(Rn),x0
	Post-Increment By One (Rn) + —The operand address is in the address register. After the operand a...
	Example: MOVE x:(Rn)+,x0
	Post-Decrement By One (Rn) – —The operand address is in the address register. After the operand a...
	Example: MOVE x:(Rn)-,x0
	Post-Increment By Offset Nn (Rn) + Nn—The operand address is in the address register. After the o...
	Example: MOVE x:(Rn)+Nn,x0
	Post-Decrement By Offset Nn (Rn) – Nn—The operand address is in the address register. After the o...
	Example: MOVE x:(Rn)-Nn,x0
	Indexed By Offset Nn (Rn + Nn)—The operand address is the sum of the contents of the address regi...
	Example: MOVE x:(Rn+Nn),x0
	Pre-Decrement By One -(Rn)—The operand address is the contents of the address register decremente...
	Example: MOVE x:-(Rn),x0
	Short Displacement (Rn + Short Displacement)—The operand address is the sum of the contents of th...
	Example: MOVE x:(Rn+63),x0
	Long Displacement (Rn + Long Displacement)—This addressing mode requires one word (label) of inst...
	Example: MOVE x:(Rn+64),x0

	4.4.3 PC-relative Modes
	In the PC-relative addressing modes, the operand address is obtained by adding a displacement, re...
	Short Displacement PC-relative—The short displacement occupies nine bits in the instruction opera...
	Long Displacement PC-relative—This addressing mode requires one word of instruction extension. Th...
	Address Register PC-relative—The operand address is the sum of the contents of the PC and the add...

	4.4.4 Special Address Modes
	The special address modes do not use an address register in specifying an effective address. Thes...
	Immediate Data—This addressing mode requires one word of instruction extension. The immediate dat...
	Immediate Short Data—The 8-bit or 12-bit operand is part of the instruction operation word. An 8-...
	Absolute Address—This addressing mode requires one word of instruction extension. The operand add...
	Absolute Short Address—The operand address occupies six bits in the instruction operation word, a...
	Short Jump Address—The operand occupies 12 bits in the instruction operation word. The address is...
	I/O Short Address—The operand address occupies 6 bits in the instruction operation word, and it i...
	Implicit Reference—Some instructions make implicit reference to the Program Counter (PC), System ...

	4.5 Address Modifier Types
	The DSP56300 family core Address ALU supports linear, reverse-carry, modulo, and multiple wrap-ar...
	Linear addressing—Useful for general-purpose addressing
	Reverse-carry addressing—Useful for 2k-point FFT addressing
	Modulo addressing—Useful for creating circular buffers for FIFO queues, delay lines and sample bu...
	Multiple wrap-around modulo addressing—Useful for decimation, interpolation, and waveform generat...
	Table 4-6 lists the address modifier types.

	.
	Table�4-6 Address Modifier Type Encoding Summary �

	$XX0000
	Reverse-Carry (Bit-Reverse)
	$XX0001
	Modulo 2
	$XX0002
	Modulo 3
	:
	:
	$XX7FFE
	Modulo 32767 (215-1)
	$XX7FFF
	Modulo 32768 (215)
	$XX8001
	Multiple Wrap-Around Modulo 2
	$XX8003
	Multiple Wrap-Around Modulo 4
	$XX8007
	Multiple Wrap-Around Modulo 8
	:
	:
	$XX9FFF
	Multiple Wrap-Around Modulo 213
	$XXBFFF
	Multiple Wrap-Around Modulo 214
	$XXFFFF
	Linear (Modulo 224)
	Notes: 1. All other combinations are reserved.
	2. XX can be any value.
	4.5.1 Linear Modifier (Mn = $XXFFFF)
	Address modification is performed using normal 24-bit linear (modulo 16,777,216) arithmetic. A 24...

	4.5.2 Reverse-Carry Modifier (Mn = $000000)
	Reverse carry is selected by setting the modifier register to zero. Address modification is perfo...

	4.5.3 Modulo Modifier (Mn = Modulus – 1)
	Address modification is performed using modulo M, where M ranges from 2 to +32,768. Modulo M arit...
	The value m = M – 1 is stored in the modifier register. The lower boundary (base address) value m...
	The address pointer is not required to start at the lower address boundary or to end on the upper...
	If an offset, Nn, is used in the address calculations, the 24-bit absolute value, |Nn|, must be l...
	This technique is useful in sequentially processing multiple tables or N-dimensional arrays. The ...

	4.5.4 Multiple Wrap-Around Modulo Modifier
	The Multiple Wrap-Around Addressing mode is selected by setting bit 15 of the Mn register to one ...
	The address pointer is not required to start at the lower address boundary and may begin anywhere...

	Chapter�5 Program Control Unit
	The Program Control Unit (PCU) of the DSP56300 family core coordinates execution of program instr...
	5.1 Overview
	The PCU coordinates execution of instructions using three hardware blocks: the Program Address Ge...
	Fetch instructions
	Decode instructions
	Execute instructions
	Control hardware DO loops and REP
	Process interrupts and exceptions
	Operation of the seven-stage pipeline depends on the current core processing state. The seven sta...

	Fetch-I
	Fetch-II
	Decode
	Address gen-I
	Address gen-II
	Execute-I
	Execute-II
	To preserve current operation and status values while processing exceptions and interrupts, the P...
	To perform its functions, the PCU uses a number of programmable registers. The organization of th...

	General configuration and status:
	— Operating Mode Register (OMR)—24-bit, read/write
	— Status Register (SR)—24-bit, read/write

	System Stack configuration and operation:
	— System Stack (SS) register file—hardware stack, 48-bit ¥ 16 locations, read/write
	— System Stack High (SSH) Register—24-bit, read/write
	— System Stack Low (SSL) Register—24-bit, read/write
	— Stack Pointer (SP) Register—24-bit, read/write
	— Stack Counter (SC) Register—5-bit, read/write
	— Stack Size (SZ) Register—24-bit, read/write
	Note: The stack Extension Pointer (EP) Register is also used with the System Stack, but is physic...

	Program/Loop/Exception processing control
	— Program Counter (PC) Register—24-bit, read/write
	— Loop Address (LA) Register—24-bit, read/write
	— Loop Counter (LC) Register—24-bit, read/write
	— Vector Base Address (VBA) Register—24-bit, read/write

	5.2 PCU Hardware Architecture
	The three PCU hardware blocks are:
	Program Address Generator (PAG)—Contains all the hardware needed for program address generation, ...
	Program Decode Controller (PDC)
	— Decodes the 24-bit instruction loaded into the instruction latch
	— Generates all signals for pipeline control
	— Performs required data transfers between the Data Arithmetic Logic Unit (Data ALU) and memory

	Program Interrupt Controller (PIC)—Arbitrates among all interrupt requests (internal interrupts a...
	Figure 5-1 shows a block diagram of the PCU.

	Program
	Figure 5-1. PCU Architecture
	5.3 Instruction Pipeline
	Within the seven-stage pipelined architecture of the PCU, instructions execute concurrently. Exec...
	Table�5-1 Seven-Stage Pipeline �

	Fetch-I
	Address generation for Program Fetch
	Increment PC register

	Fetch-II
	Instruction word read from memory

	Decode
	Instruction Decode

	AddressGen-I
	Address generation for Data Load/Store operations

	AddressGen-II
	Address pointer update

	Execute-I
	Read source operands to Multiplier and Adder
	Read source register for memory store operations
	Multiply
	Write destination register for memory load operations

	Execute-II
	Read source operands for Adder if written by previous ALU operation
	Add
	Write Adder results to the Adder destination operand
	Write Multiplier results to the Multiplier destination operands
	Figure 5-2. Seven-Stage Pipeline

	5.4 Programming Model
	The PCU programming model comprises three functional areas:
	Configuration and status registers
	System Stack configuration and operation registers
	Program/Loop/Exception processing control registers
	Figure 5-3 shows the PCU programming model with the registers and the System Stack. The following...
	Notes: 1. The Extension Pointer (EP) Register is also used with the System Stack, but it is physi...
	2. SSH and SSL point to the upper and lower halves of the stack location specified by the SP.
	Figure 5-3. PCU Programming Model

	5.4.1 Configuration and Status Registers
	Note: Bits that are listed as reserved in the following sections can be defined for specific devi...
	The PCU contains two registers that configure and report the current status of the PCU:
	Operating Mode Register (OMR)
	Status Register (SR)
	5.4.1.1 Operating Mode Register
	The OMR (Figure 5-4) is a 24-bit register that is partitioned into the following three bytes:
	OMR[23 – 16], System Stack Control/Status (SCS) Byte: Controls and monitors the stack extension i...
	OMR[15 – 8], Extended Chip Operating Mode (EOM) Byte: Determines the operating mode of the chip. ...
	OMR[7 – 0], Chip Operating Mode (COM) Byte: Determines the operating mode of the chip. This byte ...
	The following sections describe all defined bit functions; however, not all defined functions are...

	23
	22
	21
	20
	19
	18
	17
	16
	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0
	PEN
	MSW[1:0]
	SEN
	WRP
	EOV
	EUN
	XYS
	ATE
	APD
	ABE
	BRT
	TAS
	BE
	CDP[1:0]
	MS
	SD
	EBD
	MD
	MC
	MB
	MA
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	*
	*
	*
	*
	Figure 5-4. Operating Mode Register (OMR)
	Table�5-2 Operating Mode Register Bit Definitions (Continued)

	23
	PEN
	0
	22 – 21
	MSW
	0
	20
	SEN
	0
	19
	WRP
	0
	18
	EOV
	0
	17
	EUN
	0
	16
	XYS
	0
	15
	ATE
	0
	14
	APD
	0
	13
	ABE
	0
	12
	BRT
	0
	11
	TAS
	0
	10
	BE
	0
	9 – 8
	CDP[1 – 0]
	1
	00
	01
	10
	11
	7
	MS
	0
	1. For some DSP56300 family chip products, program data placed into the Program RAM/Instruction C...
	2. To ensure proper operation, place six NOP instructions after the instruction that changes the ...
	3. To ensure proper operation, do not change the MS bit while the Instruction Cache is enabled (C...
	4. Actual memory configuration is device-specific; refer to the device-specific technical data sh...

	6
	(SD)
	0
	5
	0
	4
	EBD
	0
	3 – 0
	MD–MA
	*
	5.4.1.2 Status Register (SR)
	The Status Register (SR) (Figure 5-5) is a 24-bit register that consists of the following three 8...
	Extended Mode Register (EMR) (SR[23 – 16]): Defines the current system state of the processor. Th...
	Mode Register (MR) (SR[15 – 8]): Defines the current system state of the processor. The MR bits a...
	Condition Code Register (CCR) (SR[7 – 0]): Defines the results of previous arithmetic computation...
	The SR is pushed onto the System Stack when:

	Program looping is initialized
	A JSR is performed, including long interrupts
	The three 8-bit registers are defined within the SR primarily for compatibility with other Motoro...

	23
	22
	21
	20
	19
	18
	17
	16
	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0
	CP1 – 0
	RM
	SM
	CE
	SA
	FV
	LF
	DM
	SC
	S1 – 0
	I1 – 0
	S
	L
	E
	U
	N
	Z
	V
	C
	1
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	0
	0
	0
	CP1
	LF
	S
	CP0
	DM
	L
	RM
	SC
	E
	SM
	S1
	U
	CE
	S0
	N
	SA
	I1
	Z
	FV
	I0
	V
	C
	Figure 5-5. Status Register (SR)
	Table�5-3 Status Register Bit Definitions (Continued)

	23 – 22
	CP[1 – 0]
	1
	Dynamic
	0 (Lowest)
	Determined by DCRn (DPR[1 – 0]) for active DMA channel
	00
	00
	1
	00
	01
	2
	00
	10
	3 (Highest)
	00
	11
	Static
	core < DMA
	01
	xx
	core = DMA
	10
	xx
	core > DMA
	11
	xx
	21
	RM
	0
	20
	SM
	0
	19
	CE
	0
	Note: To ensure proper operation, do not clear Cache Enable mode (CE bit in SR) while Burst mode ...

	18
	0
	17
	SA
	0
	16
	FV
	0
	15
	LF
	0
	14
	DM
	0
	13
	SC
	0
	Note: Due to pipelining, a change in the SC bit takes effect only after three instruction cycles....

	12
	0
	11 – 10
	S[1 – 0]
	0
	0
	0
	No scaling
	23
	0
	1
	Scale down
	24
	1
	0
	Scale up
	22
	1
	1
	Reserved
	—
	9 – 8
	I[1 – 0]
	1
	Lowest
	0
	0
	0
	1
	1
	0
	Highest
	1
	1
	7
	S
	0
	6
	L
	0
	5
	E
	0
	0
	0
	No Scaling
	0
	1
	Scale Down
	1
	0
	Scale Up
	4
	U
	0
	0
	0
	No Scaling
	U = (Bit 47 xor Bit 46)
	0
	1
	Scale Down
	U = (Bit 48 xor Bit 47)
	1
	0
	Scale Up
	U = (Bit 46 xor Bit 45)
	3
	N
	0
	2
	Z
	0
	1
	V
	0
	0
	C
	0
	5.4.2 Stack and Stack Extension
	The following registers control the operation of the System Stack:
	System Stack High (SSH) and System Stack Low (SSL) registers
	Stack Pointer (SP)
	Stack Counter (SC)
	Stack Size Register (SZ) (used for stack extension)
	Extension Pointer (EP) Register (used for stack extension)
	The 24-bit stack Extension Pointer (EP) register points to the stack extension in data memory whe...

	5.4.3 System Stack Configuration and Operation Registers
	The PCU hardware System Stack is a 16-level by 48-bit separate internal memory that stores the PC...
	Storing return address and status for subroutine calls (including long interrupts)
	Storing LA, LC, PC and SR for the hardware DO loops
	When a subroutine is called (for example, using the JSR instruction), the return address (PC) is ...
	The System Stack is also used to implement no-overhead nested hardware DO loops. When a hardware ...
	Note: Moving data to or from SSH increments or decrements the SP. The SSL does not affect the SP.

	The System Stack can be extended into 24-bit wide X or Y data memory via control hardware that mo...
	When enabled, a stack extension algorithm is applied to all accesses to the stack:

	If an explicit (for example, MOVE to SSH) or implicit (for example, JSR) push operation is perfor...
	If an explicit (for example, MOVE from SSH) or implicit (for example, RTS) pull operation is perf...
	External memory can be used for stack extension, and wait states affect it in the same way as the...
	5.4.3.1 Stack Pointer (SP) Register
	The 24-bit Stack Pointer (SP) register indicates the location of the top of the System Stack. The...
	Figure 5-6. Stack Pointer (SP) Register Format

	Immediately after hardware reset, the SP bits are cleared (SP = 0), so SP points to location 0, i...
	Table�5-4 Stack Pointer (SP) Register Bit Definitions (Continued)

	23 – 6
	P[23 – 6]
	0
	5
	UF
	0
	4
	SE
	0
	1
	1
	1
	1
	1
	0
	1
	1
	1
	1
	1
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	*
	*
	*
	*
	0
	0
	1
	1
	1
	0
	0
	0
	1
	1
	1
	1
	0
	1
	0
	0
	0
	0
	0
	1
	0
	0
	0
	1
	3 – 0
	P[3 – 0]
	0
	5.4.3.2 Stack Counter (SC) Register
	The 5-bit Stack Counter (SC) register monitors how many entries of the hardware stack are in use....

	5.4.3.3 Stack Size (SZ) Register
	The 24-bit Stack Size (SZ) register determines the number of data words allocated in memory for t...
	Note: A stack exception can occur only when the stack is used in Non-extended mode.

	The SZ register is not initialized during hardware reset, and must be set, using a MOVEC instruct...

	5.4.4 Program, Loop, and Exception Processing Control
	The code execution flow control is performed using four registers in the PCU:
	Program Counter (PC)
	Loop Address (LA) Register
	Loop Counter (LC) Register
	Vector Base Address (VBA) Register
	5.4.4.1 Program Counter (PC) Register
	The Program Counter Register (PC) is a special-purpose 24-bit address register that contains the ...

	5.4.4.2 Loop Address (LA) Register
	The contents of the 24-bit Loop Address (LA) register indicate the location of the last instructi...

	5.4.4.3 Loop Counter (LC) Register
	The Loop Counter (LC) register is a special read/write 24-bit counter that specifies the number o...

	5.4.4.4 Vector Base Address (VBA) Register
	The Vector Base Address Register (VBA) is a 24-bit register. Eight of the bits VBA[7 – 0] are rea...

	Chapter�6 PLL and Clock Generator
	The DSP56300 core features a Phase Locked Loop (PLL) clock generator in its central processing mo...
	Phase Locked Loop (PLL) that performs:
	— Clock input division
	— Frequency multiplication
	— Skew elimination

	Clock Generator (CLKGEN) that performs:
	— Low-power division
	— Internal and external clock generation

	Notes: The clock source can be either an external source applied to EXTAL, or a crystal connected...
	Figure�6-1. PLL Clock Generator Block Diagram

	6.1 PLL and Clock Signals
	The PLL and clock pin configuration for each DSP56300 family member is available in the device-sp...
	PCAP: Connects an off-chip capacitor to the PLL filter. One terminal of the capacitor connects to...
	CLKOUT: Provides a 50 percent duty cycle output clock synchronized to the internal processor cloc...
	PINIT: During assertion of hardware reset, the value of the PINIT input pin is written into the P...
	PLOCK: Originates from the Phase Detector. The device asserts PLOCK when the PLL is enabled and l...

	6.2 PLL Block
	Figure 6-2 shows the PLL block diagram. This section describes the PLL control mechanisms.
	Figure�6-2. PLL Block Diagram

	6.2.1 Frequency Predivider
	Clock input frequency division is accomplished by means of a frequency predivider of the input fr...

	6.2.2 Phase Detector and Charge Pump Loop Filter
	The Phase Detector (PD) detects any phase difference between the external clock (EXTAL) and the p...

	6.2.3 Voltage Controlled Oscillator (VCO)
	The Voltage Controlled Oscillator (VCO) can oscillate at frequencies from the minimum speed up to...
	Note: When the PLL is enabled, the device operating frequency is half of the VCO oscillating freq...

	If EXTAL is less than the VCO minimum working frequency, the hardware design should hold the PINI...
	6.2.3.1 Divide by 2
	The output of the VCO is divided by 2. This results in a constant ¥ 2 multiplication of the PLL c...

	6.2.3.2 Frequency Divider
	The Frequency Divider, which connects to the feedback loop of the PLL, multiplies the incoming ex...

	6.2.3.3 PLL Control Elements
	The PLL uses three major control elements in its circuitry:
	Clock input division
	Frequency multiplication
	Skew elimination

	6.2.3.3.1 Clock Input Division
	The PLL can divide the input frequency by any integer between 1 and 16. The combination of input ...

	6.2.3.3.2 Frequency Multiplication
	The PLL can multiply the input frequency by any integer between 1 and 4096. The Multiplication Fa...

	6.2.3.3.3 Skew Elimination
	The phase skew of the PLL is defined as the time difference between the falling edges of EXTAL an...
	Note: Skew elimination is assured only if EXTAL is greater than the minimum frequency specified i...

	6.2.3.3.4 Clock Generator
	Figure 6-3 on page 6-5 shows the Clock Generator block diagram. The components of the Clock Gener...
	Figure�6-3. CLKGEN Block Diagram

	6.2.3.3.5 Low-Power Divider (LPD)
	The Clock Generator has a divider connected to the output of the PLL. The Low-Power Divider (LPD)...

	6.2.3.3.6 Internal and External Clock Pulse Generator
	The output stage of the Clock Generator generates the clock signals to the core and the device pe...
	EXTAL (PEN = 0, PLL disabled), which generates a device frequency defined by the following formula:
	Low-Power Divider output (PEN = 1, PLL enabled), which generates a device frequency defined by th...

	6.2.3.3.7 Operating Frequency
	When PEN = 1, the operating frequency of the core is governed by the frequency control bits in th...
	where:
	MF is the Multiplication Factor defined by MF[11 – 0]
	PDF is the Predivider Factor defined by PD[3 – 0]
	DF is the Division Factor defined by DF[2 – 0]
	FCORE is the device operating frequency
	FEXTAL is the external EXTAL input

	6.3 PLL Programming Model
	The PLL clock generator uses a single register, the PCTL Register. The PCTL is an X I/O mapped 24...

	PD3
	PD2
	PD1
	PD0
	COD
	PEN
	PSTP
	XTLD
	XTLR
	DF2
	DF1
	DF0
	MF11
	MF10
	MF9
	MF8
	MF7
	MF6
	MF5
	MF4
	MF3
	MF2
	MF1
	MF0
	Figure�6-4. PLL Control Register (PCTL)
	Table�6-1. PLL Control Register (PCTL) Bit Definitions (Continued)

	23 – 20
	PD
	0000
	1
	0001
	2
	0010
	3
	0011
	4
	0100
	5
	0101
	6
	0110
	7
	0111
	8
	1000
	9
	1001
	10
	1010
	11
	1011
	12
	1100
	13
	1101
	14
	1110
	15
	1111
	16
	19
	COD
	0
	18
	PEN
	17
	PSTP
	0
	0
	x
	Disabled
	Disabled
	Long
	Minimal
	1
	0
	Disabled
	Enabled
	Short
	Lower
	1
	1
	Enabled
	Enabled
	Short
	Higher
	16
	XTLD
	15
	XTLR
	14 – 12
	DF
	0
	000
	20
	001
	21
	010
	22
	011
	23
	100
	24
	101
	25
	110
	26
	111
	27
	11 – 0
	MF
	$000
	1
	$001
	2
	$002
	3
	•
	•
	•
	•
	•
	•
	$FFE
	4095
	$FFF
	4096
	6.4 Clock Synchronization
	When the PLL is enabled, (the PEN bit in the PCTL register is set), low clock skew between EXTAL ...

	6.5 Design Guidelines for Ripple and PCAP
	The voltage noise on the VCCP pin is critical to the PLL operation, since the PLL loop filter cap...
	The PLL power supply should be very well regulated and noise-free. Here are some recommendations ...
	— The Wn (bandwidth) of the PLL is 2MHz/(Multiplication Factor). The cutoff frequency of the Vcc ...
	— The maximum allowed accumulated noise at frequencies from Wn/10 to infinity is 6mV. The maximum...
	— The filter should have as low as possible impedance for DC, in order to minimize voltage drop t...
	— Take care to ensure that no more than 0.5V voltage differential exists between the PLL power su...

	In the PLL filter circuit in Figure 6-5:
	Note that the 0.1µF capacitor should be in parallel with the 22mF, since the high frequency curre...
	Wn = 2MHz / 8 = 125kHz, so the noise attenuation is expected to be about 50dB near DC, meaning th...
	Figure�6-5. PLL Filter Circuit

	NOTES:
	1. FB = Ferrite Bead with 600W impedance at 100 MHz, 12W at DC.
	2. PCAP value calculated according to datasheet.

	Chapter�7 Debugging Support
	The DSP56300 modules and features for debugging applications during system development are as fol...
	JTAG Test Access Port (TAP): Provides the TAP and Boundary Scan functionality based on the IEEE S...
	OnCE module: Debugs software used with a DSP56300 family device and tests the hardware interface....
	Address Trace Mode: This feature, enabled by the ATE bit in the Operating Mode Register (OMR), al...
	The debugging interface uses six interface signals. As described in the IEEE 1149.1 standard, the...
	Table 7-1. Debugging Control Signals (Continued)

	7.1 JTAG Test Access Port
	The DSP56300 core provides a dedicated user-accessible Test Access Port (TAP) based on the IEEE S...
	7.1.1 Boundary Scan Architecture Overview
	The test logic includes a TAP consisting of four dedicated signal pins, a 16-state controller, an...
	Perform boundary scan operations to test circuit-board electrical continuity (EXTEST)
	Bypass the DSP56300 core for a given circuit board test by effectively reducing the BSR to a sing...
	Sample the DSP56300 core-based device system pins during operation and transparently shift out th...
	Disable the output drive to pins during circuit-board testing (HIGHZ)
	Access the OnCE controller and circuits to control a target system (ENABLE_ONCE)
	Enter the Debug mode of operation (DEBUG_REQUEST)
	Query identification information on manufacturer, part number, and version from a DSP56300 core-b...
	Force test data onto the outputs of a DSP56300 core-based device while replacing its BSR in the s...
	This section discusses aspects of the JTAG implementation that are specific to the DSP56300 core ...

	7.1.2 TAP Controller
	The TAP controller interprets the sequence of logical values on the TMS signal. It is a synchrono...
	Figure�7-1. Test Access Port with OnCE Module Block Diagram
	Figure�7-2. TAP Controller State Machine

	7.1.3 Boundary Scan Register
	The Boundary Scan Register (BSR) in the DSP56300 core JTAG implementation contains bits for all d...

	7.1.4 Instruction Register
	The DSP56300 core JTAG implementation includes the three mandatory public instructions (EXTEST, S...
	Figure�7-3. JTAG Instruction Register Format

	The four bits decode the eight instructions shown in Table 7-2. The 0101 code is reserved for fut...
	Table 7-2. JTAG Instructions �

	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	1
	0
	1
	0
	1
	1
	0
	0
	1
	1
	1
	1
	1
	1
	1
	Notes: 1. The ENABLE_ONCE and DEBUG_REQUEST public instructions are not part of the IEEE 1149.1 s...
	2. x = either 1 or 0
	The parallel output of the instruction register is reset to 0010 in the Test-Logic-Reset controll...

	7.1.4.1 EXTEST (B[3 – 0] = 0000)
	The external test (EXTEST) instruction selects the BSR. EXTEST also asserts internal reset for th...
	Scan user-defined values into the output buffers
	Capture values presented to input pins
	Control the direction of bidirectional pins
	Control the output drive of tri-stateable output pins
	For details on the function and use of EXTEST, refer to the IEEE 1149.1 standards document.

	7.1.4.2 SAMPLE/PRELOAD (B[3 – 0] = 0001)
	The SAMPLE/PRELOAD instruction performs two separate functions. First, it obtains a snapshot of s...
	Note: Since no internal synchronization exists between the JTAG clock (TCK) and the system clock ...

	Secondly, SAMPLE/PRELOAD can initialize the BSR output cells prior to selection of EXTEST. This i...

	7.1.4.3 IDCODE (B[3 – 0] = 0010)
	The IDCODE instruction selects the ID register. This public instruction allows identification of ...
	Figure�7-3. Identification Register Configuration

	One application of the ID register is to distinguish the manufacturer(s) of components on a board...
	The major revision or mask set change of the device (for example, 0000 = Revision 0; 0001 = Revis...
	Note that there are no revision changes for individual masks of a chip. Revision changes apply to...
	The Motorola Design Center Number (bits 27 – 22). The Motorola Semiconductor Israel Ltd (MSIL) De...
	Once the IDCODE instruction is decoded, it selects the ID register, which is a 32-bit data regist...

	7.1.4.4 CLAMP (B[3 – 0] = 0011)
	CLAMP is an optional instruction defined by the IEEE 1149.1 standard. It selects the 1-bit Bypass...

	7.1.4.5 HI-Z (B[3 – 0] = 0100)
	HI-Z is a manufacturer’s optional public instruction to prevent the need to backdrive the output ...

	7.1.4.6 ENABLE_ONCE(B[3:0] = 0110)
	ENABLE_ONCE is not included in the IEEE 1149.1 standard. It is a public instruction that enables ...

	7.1.4.7 DEBUG_REQUEST(B[3 – 0] = 0111)
	DEBUG_REQUEST is not included in the IEEE 1149.1 standard. It is a public instruction that enable...

	7.1.4.8 BYPASS (B[3 – 0] = 1111)
	BYPASS selects the single-bit Bypass register, as shown in Figure 7-4. This creates a shift-regis...
	Figure�7-4. Bypass Register

	7.1.5 DSP56300 JTAG Restrictions
	The control afforded by the output enable signals using the BSR and the EXTEST instruction requir...
	Two constraints relate to the JTAG interface. First, the TCK input does not include an internal p...
	1. The TAP controller must be in the Test-Logic-Reset state to either enter or remain in the low-...
	2. The TCK input is not blocked in low-power Stop mode. To consume minimal power, the TCK input s...
	3. The TMS and TDI pins include on-chip pull-up resistors. In low-power Stop mode, these two pins...
	During Stop mode all DSP56300 core clocks are disabled, so the JTAG interface provides the means ...

	7.2 OnCE‘ Module
	The DSP56300 core On-Chip Emulation (OnCE‘) module interacts with the DSP56300 core and its perip...
	The OnCE module controller functionality is accessed through the JTAG test access port (TAP). In ...
	Figure�7-5. OnCE Block Diagram

	The OnCE module controller functionality is accessed through the JTAG port. The JTAG TCK, TDI, an...
	Figure�7-6. OnCE Multiprocessor Configuration

	7.2.1 OnCE Controller
	The OnCE Controller contains the following blocks: OnCE Command Register (OCR), OnCE Decoder, and...
	Figure�7-7. OnCE Controller

	7.2.1.1 OnCE Command Register (OCR)
	The OnCE Command Register (OCR) is a shift register that receives its serial data from the TDI pi...
	Figure�7-8. OnCE Command Register (OCR) Format

	Table 7-3. OnCE Command Register (OCR) Bit Definitions (Continued)

	7
	R/W
	0
	1
	6
	GO
	5
	EX
	4 – 0
	RS
	00000
	00001
	00010
	00011
	00100
	00101
	00110
	00111
	01000
	01001
	01010
	01011
	01100
	01101
	01110
	01111
	10000
	10001
	10010
	10011
	101xx
	11xx0
	11x0x
	110xx
	11111
	7.2.1.2 OnCE Decoder (ODEC)
	The OnCE Decoder (ODEC) supervises the entire OnCE module activity. It receives as input the 8-bi...

	7.2.1.3 OnCE Status and Control Register (OSCR)
	The OnCE Status and Control Register (OSCR) enables the Trace mode of operation and indicates the...

	OS1
	OS0
	HIT
	TO
	MBO
	SWO
	IME
	TME
	Figure�7-9. OnCE Status and Control Register (OSCR)
	Table 7-4. OnCE Status and Control Register (OSCR) Bit Definitions (Continued)

	23 – 0
	0
	7 – 6
	OS
	0
	0
	0
	0
	1
	1
	0
	1
	1
	5
	HIT
	0
	4
	TO
	0
	Trace Counter = 0
	Trace mode is enabled
	Debug mode of operation is entered

	3
	MBO
	0
	2
	SWO
	0
	1
	IME
	0
	0
	TME
	0
	7.2.2 OnCE Memory Breakpoint Logic
	Memory breakpoints can be set on program memory or data memory locations. In addition, the breakp...
	Figure�7-10. OnCE Memory Breakpoint Logic 0

	7.2.2.1 OnCE Memory Address Latch (OMAL)
	The OnCE Memory Address Latch (OMAL) is a 24-bit register that latches the PAB, XAB or YAB on eve...

	7.2.2.2 OnCE Memory Limit Register 0 (OMLR0)
	The OnCE Memory Limit Register 0 (OMLR0) is a 24-bit register that stores the memory breakpoint l...

	7.2.2.3 OnCE Memory Address Comparator 0 (OMAC0)
	The OnCE Memory Address Comparator 0 (OMAC0) compares the current memory address (stored in OMAL)...

	7.2.2.4 OnCE Memory Limit Register 1 (OMLR1)
	The OnCE Memory Limit Register 1 (OMLR1) is a 24-bit register that stores the memory breakpoint l...

	7.2.2.5 OnCE Memory Address Comparator 1 (OMAC1)
	The OnCE Memory Address Comparator 1 (OMAC1) compares the current memory address (stored in OMAL)...

	7.2.2.6 OnCE Breakpoint Control Register (OBCR)
	The OnCE Breakpoint Control Register (OBCR) defines the memory breakpoint events. The OBCR can be...

	BT1
	BT0
	CC11
	CC10
	RW11
	RW10
	CC01
	CC00
	RW01
	RW00
	MBS1
	MBS0
	Figure�7-11. OnCE Breakpoint Control Register (OBCR)
	Table 7-5. OnCE Breakpoint Control Register (OBCR) Bit Definitions (Continued)

	23 – 12
	0
	11 – 10
	BT
	0
	00
	01
	10
	11
	9 – 8
	CC1
	0
	00
	01
	10
	11
	7 – 6
	RW1
	0
	00
	01
	10
	11
	4 – 5
	CC0
	0
	00
	01
	10
	11
	3 – 2
	RW0
	0
	00
	01
	10
	11
	1 – 0
	MBS
	0
	00
	01
	10
	11
	7.2.2.7 OnCE Memory Breakpoint Counter (OMBC)
	The OnCE Memory Breakpoint Counter is a 24-bit counter that is loaded with a value equal to the n...

	7.2.3 Cache Support
	To keep track of the cache contents and status, the eight Tag values, Tag lock/unlock status, and...
	At any time, at least one LRU bit in the LRU/Lock Status Register is set, but multiple LRU bits c...
	Figure�7-12. Circular Tags Buffer (TAGB)

	7.2.3.1 OnCE Trace Logic
	The 24-bit OnCE Trace Counter (OTC) can be read or written through the JTAG port. If N instructio...
	Figure�7-13. OnCE Trace Logic Block Diagram

	Trace mode has an associated counter so that more than one instruction can be executed before ret...
	To enable Trace mode, the counter is loaded with a value, the program counter is set to the start...
	When Debug mode is exited, the counter decrements after each execution of an instruction. Interru...

	7.2.4 Methods of Entering Debug Mode
	The chip acknowledges entering Debug mode by setting the Core Status bits OS1 and OS0 and asserti...
	Following is a list of ways to enter Debug mode:
	External Debug Request During RESET Assertion: Holding the DE line asserted during the assertion ...
	External Debug Request During Normal Activity: Holding the DE line asserted during normal chip ac...
	Executing the JTAG DEBUG_REQUEST Instruction: Executing the JTAG instruction DEBUG_REQUEST assert...
	External Debug Request During Stop: Executing the JTAG instruction DEBUG_REQUEST (or asserting DE...
	External Debug Request During Wait: Executing the JTAG instruction DEBUG_REQUEST (or asserting DE...
	Software Request During Normal Activity: Upon executing the DSP56300 core instruction DEBUG (or D...
	Enabling Trace Mode: When the Trace mode mechanism is enabled and the Trace Counter is greater th...
	Enabling Memory Breakpoints: When the memory breakpoint mechanism is enabled with a Breakpoint Co...
	To restore the pipeline and to resume normal chip activity upon returning from the Debug mode, a ...
	Figure�7-14. OnCE Pipeline Information and GDB Registers

	OnCE PDB Register (OPDBR): A 24-bit latch that stores the value of the Program Data Bus generated...
	OnCE PIL Register (OPILR): A 24-bit latch that stores the value of the Instruction Latch before D...
	OnCE GDB Register (OGDBR): A 24-bit latch that can only be read through the JTAG port. The OGDBR ...

	7.2.5 Trace Buffer
	To ease debugging activity and keep track of program flow, the DSP56300 core provides a number of...
	OnCE PAB Register for Fetch (OPABFR): A 24-bit register that stores the address of the last instr...
	PAB Register for Decode (OPABDR): A 24-bit register that stores the address of the instruction cu...
	PAB Register for Execute (OPABEX): A 24-bit register that stores the address of the instruction c...
	The Trace Buffer stores the addresses of the last twelve change of flow instructions that execute...
	Note: To ensure Trace Buffer coherence, a complete set of twelve reads of the Trace Buffer must b...
	Note: On any change of flow instruction, the Trace Buffer stores both the address of the change o...

	7.2.6 OnCE Commands and Serial Protocol
	To permit an efficient means of communication between the external command controller and the DSP...
	Figure�7-15. OnCE Trace Buffer Block Diagram

	The OnCE commands are classified as follows:
	Read commands (when the chip delivers the required data)
	Write commands (when the chip receives data and writes the data in one of the OnCE registers)
	Commands that do not have data transfers associated with them
	The commands are 8 bits long and have the format shown in Figure 7-8, "OnCE Command Register (OCR...

	7.2.7 OnCE Module Examples
	The following examples of debugging procedures using the OnCE module assume that the DSP is the o...
	7.2.7.1 Checking Whether the Chip Has Entered Debug Mode
	There are two methods of verifying that the chip has entered Debug mode:
	Every time the chip enters Debug mode, a pulse is generated on the DE line. A pulse is also gener...
	An external command controller can poll the JTAG instruction shift register for the status bits O...
	In the following paragraphs, the ACK notation denotes the operation performed by the command cont...

	7.2.7.2 Polling the JTAG Instruction Register
	To poll the core status bits in the JTAG Instruction Register, the following sequence must be per...

	1. Select shift-IR. Passing through capture-IR loads the core status bits into the instruction sh...
	2. Shift in ENABLE_ONCE. While shifting-in the new instruction the captured status information is...
	3. Return to Run-Test/Idle.
	The external command controller can analyze the information shifted out and detect whether the ch...

	7.2.7.3 Saving Pipeline Information
	The debugging activity is accomplished by DSP56300 core instructions supplied from the external c...

	1. Select shift-DR. Shift in the Read PDB. Pass through update-DR.
	2. Select shift-DR. Shift out the 24-bit OPDB register. Pass through update-DR.
	3. Select shift-DR. Shift in the Read PIL. Pass through update-DR.
	4. Select shift-DR. Shift out the 24-bit OPILR register. Pass through update-DR.
	You do not need to verify acknowledge between Steps 1 and 2 or between Steps 3 and 4, because com...

	7.2.7.4 Reading the Trace Buffer
	An optional step during debugging activity is reading the information associated with the Trace B...

	1. Select shift-DR. Shift in the Read PABFR. Pass through update-DR.
	2. Select shift-DR. Shift out the 24-bit OPABFR register. Pass through update-DR.
	3. Select shift-DR. Shift in the Read PABDR. Pass through update-DR.
	4. Select shift-DR. Shift out the 24-bit OPABDR register. Pass through update-DR.
	5. Select shift-DR. Shift in the Read PABEX. Pass through update-DR.
	6. Select shift-DR. Shift out the 24-bit OPABEX register. Pass through update-DR.
	7. Select shift-DR. Shift in the Read FIFO. Pass through update-DR.
	8. Select shift-DR. Shift out the 25 bit FIFO register. Pass through update-DR.
	9. Repeat Steps 7 and 8 for the entire FIFO (12 times).
	You must read the entire FIFO since each read increments the FIFO pointer thus pointing to the ne...

	7.2.7.5 Displaying a Specified Register
	The DSP56300 must be in Debug mode and all actions described in Section 7.2.7.3 must have been ex...

	1. Select shift-DR. Shift in the Write PDB with GO no-EX. Pass through update-DR.
	2. Select shift-DR. Shift in the 24-bit opcode: MOVE reg, X:OGDB. Pass through update-DR to actua...
	3. Wait for DSP to reenter Debug mode (wait for DE or poll core status).
	4. Select shift-DR and shift in READ GDB REGISTER. Pass through update-DR (this selects OGDBR as ...
	5. Select shift-DR. Shift out the OGDBR contents. Pass through update-DR. Wait for next command.
	7.2.7.6 Displaying X Memory Area Starting at Address $xxxxxx
	The DSP56300 must be in Debug mode and all actions described in Section 7.2.7.3 must have been ex...

	1. Select shift-DR. Shift in the Write PDB with GO no-EX. Pass through update-DR.
	2. Select shift-DR. Shift in the 24-bit opcode: MOVE R0, X:OGDB. Pass through update-DR to actual...
	3. Wait for DSP to reenter Debug mode (wait for DE or poll core status).
	4. Select shift-DR and shift in READ GDB REGISTER. Pass through update-DR (this selects OGDBR as ...
	5. Select shift-DR. Shift out the OGDBR contents. Pass through update-DR. R0 is now saved.
	6. Select shift-DR. Shift in the Write PDB with no-GO no-EX. Pass through update-DR.
	7. Select shift-DR. Shift in the 24-bit opcode: MOVE #$xxxxxx,R0. Pass through update-DR to actua...
	8. Select shift-DR. Shift in the Write PDB with GO no-EX. Pass through update-DR.
	9. Select shift-DR. Shift in the second word of the 24-bit opcode: MOVE #$xxxxxx,R0 (the $xxxxxx ...
	10. Wait for DSP to reenter Debug mode (wait for DE or poll core status).
	11. Select shift-DR. Shift in the Write PDB with GO no-EX. Pass through update-DR.
	12. Select shift-DR. Shift in the 24-bit opcode: MOVE X:(R0)+, X:OGDB. Pass through update-DR to ...
	13. Wait for DSP to reenter Debug mode (wait for DE or poll core status).
	14. Select shift-DR and shift in READ GDB REGISTER. Pass through update-DR (this selects OGDBR as...
	15. Select shift-DR. Shift out the OGDBR contents. Pass through update-DR. The memory contents of...
	16. Select shift-DR. Shift in the NO SELECT with GO no-EX. Pass through update-DR. This re-execut...
	17. Repeat from Step 14 to complete the reading of the entire block. When finished, restore the o...
	7.2.7.7 Returning From Debug Mode to Normal Mode to Current Program
	When you have finished examining the current state of the machine, changed some of the registers,...

	1. Select shift-DR. Shift in the Write PDB with no-GO no-EX. Pass through update-DR.
	2. Select shift-DR. Shift in the 24 bits of saved PIL (instruction latch value). Pass through upd...
	3. Select shift-DR. Shift in the Write PDB with GO and EX. Pass through update-DR.
	4. Select shift-DR. Shift in the 24 bits of saved PDB. Pass through update-DR to actually write t...
	7.2.7.8 Returning from Debug Mode to Normal Mode to a New Program
	When you have finished examining the current state of the machine, changed some of the registers ...

	1. Select shift-DR. Shift in the Write PDB with no-GO no-EX. Pass through update-DR.
	2. Select shift-DR. Shift in the 24 bits of $0AF080 which is the opcode of the JUMP instruction. ...
	3. Select shift-DR. Shift in the Write PDB-GO-TO with GO and EX. Pass through update-DR.
	4. Select shift-DR. Shift in the 24 bits of $xxxxxx. Pass through update-DR to actually write the...
	If Debug mode entry occurred during a DO LOOP, REP instruction, or other special case (that is, i...

	7.3 Examples of JTAG-OnCE Interaction
	This section presents the details of the JTAG-OnCE interaction by describing the TMS sequencing r...
	Table 7-6. TMS Sequencing for DEBUG_REQUEST and Poll the Status (Continued)

	a
	0
	Run-Test/Idle
	Idle
	b
	1
	Select-DR-Scan
	Idle
	c
	1
	Select-IR-Scan
	Idle
	d
	0
	Capture-IR
	Idle
	e
	0
	Shift-IR
	Idle
	..
	e
	0
	Shift-IR
	Idle
	f
	1
	Exit1-IR
	Idle
	g
	1
	Update-IR
	Idle
	h
	1
	Select-DR-Scan
	Idle
	i
	1
	Select-IR-Scan
	Idle
	j
	0
	Capture-IR
	Idle
	k
	0
	Shift-IR
	Idle
	..
	k
	0
	Shift-IR
	Idle
	l
	1
	Exit1-IR
	Idle
	m
	1
	Update-IR
	Idle
	n
	0
	Run-Test/Idle
	Idle
	..
	n
	0
	Run-Test/Idle
	Idle
	In Step n the external command controller verifies that OS[1 – 0] = 11, indicating that the chip ...
	Table 7-7. TMS Sequencing for ENABLE_ONCE (Continued)

	a
	1
	Test-Logic-Reset
	Idle
	b
	0
	Run-Test/Idle
	Idle
	c
	1
	Select-DR-Scan
	Idle
	d
	1
	Select-IR-Scan
	Idle
	e
	0
	Capture-IR
	Idle
	f
	0
	Shift-IR
	Idle
	g
	0
	Shift-IR
	Idle
	h
	0
	Shift-IR
	Idle
	i
	0
	Shift-IR
	Idle
	j
	1
	Exit1-IR
	Idle
	k
	1
	Update-IR
	Idle
	l
	0
	Run-Test/Idle
	Idle
	..
	l
	0
	Run-Test/Idle
	Idle
	Table 7-8. TMS Sequencing for Reading Pipeline Register (Continued)

	a
	0
	Run-Test/Idle
	Idle
	b
	1
	Select-DR-Scan
	Idle
	c
	0
	Capture-DR
	Idle
	d
	0
	Shift-DR
	Idle
	..
	d
	0
	Shift-DR
	Idle
	e
	1
	Exit1-DR
	Idle
	f
	1
	Update-DR
	Execute “Read PIL”
	g
	1
	Select-DR-Scan
	Idle
	h
	0
	Capture-DR
	Idle
	i
	0
	Shift-DR
	Idle
	..
	i
	0
	Shift-DR
	Idle
	j
	1
	Exit1-DR
	Idle
	k
	1
	Update-DR
	Idle
	l
	1
	Select-DR-Scan
	Idle
	m
	0
	Capture-DR
	Idle
	n
	0
	Shift-DR
	Idle
	..
	n
	0
	Shift-DR
	Idle
	o
	1
	Exit1-DR
	Idle
	p
	1
	Update-DR
	Execute “Read PDB”
	q
	1
	Select-DR-Scan
	Idle
	r
	0
	Capture-DR
	Idle
	s
	0
	Shift-DR
	Idle
	..
	s
	0
	Shift-DR
	Idle
	t
	1
	Exit1-DR
	Idle
	u
	1
	Update-DR
	Idle
	v
	0
	Run-Test/Idle
	Idle
	..
	v
	0
	Run-Test/Idle
	Idle
	During Step v, the external command controller stores the pipeline information and afterwards it ...
	7.3.1 Address Trace Mode
	Address Trace mode allows you to determine the address of internal accesses. The mode is disabled...

	Chapter�8 Instruction Cache
	This chapter describes the structure and function of the Instruction Cache. The Instruction Cache...
	Software-controlled Cache Enable (CE) bit in the Extended Mode Register (EMR) in the Status Regis...
	Eight-way, fully associative Instruction Cache with sectored placement policy
	1- to 4-word transfer granularity
	Least Recently Used (LRU) sector replacement algorithm
	Transparent operation (that is, no user management is required)
	Individual sector locking/unlocking
	Global cache flush controlled by software
	Cache controller status observable via the JTAG/OnCE port
	Note: Supported Instruction Cache size is device-dependent. Refer to the device-specific technica...

	8.1 Instruction Cache Architecture
	The Instruction Cache is composed of the following:
	Memory Array: The actual memory space defined for use by the Cache Controller is 1024 24-bit word...
	— VBIT field: 7 LSBs (for 1K cache) for the word displacement in the sector
	— TAG field: 17 MSBs (for 1K cache) for the sector base address

	Tag Register File: Contains the TAG fields of the base addresses of the memory sectors currently ...
	Valid Bit Array: Contains a set of valid bits for each possible address in a referenced memory se...
	Cache Controller: When the Program Control Unit (PCU) initiates a program fetch request, the Cach...
	Sector Replacement Unit (SRU): When a sector miss occurs, the SRU determines which sector is flus...
	Figure 8-1 shows a block diagram of the Instruction Cache.
	TAG Field 17 MSBs (for 1K cache
	Figure�8-1. Instruction Cache Block Diagram

	8.2 Cache Programming Model
	The Instruction Cache is controlled by two control bits:
	Cache Enable (CE) bit in the Extended Mode Register (EMR) part of the Status Register (SR Bit 19)
	When CE is cleared, the Instruction Cache is disabled. When CE is set, the Instruction Cache is e...
	Burst Enable (BE) bit in the Extended Operating Mode (EOM) part of the Operating Mode Register (O...
	When BE is cleared, the Instruction Cache transfer on a miss is one word. When BE is set, the Ins...
	Note: To ensure proper operation, do not clear the Cache Enable mode (CE bit in SR) while Burst m...

	The instruction set supports the Instruction Cache via the following instructions:
	— PLOCK
	— PLOCKR
	— PUNLOCK
	— PUNLOCKR
	— PFREE
	— PFLUSH
	— PFLUSHUN

	8.2.1 Cache Operation
	When enabled, the cache is involved in every instruction fetch. Its actions depend on several con...
	8.2.1.1 Program Fetch
	When the core generates an address for an instruction fetch, the cache controller compares its TA...

	8.2.1.2 Cache Hit
	If a tag match (that is, sector hit) exists, then the valid bit of the corresponding word in that...

	8.2.1.3 Cache Word Miss When Burst Mode Is Disabled
	If a tag match (that is, sector hit) exists, and Burst Mode is disabled, but the desired word is ...

	8.2.1.4 Cache Word Miss When Burst Mode Is Enabled
	If a tag match (that is, sector hit) exists, and Burst Mode is enabled, but the desired word is n...
	Table 8-1. Determining the Number of Required Fetches in Burst Mode

	00
	01
	10
	11
	These external read accesses introduce wait states into the pipeline. The number of wait states f...
	8.2.1.5 Sector Miss
	If there is no match between the TAG field and all sector Tag registers, meaning that the memory ...

	8.2.2 Default Mode After Hardware Reset
	After hardware reset, the Instruction Cache is disabled. The cache is initialized as follows:
	All valid bits are cleared.
	All Tag Registers are initialized to ‘all ones,’ that is, $1FFFF for a 1K Cache (17-bit Tag Regis...
	The LRU stack holds a default descending order of sectors (from seven to zero).
	All cache sectors are in the unlocked state.

	8.3 Cache Locking
	Cache locking is useful for locking some time-critical code parts in the cache memory. When a cac...
	Note: PLOCK and PLOCKR are detected as illegal opcodes when the Instruction Cache is not enabled....

	8.4 Cache Unlocking
	A locked sector can be unlocked to allow sector replacement from that cache sector. Unlocking can...
	A locked sector is unlocked by the PFREE, PUNLOCK, or PUNLOCKR instructions. The operands of the ...
	All locked sectors are unlocked simultaneously using the instruction PFREE, which allows you to r...
	The locked sectors are unlocked by the PFLUSH instruction. Unlocking the sectors via PFLUSH clear...
	Note: PFREE, PUNLOCK and PUNLOCKR are detected as illegal opcodes when the Instruction Cache is n...

	8.5 Flushing the Cache
	Executing the PFLUSH or PFLUSHUN instructions flushes the cache. Executing PFLUSH causes a global...
	All valid bits are cleared.
	All Tag Registers are initialized to ‘all ones,’ that is, $1FFFF for a 1K Cache (17-bit Tag Regis...
	The LRU stack holds a default descending order of sectors (from 7 to 0).
	All cache sectors are in the unlocked state.
	Executing PFLUSHUN causes a flush only to the unlocked sectors and initializes the cache as follows:

	All valid bits of the unlocked sectors are cleared.
	All Tag Registers of the unlocked sectors are initialized to ‘all ones,’ that is, $1FFFF for a 1K...
	The LRU stack holds a default descending order of sectors (from 7 to 0).
	Note: Coherency between Program RAM mode and Cache mode is not supported by the Instruction Cache...
	Note: PFLUSH and PFLUSHUN are detected as illegal opcodes when the Instruction Cache is not enabl...

	8.6 Data Transfers to/from Instruction Cache
	Data transfers to/from the program memory can be accomplished by the DMA or by software, using MO...
	8.6.1 DMA Transfers
	DMA transfers have no effect on the Tag Register File, Valid Bit Array and LRU Stack, even when t...

	8.6.2 Software-Controlled Transfers
	The term “PMOVE” indicates use of a MOVE instruction to transfer data between the program memory ...
	When the cache is disabled, the Instruction Cache memory space is considered part of the internal...
	If the cache controller generates a hit on the program memory space address, the data is read fro...
	If the cache controller generates a miss on the program memory space address, the data is read fr...
	When the cache is enabled, the cache controller checks the PMOVEW transfers for a hit or miss:

	If the cache controller generates a sector hit on the program memory space address, the data is w...
	If the cache controller generates a sector miss on the program memory space address, the data is ...
	Note: For proper operation, none of the three instructions before a PMOVE transfer should clear o...

	8.7 Using the Instruction Cache in Real-Time Applications
	The following tips help you to use the Instruction Cache in real-time applications:
	Each sector (out of the 8, 128 words) can be individually locked.
	Locking a sector prevents its replacement in case of a miss even if it would have been its turn t...
	It is typical to lock the interrupt vector tables and routines to ensure the fastest response. Fu...
	The cache can be globally flushed (for example, for task switching) with one instruction.
	The cache can be globally unlocked (that is any sector can be replaced in case of a miss) or any ...
	The penalty incurred for a cache miss is identical with the one for a regular instruction fetch f...
	The software simulator permits application tailoring since it provides clock exact behavior.
	In general, an algorithm that requires N clocks to execute and is repeated M times, requires (WS ...
	(N + N x WS)M = N x M(WS + 1) clocks.
	In a cache environment, the same algorithm requires:
	N(WS + 1) + N(M - 1) = N(M + WS) clocks.

	8.8 Debugging Instruction Cache Operation
	While the cache is enabled, full non-intrusive system debug capability in Debug mode includes bei...
	What memory sectors are currently mapped into cache
	Which cache sectors are locked
	Which cache sector is the LRU
	When cache hits occur
	Debug mode allows you to read the Tag register contents, lock bits, LRU bits, and hit-status seri...
	Note: Each read of the cache status via the OnCE module should occur only when the device is in t...

	Chapter�9 External Memory Interface (Port A)
	The external memory expansion port, Port A, can be used either for memory expansion or for memory...
	External memory is divided into three possible 16 M ¥ 24-bit spaces: X data, Y data, and program ...
	Note: The AA lines can operate as memory-mapped chip selects or address lines to external devices...

	9.1 Signal Description
	Table 9-1 through Table 9-3 show the signals that the external memory interface uses for controll...
	Table�9-1 External Address Bus�Signals
	Note: The total number of address lines is device-specific.

	Table�9-2 External Data Bus Signals
	Table�9-3 External Bus Control Signals (Continued)
	deasserted at the start of a bus cycle
	asserted to enable completion of the bus cycle
	deasserted before the next bus cycle

	9.2 Port Operation
	External bus timing is defined by the operation of the Address Bus, Data Bus, and Bus Control pin...
	The external memory address is defined by the Address Bus (A[0 – 17]/A[0 – 23]) and the memory Ad...
	9.2.1 SRAM Support
	The DSP56300 core can interface easily with SRAMs. Because the address must remain stable during ...
	SRAM access consists of the following steps:
	1. Address Bus (A[0 – 17]/A[0 – 23]), Address Attributes (AA[0 – 3), and Bus Strobe (BS) are asse...
	2. Write enable (WR) is asserted with the falling edge of CLKOUT (for a single wait state access)...
	3. For a write operation, data is driven in the middle of CLKOUT high phase. For a read operation...
	For accessing slower memories, wait states (from the BCR or by the TA signal) postpone the disapp...
	Figure�9-1. SRAM Access with One Wait State Example
	Figure�9-2. Example SRAM Connection Diagram
	Note: The assertion of WR depends on the number of wait states programmed in the BCR. If one wait...

	9.2.2 DRAM Support
	DRAMs are becoming the preferred external memory choice for many reasons, including:
	Low cost per bit due to dynamic storage cell density
	Increasing packaging density due to multiplexed address and control pins
	Improved price-performance relative to SRAMs due to Fast Access mode (Page mode)
	Commodity pricing due to high-volume production
	Port A bus control signals are an efficient interface to DRAM devices in both random read/write c...
	External bus timing is controlled by the DRAM Control Register (DCR) described in Section 9.6.3. ...

	An out-of-page access is detected
	An access to another bank of dynamic memory is attempted
	A refresh access is attempted (CAS before RAS)
	A write to one of the following registers is detected:
	— BCR
	— DCR
	— AAR3
	— AAR2
	— AAR1
	— AAR0

	A loss of bus mastership is detected while the BME bit in the DCR register is cleared
	WAIT or STOP instruction is detected
	Hardware or software reset is detected
	Figure 9-3 and Figure 9-4 show DRAM in-page access timing examples. For detailed timing informati...
	Figure�9-3. DRAM Read Access (In-Page) with Two Wait States
	Figure�9-4. DRAM Write Access (In-Page) with Two Wait States Example
	Figure�9-5. Typical DRAM Connection Diagram

	9.2.2.1 DRAM In-Page Access
	A DRAM in-page access consists of the following steps:

	1. Column address (a subset of A[0 – 23]/A17, as determined by the BPS bits in the DCR) and Bus S...
	2. Write (WR) or Read (RD) is asserted with the CLKOUT falling edge.
	3. CAS assertion timing depends on the number of in-page wait states selected by the DCR[BCW] bit...
	4. CAS is deasserted before the end of the external access in order to meet the CAS precharge tim...
	Note: In all cases, DRAM access requires at least one wait state.

	9.2.2.2 DRAM Out-of-Page Access
	An out-of-page access consists of the following steps:

	1. Deassertion of RAS
	2. Assertion of the control signals (WR/RD)
	3. After RAS precharge time, the assertion of RAS. RAS assertion and CAS timing depend on the num...

	9.3 Port A Disable
	In applications sensitive to power consumption, Port A may not be required because the memory tha...
	Note: To prevent improper operation when OMR[EBD] is set, do not access external memory, and alwa...

	9.4 Bus Handshake and Arbitration
	Bus transactions are governed by a single bus master. Bus arbitration determines which device bec...

	9.5 Bus Arbitration Signals
	There are three bus arbitration signals. Two of them (BR and BG) are local arbitration signals be...
	Bus Request (BR)—Asserted by a device to request use of the bus; it is held asserted until the de...
	Bus Grant (BG)—Asserted by the bus arbitration controller to signal the requesting device that it...
	Bus Busy (BB)—This signal is driven by the current bus master and controls the hand-over of bus o...
	9.5.1 The Arbitration Protocol
	The bus is arbitrated by a central bus arbiter, using individual request/grant lines to each bus ...
	1. Bus Requested by Device—All candidates for bus ownership assert their respective BR signals as...
	2. Bus Granted by Arbiter—The arbitration logic designates a bus master-elect by asserting the BG...
	3. Bus Released by Current Master—The master-elect tests BB to ensure that the previous master ha...
	4. Bus Control Assumed by New Master—The new bus master begins its bus transfers after asserting BB.
	5. Bus Grant Withdrawn by Arbiter—The arbitration logic signals the new bus master to relinquish ...
	6. Bus Released by Current Master—A DSP56300 core bus master releases its ownership (drives BB hi...
	Note: The three packing accesses, the two accesses of a read-modify-write instruction (BSET, BCLR...
	The DSP56300 core has two control bits (BRH and BLH) and one status bit (BBS), in the Bus Control...

	BRH Bit—If the BCR[BRH] bit is cleared, the DSP56300 core asserts its BR signal only as long as r...
	BLH Bit—If the BCR[BLH] bit is cleared, the DSP56300 core asserts its BL signal only during a rea...
	BBS Bit—This read-only bit in the BCR is set when the DSP is the bus master and cleared when it i...
	The DSP56300 core uses the OMR[BRT] bit control bit to enable Fast or Slow Bus Release mode. In F...
	Note: During the execution of WAIT and STOP instructions, the DSP56300 releases the bus (that is,...

	9.5.2 Arbitration Scheme
	Bus arbitration is implementation-dependent. Figure 9-6 illustrates a common bus arbitration sche...
	Figure�9-6. Example Bus Arbitration Scheme

	9.5.3 Bus Arbitration Example Cases
	The following paragraphs describe various bus arbitration examples.
	9.5.3.1 Case 1—Normal
	The BB signal is high, indicating that no device is controlling the bus (that is, the bus is not ...

	9.5.3.2 Case 2—Bus Busy
	The BB signal is asserted indicating that a device is already the bus master. If a second device ...

	9.5.3.3 Case 3—Low Priority
	If multiple devices assert BR at the same time, the arbiter grants the bus to the device with the...

	9.5.3.4 Case 4—Default
	The arbiter design may specify a default bus master. Such a design asserts BG for the default dev...

	9.5.3.5 Case 5—Bus Lock during Read-Modify-Write Instructions
	Typically, if a device asserts BR to request bus mastership and the arbiter then asserts BG to th...
	Note: During external read-modify-write instruction execution, BL is asserted.

	9.5.3.6 Case 6—Bus Parking
	As described in Section 9.5.3.4, bus parking is a strategy that permits a device to take control ...

	9.6 Port A Control
	Port A control consists of four Address Attribute Registers (AAR0–AAR3), the Bus Control Register...
	9.6.1 Address Attribute Registers (AAR0–AAR3)
	The four Address Attribute Registers (AAR0–AAR3) are 24-bit read/write registers that control the...
	Notes: 1. A priority mechanism exists among the four AAR control registers in order to resolve se...
	2. When a selection conflict occurs, that is the external address matches the address and the spa...
	Figure�9-7. Address Attribute Registers (AAR0–AAR3)

	Table�9-4 AAR Bit Definitions (Continued)

	23 – 12
	BAC
	0
	11 – 8
	BNC
	0
	20
	BPAC
	0
	6
	BAM
	0
	5
	BYEN
	0
	4
	BXEN
	0
	3
	BPEN
	0
	2
	BAAP
	0
	1 – 0
	BAT
	0
	9.6.2 Bus Control Register
	The Bus Control Register (BCR) is a 24-bit read/write register that controls the external bus act...
	Figure�9-8. Bus Control Register (BCR)

	Table�9-5 Bus Control Register (BCR) Bit Definitions (Continued)

	23
	BRH
	0
	22
	BLH
	0
	21
	BBS
	0
	20 – 16
	BDFW
	11111
	(31 wait states)
	15 – 13
	BA3W
	1 (7 wait states)
	12 – 10
	BA2W
	111 (7 wait states)
	9 – 5
	BA1W
	11111 (31 wait states)
	4 – 0
	BA0W
	11111 (31 wait states)
	9.6.3 DRAM Control Register
	The DRAM controller is an efficient interface to dynamic RAM devices in both random read/write cy...
	Note: To prevent improper device operation, you must guarantee that all the DCR bits except BSTR ...
	Figure�9-9. DRAM Control Register (DCR)

	Table�9-6 DRAM Control Register (DCR) Bit Definitions (Continued)

	23
	BRP
	0
	22 – 15
	BRF
	0
	14
	BSTR
	0
	13
	BREN
	0
	12
	BME
	0
	11
	BPLE
	0
	10
	0
	9 – 8
	BPS
	0
	7 – 4
	0
	3 – 2
	BRW
	0
	1 – 0
	BCW
	0

	Chapter�10 DMA Controller
	Direct Memory Access (DMA) is one of several methods for coordinating the timing of data transfer...
	DMA saves core MIPS because the core can operate in parallel.
	DMA saves power because it requires less circuitry than the core to move data.
	DMA saves pointers because core AGU pointer registers are not needed.
	DMA has no modulo block size restrictions, unlike the core AGU.
	Traditionally, DMA uses the same internal address and data buses as the core. Consequently, when ...
	In addition to data moves between I/O and internal or external memory, the DMA in the DSP56300 ca...
	Table�10-1 DMA Controller Data Transfers
	The DMA unit contains the necessary counters, offset registers, and pointers to transparently han...

	DMA Source Address Register (DSR): A read/write register that contains the source address for the...
	DMA Destination Address Register (DDR): A read/write register that contains the destination addre...
	DMA Counter (DCO): A read/write register that contains the number of DMA data transfers to be per...
	DMA Control Register (DCR): A read/write register that controls the operation of a DMA channel. E...
	The DMA Controller also has supporting 24-bit registers available to all the DMA channels:

	DMA Offset Register (DOR): Each DOR is a read/write register that contains the offset value to be...
	DMA Status Register (DSTR): This read-only register reflects the overall operating status of all ...
	In summary, the DSP56300 DMA can perform I/O and memory accesses that are independent of and freq...

	10.1 DMA Operational Overview
	The following subsections describe how the DSP56300 DMA operates. These subsections are organized...
	10.1.1 Basic Address Modes
	The DSP56300 DMA can deal with the following basic types of data structures:
	Constant Addressing: This mode uses a single address throughout the data transfer. Typically this...
	One-dimensional: A one-dimensional matrix consisting of one item or a “line” of items located in ...
	Two-dimensional: A two-dimensional matrix or table that is stored in row-column order with equal ...
	Three-dimensional: A three-dimensional matrix or collection of tables that are equally spaced in ...
	The type of data structure is specified in the counter mode for the DMA channel. The counter mode...

	10.1.2 Special Address Modes
	The counter and offset registers can be loaded with special values to produce variants of the bas...
	Circular buffer: Use a two-dimensional counter and a negative offset that wraps back to the buffe...
	Linear buffer with non-unit stride: Use a two-dimensional counter with one word per row. This met...
	A larger-than-normal field width in a two-dimensional counter: Concatenate two fields in a three-...

	10.1.3 Unmatched Source and Destination Dimensions
	The source and destination data structures can have different dimensions. The data structure with...
	The data structure on the low-dimension side of the transfer is fully described by a right-justif...

	10.1.4 DMA Triggers (Request Sources)
	Data movement in by a particular DMA channel is initiated by either a hardware or a software trig...
	Hardware triggers
	— External interrupt pins (IRQA - IRQD)
	— DMA channel block transfer completion (by this or a different DMA channel)
	— Peripheral status bits
	— Receiver has new datum to be read by DMA
	— Transmitter needs new datum from DMA to send
	— Timer compare event

	Software triggers
	— DMA Enable bit for this DMA channel
	A peripheral status bit that triggers an enabled DMA transfer also typically can trigger an enabl...

	10.1.5 Transfer Mode
	When a DMA channel is enabled and receives a trigger from its configured trigger source, it begin...

	10.2 Timing (Core Clock Cycles)
	This section describes the timing of core and DMA data transfers in the context of integral core ...
	Source read (at least one cycle)
	Destination write (at least one cycle)
	Any wait states incurred during external memory accesses are added to the DMA word transfer time ...
	Some peripherals (generally those using first-in-first-out (FIFO) for data transfer) may act as “...

	10.2.1 Non-Overlap Between DMA Channels
	Data movement can never be performed by more than one DMA channel within a given core clock cycle...
	One channel needs to read (write) from external memory, and another channel needs to write (read)...
	One of the DMA channels is waiting on the Bus Interface Unit (BIU) for an external access to comp...
	— Static wait states (determined by Bus Control Register)
	— Dynamic wait states (controlled by TA pin)
	— Byte packing
	This limitation is necessary because there is only one internal DMA address bus and one internal ...

	10.2.2 Overlap between DMA Channel and Core
	Since the core and DMA use separate address and data buses, both can perform data movement in a g...
	The core is accessing internal memory while DMA is accessing a different internal memory partition:
	— RAM: 1/4 Kword partition size (this size is device-dependent)
	— ROM: 2, 3, or 4 Kword device-specific partition size

	If the core and DMA try to access the same internal memory partition, the core has priority and D...
	The core is accessing internal (external) memory while DMA is accessing external (internal) memory

	10.3 Channel Priority
	DMA channel priority determines if and when a DMA channel can be interrupted during a block trans...
	10.3.1 Priority Between DMA Channels
	Each DMA channel can be independently assigned one of four possible priority levels. The treatmen...
	Channels with different priorities
	A higher-priority DMA channel can interrupt a lower-priority DMA channel and complete its block t...
	Channels with the same priority, one of two different modes can be selected:
	— Continuous mode: A DMA channel cannot interrupt another DMA channel of the same priority.
	— Non-continuous mode: Control is transferred in a round-robin fashion between each channel of th...
	DMA channels cannot interrupt each other in the middle of word transfers, regardless of their rel...

	10.3.2 Priority Between a DMA Channel and the Core
	If the core and a DMA channel are both contending for the same partition of internal memory, but ...
	If the DMA channel and the core are each attempting to access a different internal memory partiti...
	Static DMA/Core Prioritizing mode — The core priority is configured to have a constant fixed rela...
	Dynamic DMA/Core Prioritizing mode — The priority of each DMA channel is individually compared wi...
	Note: Even though DMA and the core have separate address and data buses, there is only one extern...
	The core cannot interrupt a DMA channel in the middle of a word transfer to or from a contended r...

	10.4 Special Uses of DMA With the Bus Interface Unit
	The following subsections describe Bus Interface Unit (BIU) operations that can only be performed...
	10.4.1 Byte Packing
	Byte packing is used when the 24-bit data width DSP core interfaces with an 8-bit wide external m...
	10.4.1.1 DRAM In-Page Accesses using DMA
	When a DMA channel handles several consecutive in-page DRAM word accesses, a special situation ca...

	10.4.1.2 End-of-Block-Transfer Interrupt
	Upon completion of a block transfer by a DMA channel, an optional end-of-block-transfer DMA inter...

	10.5 DMA Controller Programming Model
	Figure 10-1 shows the DMA Controller programming model. The following paragraphs describe the reg...
	10.5.1 DMA Source Address Registers (DSR0–DSR5)
	The DSR stores the initial source address specified by and loaded from the DMA requesting device....
	Figure�10-1. DMA Controller Programming Model

	10.5.2 DMA Destination Address Registers (DDR[5 – 0])
	The DDR stores the initial destination address specified by and loaded from the DMA requesting de...

	10.5.3 DMA Counters (DCO[5 – 0])
	During DMA operation, a Source Address Register (DSR) is associated with one of the counter modes...
	10.5.3.1 DMA Counter Mode A—Single Counter
	Figure 10-2 shows that in DMA Counter Mode A, the DCO operates as a single counter.

	DCO
	Figure�10-2. DMA Counter Mode A Layout
	The number of transfers is equal to the value loaded into DCO plus one (DCO + 1). Before each DMA...
	DCO > 0
	A transfer is initiated with an address equal to the address register. Then DCO is decremented by...
	DCO = 0
	The last transfer is initiated with an address equal to the address register, the address registe...
	For example, if the DCO is preloaded with the value 5, the DSR is loaded with the value S, and th...
	Table�10-2 Interaction Between the DSR and DCO in Mode A

	S
	5
	S + 1
	4
	S + 1
	4
	S + 2
	3
	S + 2
	3
	S + 3
	2
	S + 3
	2
	S + 4
	1
	S + 4
	1
	S + 5
	0
	S + 5
	0
	S + 6
	5
	10.5.3.2 DMA Counter Mode B—Dual Counter
	Figure 10-3 shows that in DMA Counter Mode B, which is useful for two-dimensional block transfers...

	DCOH
	DCOL
	Figure�10-3. DMA Counter Mode B Layout
	Before each DMA transfer, DCOH and DCOL are tested for zero, and the following actions occur base...
	DCOH > 0 and DCOL > 0
	A transfer is initiated with an address equal to the address register. Then DCOL is decremented b...
	DCOH > 0 and DCOL = 0
	A transfer is initiated with an address equal to the address register. The address register is in...
	DCOH = 0 and DCOL = 0
	The last transfer is initiated with an address equal to the address register. The address registe...
	The number of transfers in this mode is equal to (DCOL + 1) ¥ (DCOH + 1). For example, assume DCO...
	Table�10-3 Interaction Between the DSR and DCO in Mode B

	S
	1
	2
	S + 1
	1
	1
	S + 1
	1
	1
	S + 2
	1
	0
	S + 2
	1
	0
	S + T + 2
	0
	2
	S + T + 2
	0
	2
	S + T + 3
	0
	1
	S + T + 3
	0
	1
	S + T + 4
	0
	0
	S + T + 4
	0
	0
	S + 2T + 4
	1
	2
	10.5.3.3 Circular Buffer (Length Less Than or Equal to 4K)
	In Dual Counter mode, a DMA channel can function as a circular buffer. A negative offset causes t...
	The 12-bit DCOL field is set to (BUFFER_SIZE - 1), providing a maximum buffer length of 4096 word...

	10.5.3.3.1 DMA Counter Modes C, D and E—Triple Counter
	In DMA Counter Modes C, D, and E, which are useful for three-dimensional block transfers, the DCO...

	DCOH
	DCOM
	DCOL
	DCOH
	DCOM
	DCOL
	DCOH
	DCOM
	DCOL
	Figure�10-4. DMA Counter Modes C, D, and E Layouts
	Before each DMA transfer, DCOH, DCOM, and DCOL are tested for zero, and the following actions occ...
	DCOH > 0, DCOM > 0, and DCOL > 0
	A transfer is initiated with an address equal to the address register. Then DCOL decrements by on...
	DCOH > 0, DCOM > 0, and DCOL = 0
	A transfer is initiated with an address equal to the address register. Then the address register ...
	DCOH > 0, DCOM = 0, and DCOL = 0
	A transfer is initiated with an address equal to the address register. The address register then ...
	DCOH = 0, DCOM = 0, and DCOL = 0
	The last transfer is initiated with an address equal to the address register. The address registe...
	Assume that DCOH is preloaded with the value 1, DCOM is also preloaded with the value 1, DCOL is ...
	Table�10-4 Interaction Between the DSR and DCO in Mode C, D, or E

	S
	1
	1
	2
	S + 1
	1
	1
	1
	S + 1
	1
	1
	1
	S + 2
	1
	1
	0
	S + 2
	1
	1
	0
	S + T0 + 2
	1
	0
	2
	S + T0 + 2
	1
	0
	2
	S + T0 + 3
	1
	0
	1
	S + T0 + 3
	1
	0
	1
	S + T0 + 4
	1
	0
	0
	S + T0 + 4
	1
	0
	0
	S + T0 + T1 + 4
	0
	1
	2
	S + T0 + T1 + 4
	0
	1
	2
	S + T0 + T1 + 5
	0
	1
	1
	S + T0 + T1 + 5
	0
	1
	1
	S + T0 + T1 + 6
	0
	1
	0
	S + T0 + T1 + 6
	0
	1
	0
	S + 2T0 + T1 + 6
	0
	0
	2
	S + 2T0 + T1 + 6
	0
	0
	2
	S + 2T0 + T1 + 7
	0
	0
	1
	S + 2T0 + T1 + 7
	0
	0
	1
	S + 2T0 + T1 + 8
	0
	0
	0
	S + 2T0 + T1 + 8
	0
	0
	0
	S + 2T0 + 2T1 + 8
	1
	1
	2
	10.5.3.4 Circular Buffer (Length Greater Than 4K)
	A circular buffer of length greater than 4096 words can be implemented using a DMA channel in Cou...

	10.5.3.5 DMA Control Registers (DCR[5 – 0])
	The DMA Control Registers (DCR[5 – 0]) are read/write registers that control the DMA operation fo...

	DE
	DIE
	DTM2
	DTM1
	DTM0
	DPR1
	DPR0
	DCON
	DRS4
	DRS3
	DRS2
	DRS1
	DRS0
	D3D
	DAM5
	DAM4
	DAM3
	DAM2
	DAM1
	DAM0
	DDS1
	DDS0
	DSS1
	DSS0
	Figure�10-5. DMA Control Register (DCR)
	Table�10-5 DMA Control Register (DCR) Bit Definitions (Continued)

	23
	DE
	0
	22
	DIE
	0
	21 – 19
	DTM
	0
	000
	request
	Yes
	001
	request
	Yes
	010
	request
	Yes
	011
	DE
	Yes
	100
	request
	No
	101
	request
	No
	110
	Reserved
	111
	Reserved
	18 – 17
	DPR
	00
	01
	10
	11
	If all or some channels have the same priority, then channels are activated in a round-robin fash...
	If channels have different priorities, the highest priority channel executes DMA transfers and co...
	If a lower-priority channel is executing DMA transfers when a higher priority channel receives a ...
	If some channels with the same priority are active in a round-robin fashion and a new higher-prio...
	The DPR bits also determine the DMA priority relative to the core priority for external bus acces...

	00
	00
	0 (lowest)
	00
	01
	1
	00
	10
	2
	00
	11
	3 (highest)
	01
	xx
	10
	xx
	11
	xx
	18 – 17 cont.
	DPR
	If DMA priority > core priority (for example, if CDP = 01, or CDP = 00 and DPR > CP), the DMA per...
	If DMA priority = core priority (for example, if CDP = 10, or CDP�= 00 and DPR = CP), the core pe...
	If DMA priority < core priority (for example, if CDP=11, or CDP�= 00 and DPR < CP), the core perf...
	In Dynamic Priority mode (CDP = 00), the DMA channel can be halted before executing both the sour...

	16
	DCON
	15 – 11
	DRS
	00000
	00001
	00010
	00011
	00100
	00101
	00110
	00111
	01000
	01001
	01010
	...
	11111
	10
	D3D
	9 – 4
	DAM
	3 – 2
	DDS
	0
	0
	0
	1
	1
	0
	1
	1
	1 – 0
	DSS
	0
	0
	0
	1
	1
	0
	1
	1
	10.5.3.5.1 Non-3D Addressing Modes (D3D = 0)
	If D3D = 0, the DAM bits are separated into two groups as described in Table 10-6:
	DAM[5 – 3]: Defines the destination address generation mode
	DAM[2 – 0]: Defines the source address generation mode
	Note: The destination and source address modes can be chosen independently, but they always use t...
	Table�10-6 Address Generation Mode (D3D = 0)

	000
	000
	2D
	B
	DOR0
	001
	001
	2D
	B
	DOR1
	010
	010
	2D
	B
	DOR2
	011
	011
	2D
	B
	DOR3
	100
	100
	No Update
	A
	None
	101
	101
	Postincrement-by-1
	A
	None
	110
	110
	Reserved
	111
	111
	Reserved
	1. If the destination address generation mode specifies a different counter mode than the source ...
	2. In Mode A, the counter is a single 24-bit register (DCO). In Mode B, the counter is two 12-bit...
	The address generation mode can be one of the following:
	No Update mode: The DMA accesses a constant address for the entire transfer. This addressing mode...
	Postincrement-by-1 mode: The DMA accesses consecutive addresses. This addressing mode is useful w...
	Two-dimensional mode: The DMA accesses data at consecutive addresses for a given number of times ...
	10.5.3.5.2 3D Modes (D3D = 1)
	When D3D = 1 (three-dimensional mode), the source addressing mode, the destination addressing mod...
	DAM[5 – 3]: Defines the address generation mode (See Table 10-7)
	DAM[2]: Defines the address mode select (See Table 10-8)
	DAM[1 – 0]: Defines the DMA counter mode (See Table 10-9)
	Table�10-7 Address Generation Mode (D3D = 1)

	000
	Two-dimensional
	DOR0
	001
	Two-dimensional
	DOR1
	010
	Two-dimensional
	DOR2
	011
	Two-dimensional
	DOR3
	100
	No Update
	None
	101
	Postincrement-by-1
	None
	110
	Three-dimensional
	DOR0: DOR1
	111
	Three-dimensional
	DOR2: DOR3
	Table�10-8 Address Mode Select (D3D = 1)

	0
	1
	Table�10-9 Counter Mode (D3D = 1)

	00
	Mode C
	DCOH bits (23–12)
	DCOM bits (11–6)
	DCOL bits (5–0)
	01
	Mode D
	DCOH bits (23–18)
	DCOM bits (17–6)
	DCOL bits (5–0)
	10
	Mode E
	DCOH bits (23–18)
	DCOM bits (17–12)
	DCOL bits (11–0)
	11
	—
	Reserved
	In Three-dimensional Address Generation mode, the DMA accesses data at consecutive addresses for ...
	10.5.3.6 DMA Offset Registers (DOR[3 – 0])
	The DMA Offset Registers (DOR[3 – 0]) are four 24-bit read/write registers that store the offset ...

	10.5.3.7 DMA Status Register (DSTR)
	The DMA Status Register (DSTR) is a 24-bit read only register that reflects the status of the DMA...

	DCH2
	DCH1
	DCH0
	DACT
	DTD5
	DTD4
	DTD3
	DTD2
	DTD1
	DTD0
	Figure�10-6. DMA Status Register (DSTR)
	Table�10-10 DMA Status Register (DSTR) Bit Definitions (Continued)

	23 – 12
	0
	11 – 9
	DCH
	0
	000
	001
	010
	011
	100
	101
	110
	111
	8
	DACT
	0
	7 – 6
	0
	5 – 0
	DTD
	1
	Because of pipeline dependencies, after the DCR[DE] bit is set, the corresponding DTDx bit is cle...
	If the DMA channel is in a word transfer mode, clearing DE sets the corresponding DTD bit only af...
	When any DMA channel is set in the infinitive transfer mode (DE is not cleared at end of block) t...
	10.6 DMA Restrictions
	The following restrictions apply to the DMA operation:
	1. Before executing the STOP instruction, poll the DACT status bit until it is read as zero. When...
	2. The core exits the Wait state when a DMA channel accepts a trigger that is programmed as the s...
	3. The DMA Controller can access only the Transmit/Receive Data registers of peripheral interface...
	4. If a DMA channel access to external memory is delayed due to bus arbitration or memory wait, t...
	5. The internal RAM is divided into 256/1024-word banks. If the core and DMA access different ban...
	6. Write to the DMA Address Registers and the DMA Counter only when the channel that uses them is...
	7. A change in the request source should be initiated only when the corresponding DMA channel is ...
	8. If a DMA channel is programmed to perform accesses in the word transfer mode, the correspondin...
	Note: If the channel priority is low, the DTD is set only when it receives the priority to perfor...

	9. While a DMA channel is enabled (DE = 1), do not modify any of the channel DCR bits, except for...
	10. Due to pipelining, after the DE bit in DCRx is set, the corresponding DTDx bit in DSTR is not...

	Chapter�11 Operating Modes and Memory Spaces
	The DSP56300 family core mode pins (MODA, MODB, MODC, and MODD) determine the reset vector addres...
	Table�11-1. DSP Core Operating Modes�

	0000
	0
	Expanded Mode 0
	RESET1
	0001–0111
	1–7
	System Configuration Mode 1–7
	RESET3
	1000
	8
	Expanded Mode 8
	RESET2
	1001–1111
	9–F
	System Configuration Mode 9–F
	RESET3
	Table�11-2. DSP Core Reset Vectors, Possible Values�

	$000000
	$004000
	$000000
	$C00000
	$008000
	$FF0000
	In Expanded Modes 0 and 8, a hardware reset causes the DSP56300 family core to jump to the mask-p...
	In the System Configuration Modes 1–7 and 9–F, a hardware reset causes the DSP56300 family core t...
	11.1 DSP56300 Family Core Memory Map
	The memory space of the DSP56300 family core is partitioned into program memory space (P), X data...
	Figure�11-1. DSP56300 Core Memory Map
	Note: Individual members of the DSP56300 family can have different amounts of X data, Y data, and...

	11.1.1 X Data Memory Space
	The X data memory space is divided into five parts:
	Internal X I/O space
	Switchable internal or external X I/O memory space
	Reserved space for X ROM or RAM
	External X data memory
	Internal X data RAM

	11.1.2 Internal X I/O Space
	The on-chip X I/O peripheral registers occupy the top 128 locations of the X data memory space ($...
	Table�11-3. Internal X I/O Space Map (Continued)

	IPRC
	PIC
	IPRP
	PCTL
	PLL
	OGDB
	OnCE
	BCR
	PORT A
	DCR
	AAR0
	AAR1
	AAR2
	AAR3
	IDR
	DSTR
	DMA
	DOR0
	DOR1
	DOR2
	DOR3
	DSR0
	DMA Channel 0
	DDR0
	DCO0
	DCR0
	DSR1
	DMA Channel 1
	DDR1
	DCO1
	DCR1
	DSR2
	DMA Channel 2
	DDR2
	DCO2
	DCR2
	DSR3
	DMA Channel 3
	DDR3
	DCO3
	DCR3
	DSR4
	DMA Channel 4
	DDR4
	DCO4
	DCR4
	DSR5
	DMA Channel 5
	DDR5
	DCO5
	DCR5
	Reserved
	On-Chip X-I/O mapped Registers
	11.1.3 Switchable Internal or External X I/O Memory
	The X memory space $FFF000 – $FFFF7F is device-specific and is either external X data memory or i...
	11.1.3.1 Reserved Space for X ROM or RAM
	The X memory space $FF0000 – $FFEFFF is reserved for inclusion of X data ROM or RAM modules (2048...

	11.1.3.2 External X Data Memory
	The X memory space $000000 – $FEFFFF is for expanding to external X memory. The starting address ...

	11.1.3.3 Internal X Memory
	The X memory space $000000 – $00FFFF is for internal X RAM modules (256 locations each). The last...

	11.1.4 Y Data Memory Space
	The Y data memory space is divided into five parts:
	Internal/External Y I/O space
	Switchable internal or external Y I/O memory space
	Reserved space for Y ROM or RAM
	External Y data memory
	Internal Y data RAM
	11.1.4.1 Internal/External Y I/O Space
	The off-chip or on-chip Y I/O peripheral registers occupy the top 128 locations of the Y data mem...

	11.1.4.2 Switchable Internal or External Y I/O Memory
	The Y memory space $FFF000 – $FFFF7F is device-specific and is either external Y data memory or i...

	11.1.4.3 Reserved Space for Y ROM or RAM
	The Y memory space $FF0000 – $FFEFFF is reserved for inclusion of Y data ROM or RAM modules (2048...

	11.1.4.4 External Y Data Memory
	The Y data memory space $000000 –$FEFFFF is for expanding to external Y data memory. The starting...

	11.1.4.5 Internal Y Memory
	The Y memory space $000000 – $00FFFF is for internal Y RAM modules (256 locations each). The last...

	11.1.5 Program Memory
	The Program memory space is divided into five parts:
	Bootstrap ROM (192 words)
	Reserved space for Program ROM
	External program memory
	Internal program memory
	Internal instruction cache memory
	11.1.5.1 Bootstrap ROM Space
	The program memory space $FF0000 – $FF00BF is for the internal bootstrap ROM. The ROM contains 19...

	11.1.5.2 Reserved Space for Program ROM
	The program memory space $FF00C0 – $FFFFFF is reserved for inclusion of Program ROM modules (2048...

	11.1.5.3 External Program Memory
	The program memory space $000000 – $FEFFFF is for expanding to external program memory. The start...

	11.1.5.4 Internal Program Memory
	The program memory space $000000 – $00FFFF is for internal Program RAM modules (256 locations for...

	11.1.5.5 Internal Instruction Cache RAM
	The program memory space $000000 – $00FFFF is for internal Instruction Cache RAM modules (256 loc...

	11.2 Sixteen-Bit Compatibility Mode
	When the Sixteen Bit Compatibility (SC) mode bit is set, the memory map is changed to allow easy ...
	Figure�11-2. DSP56300 Core Memory Map (SC = 1)

	For details on this mode, how it affects AGU operations, and functional restrictions, see Chapter...
	11.3 Memory Switch Mode
	When the Memory Switch (MS) mode bit is set, some of the internal data memory addresses (X, Y, or...
	Due to pipelining, a change in the MS bit takes affect only after the four consecutive instructio...

	Chapter 12 Guide to the Instruction Set
	This chapter presents the DSP56300 instruction format as well as partial encodings for use in ins...
	12.1 Instruction Formats and Syntax
	The DSP56300 core instructions consist of one or two 24-bit words—an operation word and an option...
	Figure 12-1. General Formats of an Instruction Word

	The Data Bus Movement field provides the operand reference type, which selects the type of memory...
	The Opcode field of the operation word specifies the Data ALU operation or the Program Control Un...
	The instruction syntax has two formats—parallel and non-parallel, as Table 12-1 and Table 12-2 sh...
	Table 12-1. Parallel Instruction Format

	Example 1
	MAC
	X0,Y0,A
	X:(R0)+,X0
	Y:(R4)+,Y0
	Example 2
	MOVE
	X:-(R1),X1
	Example 3
	MAC
	X1,Y1,B
	Example 4
	MPY
	X0,Y0,A
	IFeq
	Assembly-language source codes for some typical one-word instructions are shown in Table 12-1. Be...
	A non-parallel instruction is organized into two columns: opcode and operands. Assembly-language ...
	Table 12-2. Non-Parallel Instruction Format

	Example 1:
	JEQ
	(R5)
	Example 2:
	MOVEP
	#data,X:ipr
	Example 3:
	RTS
	12.2 Operand Lengths
	Operand lengths are defined as follows: a byte is 8 bits, a word is 16 bits, a long word is 48 bi...
	Figure 12-2. Operand Lengths

	In Sixteen-Bit Arithmetic mode the operand lengths are as follows: a byte is 8 bits, a word is 16...
	Figure 12-3. Operand Lengths in Sixteen-Bit Mode

	Table 12-3 shows the operand lengths supported by the registers of the DSP56300 core.
	Table 12-3. Register Operand Lengths

	10
	8
	8
	8
	1
	1
	1
	1
	1
	12.2.1 Data ALU Registers
	The eight main data registers are 24 bits wide. Word operands occupy one register; long-word oper...
	The two accumulator extension registers are 8 bits wide. When an accumulator extension register i...
	When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator value is o...
	Figure 12-4. Reading and Writing the ALU Extension Registers

	When a 56-bit accumulator (A or B) is specified as a destination operand D, any 24-bit source dat...

	12.2.2 AGU Registers
	The twenty-four 24-bit AGU registers can be accessed as word operands for address, address offset...

	12.2.3 Program Control Registers
	Within the 24-bit Operating Mode Register (OMR), the Chip Operating Mode (COM) register occupies ...
	Within the 24-bit SR, the user condition code register (CCR) occupies the low-order 8 bits, the s...
	Figure 12-5. Reading and Writing Control Registers

	12.2.4 Data Organization in Memory
	The 24-bit program memory can store both 24-bit instruction words and instruction extension words...

	12.3 Instruction Groups
	The instruction set is divided into the following groups:
	Arithmetic
	Logical
	Bit Manipulation
	Loop
	Move
	Program Control

	Each instruction group is described in the following paragraphs.
	12.3.1 Arithmetic Instructions
	The arithmetic instructions perform all of the arithmetic operations within the Data ALU. These i...
	Table 12-4. Arithmetic Instructions (Continued)

	ABS
	÷
	ADC
	÷
	ADD
	÷
	ADD (imm.)
	ADDL
	÷
	ADDR
	÷
	ASL
	÷
	ASL (mb.)
	ASL (mb., imm.)
	ASR
	÷
	ASR (mb.)
	ASR (mb., imm.)
	CLR
	÷
	CMP
	÷
	CMP (imm.)
	CMPM
	÷
	CMPU
	DEC
	DIV
	DMAC
	INC
	MAC
	÷
	MAC (su,uu)
	MACI
	MACR
	÷
	MACRI
	MAX
	÷
	MAXM
	÷
	MPY
	÷
	MPY (su,uu)
	MPYI
	MPYR
	÷
	MPYRI
	NEG
	÷
	NORMF
	RND
	÷
	SBC
	÷
	SUB
	÷
	SUB (imm.)
	SUBL
	÷
	SUBR
	÷
	Tcc
	TFR
	÷
	TST
	÷
	12.3.2 Logical Instructions
	The logical instructions execute in one instruction cycle and perform all logical operations with...
	Table 12-5. Logical Instructions (Continued) (Continued)

	AND
	÷
	AND (imm.)
	ANDI
	CLB
	EOR
	÷
	EOR (imm.)
	EXTRACT
	EXTRACT (imm.)
	EXTRACTU
	EXTRACTU (imm.)
	INSERT
	INSERT (imm.)
	LSL
	÷
	LSL (mb.)
	LSL (mb., imm.)
	LSR
	÷
	LSR (mb.)
	LSR (mb.,imm.)
	MERGE
	NOT
	÷
	OR
	÷
	OR (imm.)
	ORI
	ROL
	÷
	ROR
	÷
	12.3.3 Bit Manipulation Instructions
	The bit manipulation instructions test the state of any single bit in a memory location and then ...
	Table 12-6. Bit Manipulation Instructions �

	BCHG
	BCLR
	BSET
	BTST
	12.3.4 Loop Instructions
	The hardware DO loop executes with no overhead cycles—that is, it runs as fast as straight-line c...
	Table 12-7. Loop Instructions �

	BRKcc
	DO
	DO FOREVER
	ENDDO
	12.3.5 Move Instructions
	The move instructions perform data movement over the XDB and YDB or over the GDB. Move instructio...
	Table 12-8. Move Instructions �

	LUA
	LRA
	MOVE
	÷
	MOVEC
	MOVEM
	MOVEP
	U MOVE
	÷
	VSL
	12.3.6 Program Control Instructions
	The program control instructions include jumps, conditional jumps, and other instructions affecti...
	Table 12-9. Program Control Instructions (Continued)

	IFcc.U
	IFcc
	Bcc
	BRA
	BScc
	BSR
	DEBUGcc
	DEBUG
	Jcc
	JMP
	JCLR
	JSET
	JScc
	JSR
	JSCLR
	JSSET
	NOP
	REP
	RESET
	RTI
	RTS
	STOP
	TRAPcc
	TRAP
	WAIT
	12.4 Guide to Instruction Descriptions
	The following information is included in each instruction description:
	Name and Mnemonic: Highlighted in bold type for easy reference.
	Assembler Syntax and Operation: The syntax line for each instruction symbolically describes the c...
	Description: Includes any special cases and/or condition code anomalies.
	Condition Codes: The Status Register (SR) is depicted with the condition code bits that can be af...
	Instruction Format: The instruction fields, the instruction opcode, and the instruction extension...

	12.4.1 Notation
	Each instruction description contains symbols to abbreviate certain operands and operations. Tabl...
	Table 12-10. Instruction Description Notation (Continued)

	Xn
	Yn
	An
	Bn
	X
	Y
	A
	B
	AB
	BA
	A10
	B10
	PC
	MR
	CCR
	SR
	EOM
	COM
	OMR
	SZ
	SC
	VBA
	LA
	LC
	SP
	SSH
	SSL
	SS
	ea
	eax
	eay
	xxxxxx
	xxx
	xxx
	aaa
	aa
	pp
	qq
	<. . .>
	X:
	Y:
	L:
	P:
	S, Sn
	D, Dn
	D [n]
	#n
	#xx
	#xxx
	#xxxxxx
	r
	#bbbbb
	–
	—
	PUSH
	PULL
	READ
	PURGE
	| |
	+
	–
	*
	¸, /
	+
	•
	Å
	ﬁ
	:
	<<
	<
	>
	#
	#>
	#<
	LF
	DM
	SB
	RM
	S1, S0
	I1, I0
	S
	L
	E
	U
	N
	Z
	V
	C
	()
	(º)
	EXT
	LS
	LSP
	MS
	MSP
	S/L
	Sign Ext
	Zero
	Rn
	Nn
	Mn
	12.4.2 Condition Code Computation
	The Condition Code Register (CCR) portion of the Status Register (SR) consists of eight bits (see...
	Figure 12-6. Condition Code Register (CCR)

	Every instruction contains an illustration showing how the instruction affects the various condit...
	Table 12-11. Instruction Effect on Condition Code

	—
	÷
	*
	Table 12-12. Condition Code Register (CCR) Bit Definitions (Continued)

	7
	S
	0
	0
	0
	0
	1
	1
	0
	1
	1
	7 cont.
	S
	0
	6
	L
	0
	5
	E
	0
	0
	0
	0
	1
	1
	0
	4
	U
	0
	0
	0
	No Scaling
	U = (Bit 47 xor Bit 46)
	0
	1
	Scale Down
	U = (Bit 48 xor Bit 47)
	1
	0
	Scale Up
	U = (Bit 46 xor Bit 45)
	3
	N
	0
	2
	Z
	0
	1
	V
	0
	0
	C
	0
	12.5 Instruction Partial Encoding
	This section gives the encodings for the following:
	Various groupings of registers used in the instruction encodings
	Condition Code combinations
	Addressing
	Addressing modes

	The symbols used in decoding the various fields of an instruction are identical to those used in ...
	12.5.1 Partial Encodings for Use in Instruction Encoding
	Table 12-13. Partial Encodings for Use in Instruction Encoding

	A
	0
	X
	0
	X0
	00
	B
	1
	Y
	1
	Y0
	01
	X1
	10
	Y1
	11
	(Rn)–Nn
	0 0 0 r r r
	MR
	00
	B/A*
	0 0 1
	(Rn)+Nn
	0 0 1 r r r
	CCR
	01
	X
	0 1 0
	(Rn)–
	0 1 0 r r r
	COM
	10
	Y
	0 1 1
	(Rn)+
	0 1 1 r r r
	EOM
	11
	X0
	1 0 0
	(Rn)
	1 0 0 r r r
	Y0
	1 0 1
	(Rn+Nn)
	1 0 1 r r r
	X1
	1 1 0
	–(Rn)
	1 1 1 r r r
	Y1
	1 1 1
	Absolute address
	1 1 0 0 0 0
	Immediate data
	1 1 0 1 0 0
	000
	reserved
	000
	reserved
	000
	B/A*
	001
	reserved
	001
	reserved
	001
	reserved
	010
	A1
	010
	A0
	010
	reserved
	011
	B1
	011
	B0
	011
	reserved
	100
	X0
	100
	X0
	100
	X0
	101
	Y0
	101
	Y0
	101
	Y0
	110
	X1
	110
	X1
	110
	X1
	111
	Y1
	111
	Y1
	111
	Y1
	X Memory
	0
	(Rn)–Nn
	0 0 0 r r r
	(Rn)–Nn
	0 0 0 r r r
	Y Memory
	1
	(Rn)+Nn
	0 0 1 r r r
	(Rn)+Nn
	0 0 1 r r r
	(Rn)–
	0 1 0 r r r
	(Rn)–
	0 1 0 r r r
	(Rn)+
	0 1 1 r r r
	(Rn)+
	0 1 1 r r r
	(Rn)
	1 0 0 r r r
	(Rn)
	1 0 0 r r r
	(Rn+Nn)
	1 0 1 r r r
	(Rn+Nn)
	1 0 1 r r r
	–(Rn)
	1 1 1 r r r
	–(Rn)
	1 1 1 r r r
	Absolute address
	1 10 0 0 0
	(Rn)–Nn
	0 0 r r r
	(Rn)+Nn
	0 1 r r r
	(Rn)–
	1 0 r r r
	(Rn)+
	1 1 r r r
	Table 12-14. Triple-Bit Register Encoding �

	000
	—
	A0
	R0
	N0
	M0
	—
	VBA
	SZ
	001
	—
	B0
	R1
	N1
	M1
	—
	SC
	SR
	010
	—
	A2
	R2
	N2
	M2
	EP
	—
	OMR
	011
	—
	B2
	R3
	N3
	M3
	—
	—
	SP
	100
	X0
	A1
	R4
	N4
	M4
	—
	—
	SSH
	101
	X1
	B1
	R5
	N5
	M5
	—
	—
	SSL
	110
	Y0
	A
	R6
	N6
	M6
	—
	—
	LA
	111
	Y1
	B
	R7
	N7
	M7
	—
	—
	LC
	Table 12-15. Long Move Register Encoding �

	A10
	A1
	A0
	no
	A10
	A1
	A0
	no
	no
	0 0 0
	B10
	B1
	B0
	no
	B10
	B1
	B0
	no
	no
	0 0 1
	X
	X1
	X0
	no
	X
	X1
	X0
	no
	no
	0 1 0
	Y
	Y1
	Y0
	no
	Y
	Y1
	Y0
	no
	no
	0 1 1
	A
	A1
	A0
	yes
	A
	A1
	A0
	A2
	no
	1 0 0
	B
	B1
	B0
	yes
	B
	B1
	B0
	B2
	no
	1 0 1
	AB
	A
	B
	yes
	AB
	A
	B
	A2,B2
	A0,B0
	1 1 0
	BA
	B
	A
	yes
	BA
	B
	A
	B2,A2
	B0,A0
	1 1 1
	Table 12-16. Partial Encodings for Use in Instructions Encoding, 2

	B/A*
	000
	R0-R7
	onnn
	X0
	100
	N0-N7
	1nnn
	Y0
	101
	X1
	110
	Y1
	111
	X0,X0
	0 0 0
	X0,Y1
	1 0 0
	Y1
	0 0
	Y0,Y0
	0 0 1
	Y0,X0
	1 0 1
	X0
	0 1
	X1,X0
	0 1 0
	X1,Y0
	1 1 0
	Y0
	1 0
	Y1,Y0
	0 1 1
	Y1,X1
	1 1 1
	X1
	1 1
	X0
	0 0
	X0,X0
	0 0 0 0
	X0,Y1
	0 1 0 0
	Y0
	0 1
	Y0,Y0
	0 0 0 1
	Y0,X0
	0 1 0 1
	X1
	1 0
	X1,X0
	0 0 1 0
	X1,Y0
	0 1 1 0
	Y1
	1 1
	Y1,Y0
	0 0 1 1
	Y1,X1
	0 1 1 1
	X1,X1
	1 0 0 0
	Y1,X0
	1 1 0 0
	Y1,Y1
	1 0 0 1
	X0,Y0
	1 1 0 1
	+
	0
	X0,X1
	1 0 1 0
	Y0,X1
	1 1 1 0
	–
	1
	Y0,Y1
	1 0 1 1
	X1,Y1
	1 1 1 1
	X0
	0 0 1 0 0
	B2
	0 1 0 1 1
	X1
	0 0 1 0 1
	A1
	0 1 1 0 0
	Y0
	0 0 1 1 0
	B1
	0 1 1 0 1
	Y1
	0 0 1 1 1
	A
	0 1 1 1 0
	A0
	0 1 0 0 0
	B
	0 1 1 1 1
	0 1 D D
	B0
	0 1 0 0 1
	R0-R7
	1 0 r r r
	1 D D D
	A2
	0 1 0 1 0
	N0-N7
	1 1 n n n
	1
	00001
	010000000000000000000000
	0
	2
	00010
	001000000000000000000000
	1
	3
	00011
	000100000000000000000000
	4
	00100
	000010000000000000000000
	5
	00101
	000001000000000000000000
	0 1 D D
	6
	00110
	000000100000000000000000
	1 D D D
	7
	00111
	000000010000000000000000
	8
	01000
	000000001000000000000000
	9
	01001
	000000000100000000000000
	10
	01010
	000000000010000000000000
	(Rn)+Nn
	0 1 s s s
	11
	01011
	000000000001000000000000
	(Rn)–
	1 0 s s s
	12
	01100
	000000000000100000000000
	(Rn)+
	1 1 s s s
	13
	01101
	000000000000010000000000
	(Rn)
	0 0 s s s
	14
	01110
	000000000000001000000000
	15
	01111
	00000000000000010000000000
	(Rn)+Nn
	0 1 t t
	16
	10000
	00000000000000001000000000
	(Rn)–
	1 0 t t
	17
	10001
	000000000000000001000000
	(Rn)+
	1 1 t t
	18
	10010
	000000000000000000100000
	(Rn)
	0 0 t t
	19
	10011
	000000000000000000010000
	20
	10100
	000000000000000000001000
	21
	10101
	000000000000000000000100
	22
	10110
	000000000000000000000010
	X0
	0 0
	Y0
	0
	ss
	00
	X1
	0 1
	Y1
	1
	su
	10
	A
	1 0
	uu
	11
	B
	1 1
	(Reserved)
	01
	D1
	e
	S2,D2
	f f
	X0
	0
	Y0
	0 0
	su
	0
	X1
	1
	Y1
	0 1
	uu
	1
	A
	1 0
	B
	1 1
	0
	A Æ X:<ea> , X0 Æ A
	Y0 Æ A , A Æ Y:<ea>
	M0-M7
	00nnn
	1
	B Æ X:<ea> , X0 Æ B
	Y0 Æ B , B Æ Y:<ea>
	EP
	01010
	VBA
	10000
	S1,D1
	e e
	S2,D2
	f f
	SC
	10001
	X0
	0 0
	Y0
	0 0
	SZ
	11000
	X1
	0 1
	Y1
	0 1
	SR
	11001
	A
	1 0
	A
	1 0
	OMR
	11010
	B
	1 1
	B
	1 1
	SP
	11011
	SSH
	11100
	SSL
	11101
	LA
	11110
	LC
	11111
	Table 12-17. Condition Code Computation Equation�

	CC(HS)
	Carry Clear (higher or same)
	C = 0
	CS(LO)
	Carry Set (lower)
	C = 1
	EC
	Extension Clear
	E = 0
	EQ
	Equal
	Z = 1
	ES
	Extension Set
	E=1
	GE
	Greater than or Equal
	N Å V=0
	GT
	Greater Than
	Z+(N Å V)=0
	LC
	Limit Clear
	L=0
	LE
	Less than or Equal
	Z+(N Å V)=1
	LS
	Limit Set
	L=1
	LT
	Less Than
	N Å V=1
	MI
	Minus
	N=1
	NE
	Not Equal
	Z=0
	NR
	Normalized
	Z+(U·E)=1
	PL
	Plus
	N=0
	NN
	Not Normalized
	Z+(U·E)=0
	Å denotes the logical Exclusive OR operator.
	Table 12-18. Condition Codes Encoding (Continued)

	NN
	0 1 0 0
	NR
	1 1 0 0
	EC
	0 1 0 1
	ES
	1 1 0 1
	LC
	0 1 1 0
	LS
	1 1 1 0
	GT
	0 1 1 1
	LE
	1 1 1 1
	12.5.2 Parallel Instruction Encoding of the Operation Code
	The operation code encoding for the instructions that allow parallel moves is divided into the mu...
	12.5.2.1 Multiply Instruction Encoding
	The 8-bit operation code for multiply instructions allowing parallel moves has different fields t...
	QQQ =selects the inputs to the multiplier (see Table�12-17, “Condition Code Computation Equation,...
	kkk = three unencoded bits k2, k1, k0
	d = destination accumulator d = 0 Æ A d = 1 Æ B
	Table 12-19. Operation Code K0–2 Decode �

	0
	positive
	mpy only
	don’t round
	1
	negative
	mpy and acc
	round
	12.5.2.2 Non-Multiply Instruction Encoding
	The 8-bit operation code for instructions allowing parallel moves contains two 3-bit fields defin...
	J J J = 1/2 instruction number
	k k k = 1/2 instruction number
	D = 0 Æ A D = 1 Æ B
	Table 12-20. Non-Multiply Instruction Encoding �

	0 0 0
	B
	A
	MOVE1
	TFR
	ADDR
	TST
	*
	CMP
	SUBR
	CMPM
	0 0 1
	B
	A
	ADD
	RND
	ADDL
	CLR
	SUB
	*
	SUBL
	NOT
	0 1 0
	B
	A
	—
	—
	ASR
	LSR
	—
	—
	ABS
	ROR
	0 1 1
	B
	A
	—
	—
	ASL
	LSL
	—
	—
	NEG
	ROL
	0 1 0
	X1 X0
	X1 X0
	ADD
	ADC
	—
	—
	SUB
	SBC
	—
	—
	0 1 1
	Y1 Y0
	Y1 Y0
	ADD
	ADC
	—
	—
	SUB
	SBC
	—
	—
	1 0 0
	X0_0
	X0_0
	ADD
	TFR
	OR
	EOR
	SUB
	CMP
	AND
	CMPM
	1 0 1
	Y0_0
	Y0_0
	ADD
	TFR
	OR
	EOR
	SUB
	CMP
	AND
	CMPM
	1 1 0
	X1_0
	X1_0
	ADD
	TFR
	OR
	EOR
	SUB
	CMP
	AND
	CMPM
	1 1 1
	Y1_0
	Y1_0
	ADD
	TFR
	OR
	EOR
	SUB
	CMP
	AND
	CMPM
	Table 12-21. Special Case1

	0 0 0 0 0 0 0 0
	MOVE
	0 0 0 0 1 0 0 0
	reserved

	Chapter 13 Instruction Set
	This chapter describes each instruction in the DSP56300 (family) core instruction set in detail. ...
	Table 13-1. DSP56300 Instruction Summary (Continued)

	ABS Absolute Value ABS
	Destination accumulator [A,B] (see Table 12-13 on page 12-22)
	Description�Take the absolute value of the destination operand D and store the result in the dest...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	1
	0
	d
	1
	1
	0
	Optinal Effective Address Extension

	ADC Add Long With Carry ADC
	Source register [X,Y] (see Table 12-13 on�page�12�22)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Add the source operand S and the Carry bit (C) of the Condition Code Register to the ...
	Changed according to the standard definition.
	Unchanged by the instruction.

	ADD Add ADD
	JJJ
	Source register [B/A,X,Y,X0,Y0,X1,Y1] (see Table 12-13 on�page�12�22)
	d
	Destination accumulator [A/B] (see Table�12-13 on page 12-22)
	iiiiii
	6-bit Immediate Short Data
	24-bit Immediate Long Data extension word
	Description�Add the source operand S to the destination operand D and store the result in the des...
	Condition Codes
	CCR
	Changed according to the standard definition.
	Unchanged by the instruction.

	ADD Add ADD
	ADDL Shift Left and Add Accumulators ADDL
	d
	Destination accumulator [A,B] (see Table�12-13 on page 12-22)
	The source accumulator is B if the destination accumulator (selected by the d bit in the opcode) ...
	Description�Add the source operand S to two times the destination operand D and store the result ...
	V
	Set if overflow has occurred in A or B result or the MSB of the destination operand is changed as...

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	ADDR Shift Right and Add Accumulators ADDR
	Destination accumulator [A,B] (see Table�12-13 on page 12-22)
	The source accumulator is B if the destination accumulator (selected by the d bit in the opcode) ...
	Description�Add the source operand S to one-half the destination operand D and store the result i...
	Changed according to the standard definition.
	Unchanged by the instruction.

	AND Logical AND AND
	where • denotes the logical AND operator
	Source input register [X0,X1,Y0,Y1] (see Table�12-13 on page 12-22)
	Destination accumulator [A/B] (see Table�12-13 on page 12-22)
	6-bit Immediate Short Data
	24-bit Immediate Long Data extension word
	Description�Logically AND the source operand S with bits 47–24 of the destination operand D and s...
	Set if bit 47 of the result is set.
	Set if bits 47-24 of the result are 0.
	Always cleared.
	Changed according to the standard definition.
	Unchanged by the instruction.

	AND Logical AND AND
	ANDI AND Immediate With Control Register ANDI
	Program Controller register [MR,CCR,COM,EOM] (see Table 12-13 on�page�12�22)
	Immediate Short Data
	Description�Logically AND the 8-bit immediate operand (#xx) with the contents of the destination ...
	Cleared if Bit 7 of the immediate operand is cleared.
	Cleared if Bit 6 of the immediate operand is cleared.
	Cleared if Bit 5 of the immediate operand is cleared.
	Cleared if Bit 4 of the immediate operand is cleared.
	Cleared if Bit 3 of the immediate operand is cleared.
	Cleared if Bit 2 of the immediate operand is cleared.
	Cleared if Bit 1 of the immediate operand is cleared.
	Cleared if Bit 0 of the immediate operand is cleared.
	The condition codes are not affected using these operands.

	ASL Arithmetic Shift Accumulator Left ASL
	ASL D (parallel move) ASL D #ii,S2,D ASL S1,S2,D
	Source accumulator [A,B] ()
	See Table 12-13 on�page�12�22
	Destination accumulator [A,B] ()
	Control register [X0,X1,Y0,Y1,A1,B1]
	6-bit unsigned integer [0–40] denoting the shift amount
	In the control register S1: bits 5–0 (LSB) are used as the #ii field, and the rest of the registe...
	Single bit shift: Arithmetically shift the destination accumulator D one bit to the left and stor...
	Multi-bit shift: The contents of the source accumulator S2 are shifted left #ii bits. Bits shifte...

	This is a 56-bit operation.

	ASL Arithmetic Shift Accumulator Left ASL
	V
	Set if Bit 55 is changed any time during the shift operation, cleared otherwise.

	C
	Set if the last bit shifted out of the operand is set, cleared for a shift count of 0, and cleare...

	÷
	Changed according to the standard definition.

	23
	8
	7
	0
	Data Bus Move Field
	0
	0
	1
	1
	d
	0
	1
	0
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	0
	1
	S
	i
	i
	i
	i
	i
	i
	D
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	0
	1
	0
	S
	s
	s
	s
	D

	ASR Arithmetic Shift Accumulator Right ASR
	ASR D (parallel move) ASR D #ii, S2,D ASR S1,S2,D
	Source accumulator [A,B]
	See Table 12-13 on�page�12�22
	Destination accumulator [A,B]
	Control register [X0,X1,Y0,Y1,A1,B1]
	6-bit unsigned integer [0-40] denoting the shift amount
	In the control register S1: bits 5-0 (LSB) are used as the #ii field, and the rest of the registe...
	Single bit shift: Arithmetically shift the destination operand D one bit to the right and store t...
	Multi-bit shift: The contents of the source accumulator S2 are shifted right #ii bits. Bits shift...

	This is a 56- or 40-bit operation, depending on the SA bit value in the SR.
	Note: If the number of shifts indicated by the 6 LSBs of the control register or by the immediate...

	ASR Arithmetic Shift Accumulator Right ASR
	V
	This bit is always cleared.

	C
	This bit is set if the last bit shifted out of the operand is set, cleared for a shift count of 0...

	÷
	Changed according to the standard definition.

	23
	8
	7
	0
	Data Bus Move Field
	0
	0
	1
	0
	d
	0
	1
	0
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	0
	0
	S
	i
	i
	i
	i
	i
	i
	D
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	0
	1
	1
	S
	s
	s
	s
	D

	Bcc Branch Conditionally Bcc
	Condition code (see Table�12-13 on page 12-22)
	24-bit PC Relative Long Displacement
	Signed PC Relative Short Displacement
	Address register [R0 – R7]
	Description�If the specified condition is true, program execution continues at location PC + disp...
	Unchanged by the instruction.

	BCHG Bit Test and Change BCHG
	Bit number [0–23]
	Effective Address (see Table 12-13 on�page�12�22)
	Memory Space [X,Y] (see Table 12-13 on�page�12�22)
	Absolute Address [0-63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Destination register [all on-chip registers] (see Table�12-13 on page 12-22)
	Description�Test the nth bit of the destination operand D, complement it, and store the result in...

	BCHG Bit Test and Change BCHG
	For destination operand SR:
	Complemented if bit 0 is specified, unaffected otherwise.
	Complemented if bit 1 is specified, unaffected otherwise.
	Complemented if bit 2 is specified, unaffected otherwise.
	Complemented if bit 3 is specified, unaffected otherwise.
	Complemented if bit 4 is specified, unaffected otherwise.
	Complemented if bit 5 is specified, unaffected otherwise.
	Complemented if bit 6 is specified, unaffected otherwise.
	Complemented if bit 7 is specified, unaffected otherwise.
	For other destination operands:
	Set if bit tested is set, and cleared otherwise.
	Not affected.
	Not affected.
	Not affected.
	Not affected.
	Not affected.
	Set according to the standard definition.
	Set according to the standard definition.
	For destination operand SR:
	Changed if bit 8 is specified, unaffected otherwise.
	Changed if bit 9 is specified, unaffected otherwise.
	Changed if bit 10 is specified, unaffected otherwise.
	Changed if bit 11 is specified, unaffected otherwise.
	Changed if bit 12 is specified, unaffected otherwise.
	Changed if bit 13 is specified, unaffected otherwise.
	Changed if bit 14 is specified, unaffected otherwise.
	Changed if bit 15 is specified, unaffected otherwise.
	For other destination operands: MR status bits are not affected.

	BCHG Bit Test and Change BCHG
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	1
	M
	M
	M
	R
	R
	R
	O
	S
	0
	0
	b
	b
	b
	b
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	0
	a
	a
	a
	a
	a
	a
	0
	S
	0
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	0
	p
	p
	p
	p
	p
	p
	0
	S
	0
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	q
	q
	q
	q
	q
	q
	0
	S
	0
	b
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	1
	D
	D
	D
	D
	D
	D
	0
	1
	0
	b
	b
	b
	b
	b

	BCLR Bit Test and Clear BCLR
	Bit number [0-23]
	See Table 12-13 on�page�12�22
	Effective Address
	Memory Space [X,Y]
	Absolute Address [0–63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Destination register [all on-chip registers]
	Description�Test the nth bit of the destination operand D, clear it and store the result in the d...

	BCLR Bit Test and Clear BCLR
	For destination operand SR:
	Cleared if bit 0 is specified, unaffected otherwise.
	Cleared if bit 1 is specified, unaffected otherwise.
	Cleared if bit 2 is specified, unaffected otherwise.
	Cleared if bit 3 is specified, unaffected otherwise.
	Cleared if bit 4 is specified, unaffected otherwise.
	Cleared if bit 5 is specified, unaffected otherwise.
	Cleared if bit 6 is specified, unaffected otherwise.
	Cleared if bit 7 is specified, unaffected otherwise.
	For other destination operands:
	This bit is set if bit tested is set, and cleared otherwise.
	Unaffected.
	Unaffected.
	Unaffected.
	Unaffected.
	Unaffected.
	This bit is set according to the standard definition.
	This bit is set according to the standard definition.
	For destination operand SR:
	Changed if bit 8 is specified, unaffected otherwise.
	Changed if bit 9 is specified, unaffected otherwise.
	Changed if bit 10 is specified, unaffected otherwise.
	Changed if bit 11 is specified, unaffected otherwise.
	Changed if bit 12 is specified, unaffected otherwise.
	Changed if bit 13 is specified, unaffected otherwise.
	Changed if bit 14 is specified, unaffected otherwise.
	Changed if bit 15 is specified, unaffected otherwise.

	BCLR Bit Test and Clear BCLR
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	1
	M
	M
	M
	R
	R
	R
	0
	S
	0
	0
	b
	b
	b
	b
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	a
	a
	a
	a
	a
	a
	0
	S
	0
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	0
	p
	p
	p
	p
	p
	p
	0
	S
	0
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	q
	q
	q
	q
	q
	q
	0
	S
	0
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	1
	D
	D
	D
	D
	D
	D
	0
	1
	0
	0
	b
	b
	b
	b

	BRA Branch Always BRA
	24-bit PC-Relative Long Displacement
	Signed PC-Relative Short Displacement
	Address register [R0–R7]
	Description�Program execution continues at location PC + displacement. The displacement is a two’...
	Unchanged by the instruction.
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	1
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	0
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	0
	1
	1
	a
	a
	a
	a
	0
	a
	a
	a
	a
	a
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	1
	1
	R
	R
	R
	1
	1
	0
	0
	0
	0
	0
	0

	BRCLR Branch if Bit Clear BRCLR
	Bit number [0-23]
	See Table 12-13 on�page�12�22
	Effective Address
	Memory Space [X,Y]
	24-bit PC relative displacement
	Absolute Address [0-63]
	I/O Short Address [64 addresses: $FFFFC0-$FFFFFF]
	I/O Short Address [64 addresses: $FFFF80-$FFFFBF]
	Source register [all on-chip registers])
	Description�The nth bit in the source operand is tested. If the tested bit is cleared, program ex...

	BRCLR Branch if Bit Clear BRCLR
	÷
	Changed according to the standard definition

	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	0
	M
	M
	M
	R
	R
	R
	0
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	0
	a
	a
	a
	a
	a
	a
	1
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	1
	p
	p
	p
	p
	p
	p
	0
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	q
	q
	q
	q
	q
	q
	0
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	1
	D
	D
	D
	D
	D
	D
	1
	0
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement

	BRKcc Exit Current DO Loop Conditionally BRKcc
	Condition code (see Table�12-18 on page 12-28)
	Description�Exits conditionally the current hardware DO loop before the current Loop Counter (LC)...
	Unchanged by the instruction.
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	1
	C
	C
	C
	C

	BRSET Branch if Bit Set BRSET
	Bit number [0-23]
	See Table�12-13 on page 12-22
	Effective Address
	Memory Space [X,Y])
	24-bit PC relative displacement
	Absolute Address [0-63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Source register [all on-chip registers]
	Description�The nth bit in the source operand is tested. If the tested bit is set, program execut...

	BRSET Branch if Bit Set BRSET
	Changed according to the standard definition
	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	0
	M
	M
	M
	R
	R
	R
	0
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	0
	a
	a
	a
	a
	a
	a
	1
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	1
	p
	p
	p
	p
	p
	p
	0
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	q
	q
	q
	q
	q
	q
	0
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	1
	D
	D
	D
	D
	D
	D
	1
	0
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement

	BScc Branch to Subroutine Conditionally BScc
	Condition code (see Table 12-18 on�page�12�28)
	24-bit PC-Relative Long Displacement
	Signed PC-Relative Short Displacement
	Address register [R0 – R7]
	Description�If the specified condition is true, the address of the instruction immediately follow...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.

	BScc Branch to Subroutine Conditionally BScc
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	C
	C
	C
	C
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	1
	C
	C
	C
	C
	0
	0
	a
	a
	a
	a
	0
	a
	a
	a
	a
	a
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	1
	1
	R
	R
	R
	0
	0
	0
	0
	C
	C
	C
	C

	BSCLR Branch to Subroutine if Bit Clear BSCLR
	Bit number [0-23]
	See Table�12-13 on page 12-22
	Effective Address
	Memory Space [X,Y]
	24-bit Relative Long Displacement
	Absolute Address [0-63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Source register [all on-chip registers]
	Description�The nth bit in the source operand is tested. If the tested bit is cleared, the addres...

	BSCLR Branch to Subroutine if Bit Clear BSCLR
	one; if the condition is true, the push operation writes over the stack level where the SSH value...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	CCR
	Changed according to the standard definition

	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	0
	M
	M
	M
	R
	R
	R
	0
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	0
	a
	a
	a
	a
	a
	a
	1
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	q
	q
	q
	q
	q
	q
	1
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	1
	p
	p
	p
	p
	p
	p
	0
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	1
	D
	D
	D
	D
	D
	D
	1
	0
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement

	BSET Bit Set and Test BSET
	Bit number [0–23]
	See Table�12-13 on page 12-22
	Effective Address
	Memory Space [X,Y]
	Absolute Address [0–63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Destination register [all on-chip registers]
	Description�Test the nth bit of the destination operand D, set it, and store the result in the de...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	*
	*
	*
	*
	*
	*
	*
	*
	CCR

	BSET Bit Set and Test BSET
	For destination operand SR:
	Set if bit 0 is specified, unaffected otherwise.
	Set if bit 1 is specified, unaffected otherwise.
	Set if bit 2 is specified, unaffected otherwise.
	Set if bit 3 is specified, unaffected otherwise.
	Set if bit 4 is specified, unaffected otherwise.
	Set if bit 5 is specified, unaffected otherwise.
	Set if bit 6 is specified, unaffected otherwise.
	Set if bit 7 is specified, unaffected otherwise.
	For other destination operands:
	Set if bit tested is set, and cleared otherwise.
	Unaffected.
	Unaffected.
	Unaffected.
	Unaffected.
	Unaffected.
	Set according to the standard definition.
	Set according to the standard definition.
	For destination operand SR:
	Changed if bit 8 is specified, unaffected otherwise.
	Changed if bit 9 is specified, unaffected otherwise.
	Changed if bit 10 is specified, unaffected otherwise.
	Changed if bit 11 is specified, unaffected otherwise.
	Changed if bit 12 is specified, unaffected otherwise.
	Changed if bit 13 is specified, unaffected otherwise.
	Changed if bit 14 is specified, unaffected otherwise.
	Changed if bit 15 is specified, unaffected otherwise.
	For other destination operands: MR status bits are not affected.

	BSET Bit Set and Test BSET
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	1
	M
	M
	M
	R
	R
	R
	0
	S
	1
	0
	b
	b
	b
	b
	OPTIONAL EFFECTIVE ADDRESS EXTENSION
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	a
	a
	a
	a
	a
	a
	0
	S
	1
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	0
	p
	p
	p
	p
	p
	p
	0
	S
	1
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	q
	q
	q
	q
	q
	q
	0
	S
	1
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	1
	D
	D
	D
	D
	D
	D
	0
	1
	1
	0
	b
	b
	b
	b

	BSR Branch to Subroutine BSR
	24-bit PC-Relative Long Displacement
	Signed PC-Relative Short Displacement
	Address register [R0–R7]
	Description� The address of the instruction immediately following the BSR instruction and the SR ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	1
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	0
	1
	0
	a
	a
	a
	a
	0
	a
	a
	a
	a
	a
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	1
	1
	R
	R
	R
	1
	0
	0
	0
	0
	0
	0
	0

	BSSET Branch to Subroutine if Bit Set BSSET
	Bit number [0-23]
	See Table�12-13 on page 12-22
	Effective Address
	Memory Space [X,Y]
	24-bit Relative Long Displacement
	Absolute Address [0-63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Source register [all on-chip registers]
	Description� The nth bit in the source operand is tested. If the tested bit is set, the address o...

	BSSET Branch to Subroutine if Bit Set BSSET
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	CCR
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	0
	M
	M
	M
	R
	R
	R
	0
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	0
	a
	a
	a
	a
	a
	a
	1
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	1
	p
	p
	p
	p
	p
	p
	0
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	q
	q
	q
	q
	q
	q
	1
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	1
	D
	D
	D
	D
	D
	D
	1
	0
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement

	BTST Bit Test BTST
	Bit number [0 – 23]
	See Table�12-13 on page 12-22
	Effective Address
	Memory Space [X,Y]
	Absolute Address [0–63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Destination register [all on-chip registers]
	Description� Test the nth bit of the destination operand D. The state of the nth bit is stored in...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	*
	CCR
	*
	C
	Set if bit tested is set, and cleared otherwise.
	Changed according to the standard definition.

	—
	Unchanged by the instruction.
	For destination operand SSH:SP, decrement the SP by 1.
	For other destination operands, the SPis not affected.

	BTST Bit Test BTST
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	1
	M
	M
	M
	R
	R
	R
	O
	S
	1
	0
	b
	b
	b
	b
	OPTIONAL EFFECTIVE ADDRESS EXTENSION
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	0
	a
	a
	a
	a
	a
	a
	0
	S
	1
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	0
	p
	p
	p
	p
	p
	p
	0
	S
	1
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	q
	q
	q
	q
	q
	q
	0
	S
	1
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	1
	D
	D
	D
	D
	D
	D
	0
	1
	1
	0
	b
	b
	b
	b

	CLB Count Leading Bits CLB
	Destination accumulator [A,B]
	See Table�12-13 on page 12-22
	Source accumulator [A,B]
	Description� Count leading 0s or 1s according to Bit 55 of the source accumulator. Scan bits 55–0...
	Note:

	1. If the source accumulator is all 0s, the result is 0.
	2. In Sixteen-Bit Arithmetic mode, the count ignores the unused 8 Least Significant Bits of the M...
	3. CLB can be used in conjunction with NORMF instruction to specify the shift direction and amoun...

	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	*
	*
	*
	—
	CCR
	*
	N
	Set if bit 47 of the result is set, and cleared otherwise.

	*
	Z
	Set if bits 47–24 of the result are all 0.

	*
	V
	Always cleared.

	—
	Unchanged by the instruction.

	CLB Count Leading Bits CLB
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	0
	0
	0
	0
	0
	0
	S
	D

	CLR Clear Accumulator CLR
	Destination accumulator [A,B] (see Table�12-13 on page 12-22)
	Description�Clear the destination accumulator. This is a 56-bit clear instruction.
	*
	E
	Always cleared.

	*
	U
	Always set.

	*
	N
	Always cleared.

	*
	Z
	Always set.

	*
	V
	Always cleared.

	*
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	1
	d
	0
	1
	1
	Optional Effective Address Extension

	CMP Compare CMP
	Source one register [B/A,X0,Y0,X1,Y1] (see Table�12-16 on page 12-24)
	Source two accumulator [A/B] (see Table�12-13 on page 12-22)
	6-bit Immediate Short Data
	24-bit Immediate Long Data extension word
	Description�Subtract the source one operand from the source two accumulator, S2, and update the C...
	This instruction subtracts 56-bit operands. When a word is specified as the source one operand, i...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	CCR
	÷
	Changed according to the standard definition.

	CMP Compare CMP
	23
	16
	15
	8
	7
	0
	CMP S1, S2
	Data Bus Move Field
	0
	J
	J
	J
	d
	1
	0
	1
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	CMP #xx, S2
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	i
	i
	i
	i
	i
	i
	1
	0
	0
	0
	d
	1
	0
	1
	23
	16
	15
	8
	7
	0
	CMP #xxxx,S2
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	d
	1
	0
	1
	Immediate Data Extension

	CMPM Compare Magnitude CMPM
	Source one register [B/A,X0,Y0,X1,Y1] (see Table�12-16 on page 12-24)
	Source two accumulator [A,B] (see Table�12-13 on page 12-22)
	Description�Subtract the absolute value (magnitude) of the source one operand, S1, from the absol...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	CCR
	Changed according to the standard definition.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	J
	J
	J
	d
	1
	1
	1
	Optional Effective Address Extension

	CMPU Compare Unsigned CMPU
	Source one register [A,B,X0,Y0,X1,Y1]
	See Table�12-13 on page 12-22
	Source two accumulator [A,B]
	Description�Subtract the source one operand, S1, from the source two accumulator, S2, and update ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	÷
	*
	*
	÷
	CCR
	Always cleared.
	Set if bits 47–0 of the result are 0.
	Unchanged by the instruction.
	Changed according to the standard definition.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	1
	1
	1
	1
	1
	g
	g
	g
	d

	DEBUG Enter Debug Mode DEBUG
	Instruction Fields None
	Description�Enter the Debug mode and wait for OnCE commands.
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0

	DEBUGcc DEBUGcc Enter Debug Mode Conditionally
	Condition code (see Table�12-18 on page 12-28)
	Description�If the specified condition is true, enter the Debug mode and wait for OnCE commands. ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	C
	C
	C
	C

	DEC Decrement by One DEC
	Destination accumulator [A,B] (see Table�12-13 on page 12-22)
	Description�Decrement by one the specified operand and store the result in the destination accumu...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	d

	DIV Divide Iteration DIV
	where Å denotes the logical exclusive OR operator.
	Source input register [X0,X1,Y0,Y1]
	See Table�12-13 on page 12-22
	Destination accumulator [A,B]
	Description�Divide the destination operand D by the source operand S and store the result in the ...
	DIV calculates one quotient bit based on the divisor and the previous partial remainder. To produ...

	DIV Divide Iteration DIV
	DIV uses a nonrestoring fractional division algorithm that consists of the following operations:
	1. Compare the source and destination operand sign bits: An exclusive OR operation is performed o...
	2. Shift the partial remainder and the quotient: The 39-bit destination accumulator D is shifted ...
	3. Calculate the next quotient bit and the new partial remainder: The 24-bit source operand S (si...
	For extended precision division (e.g., N-bit quotients where N > 24), the DIV instruction is no l...

	DIV Divide Iteration DIV
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	*
	—
	—
	—
	—
	*
	*
	CCR
	Set if the Overflow bit (V) is set.
	Set if the MSB of the destination operand is changed as a result of the instruction’s left shift ...
	Set if Bit 55 of the result is cleared.
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	0
	0
	0
	1
	J
	J
	d
	0
	0
	0

	DMAC DMAC Double-Precision Multiply-Accumulate With Right Shift
	Source registers S1,S2 [all combinations of X0,X1,Y0, and Y1] (see Table�12-16 on page 12-24)
	Destination accumulator [A,B] (see Table�12-13 on page 12-22)
	Sign [+,–] (see Table�12-16 on page 12-24)
	[ss,su,uu] (see Table�12-16 on page 12-24)
	Description�Multiply the two 24-bit source operands S1 and S2 and add/subtract the product to/fro...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	Changed according to the standard definition.
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	0
	1
	0
	s
	1
	s
	d
	k
	Q
	Q
	Q
	Q

	DO Start Hardware Loop DO
	Effective Address
	See Table�12-13 on page 12-22
	Memory Space [X,Y]
	24-bit Absolute Address in 16-bit extension word
	Absolute Address [0–63]
	Immediate Short Data [0–4095]
	Source register [all on-chip registers, except SSH]
	For the DO SP, expr instruction, the actual value that is loaded into the Loop Counter (LC) is th...
	Description�Begin a hardware DO loop that is to be repeated the number of times specified in the ...

	DO Start Hardware Loop DO
	During the first instruction cycle, the current contents of the Loop Address (LA) and the Loop Co...
	During the second instruction cycle, the current contents of the Program Counter (PC) register an...
	During the third instruction cycle, the Loop Flag (LF) is set, resulting in a repeated comparison...
	When a DO loop executes , the instructions are actually fetched each time through the loop. There...
	During the “end-of-loop” processing, the Loop Flag (LF) from the lower portion (SSL) of the Stack...

	DO Start Hardware Loop DO
	Note:
	1. The assembler calculates the end-of-loop address to be loaded into LA (the absolute address ex...
	2. The Loop Flag (LF) is cleared by a hardware reset.

	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	*
	*
	—
	—
	—
	—
	—
	—
	CCR
	Set if the instruction sends A/B accumulator contents to XDB or YDB.
	Set if data limiting occurred [see Note].
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	M
	M
	M
	R
	R
	R
	0
	S
	0
	0
	0
	0
	0
	0
	Absolute Address Extension Word
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	a
	a
	a
	a
	a
	a
	0
	S
	0
	0
	0
	0
	0
	0
	Absolute Address Extension Word
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	i
	i
	i
	i
	i
	i
	i
	i
	1
	0
	0
	0
	h
	h
	h
	h
	Absolute Address Extension Word
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	D
	D
	D
	D
	D
	D
	0
	0
	0
	0
	0
	0
	0
	0
	Absolute Address Extension Word

	DO FOREVER DO FOREVER Start Infinite Loop
	None
	Description�Begin a hardware DO loop that is to repeat forever with a range of execution terminat...
	During the second instruction cycle, the contents of the Program Counter (PC) register and the St...
	During the third instruction cycle, the Loop Flag (LF) and the Forever flag are set. Thus, the PC...
	Because the instructions are fetched each time through the DO FOREVER loop, the loop can be inter...

	DO FOREVER DO FOREVER Start Infinite Loop
	Note:
	1. The assembler calculates the end-of-loop address to be loaded into LA (the absolute address ex...
	2. The LC register is never tested by the DO FOREVER instruction, and the only way of terminating...

	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	1
	1
	Absolute Address Extension Word

	DOR Start PC-Relative Hardware Loop DOR
	Effective Address (see Table�12-13 on page 12-22)
	Memory Space [X,Y] (see Table�12-13 on page 12-22)
	24-bit Address Displacement in 24-bit extension word
	Absolute Address [0-63]
	Immediate Short Data [0-4095]
	Source register [all on-chip registers except SSH] (see Table�12-13 on page 12-22)
	Description�Initiates the beginning of a PC-relative hardware program loop. The loop address (LA)...
	During hardware loop operation, each instruction is fetched each time through the program loop. T...

	DOR Start PC-Relative Hardware Loop DOR
	instruction after the DOR instruction. This value is read from the top of the system stack to ret...
	The assembler calculates the end of loop address LA (PC-relative address extension word xxxx) by ...
	Since the end of loop comparison occurs at fetch time ahead of the end of loop execution, instruc...
	DOR SP,xxxx The actual value to be loaded into the LC is the value of the SP before the DOR instr...
	DOR SSL,xxxx The LC is loaded with its previous value saved in the stack by the DOR instruction i...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	*
	*
	—
	—
	—
	—
	—
	—
	CCR
	*
	Set if the instruction sends A/B accumulator contents to XDB or YDB.

	*
	Set if data limiting occurred

	—
	Unchanged by the instruction

	DOR Start PC-Relative Hardware Loop DOR
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	M
	M
	M
	R
	R
	R
	0
	S
	0
	1
	0
	0
	0
	0
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	a
	a
	a
	a
	a
	a
	0
	S
	0
	1
	0
	0
	0
	0
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	i
	i
	i
	i
	i
	i
	i
	i
	1
	0
	0
	1
	h
	h
	h
	h
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	D
	D
	D
	D
	D
	D
	0
	0
	0
	1
	0
	0
	0
	0
	PC-Relative Displacement

	DOR FOREVER DOR FOREVER Start PC-Relative Infinite Loops
	Instruction Fields None.
	Description�Begin a hardware DO loop that is to repeat forever with a range of execution terminat...
	During the second instruction cycle, the contents of the Program Counter (PC) register and the St...
	During the third instruction cycle, the Loop Flag (LF) and the ForeVer flag are set. As a result,...
	When a DOR FOREVER loop executes, the instructions are fetched each time through the loop. Theref...

	DOR FOREVER DOR FOREVER Start PC-Relative Infinite Loops
	Note: The assembler calculates the end of loop address LA (PC-relative address extension word xxx...
	The DOR FOREVER instruction never tests the loop counter (LC) register . The only way to terminat...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	1
	0
	PC-Relative Displacement

	ENDDO End Current DO Loop ENDDO
	None
	Description�Terminate the current hardware DO loop before the current Loop Counter (LC) equals on...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	1
	1
	0
	0

	EOR Logical Exclusive OR EOR
	where Å denotes the logical XOR operator.
	Source register [X0,X1,Y0,Y1]
	See Table�12-13 on page 12-22
	Destination accumulator [A/B]
	6-bit Immediate Short Data
	24-bit Immediate Long Data extension word
	Description�Logically exclusive OR the source operand S with bits 47:24 of the destination operan...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	*
	*
	*
	—
	CCR
	Set if bit 47 of the result is set.
	Set if bits 47–24 of the result are 0.
	Always cleared.
	Changed according to the standard definition.
	Unchanged by the instruction.

	EOR Logical Exclusive OR EOR
	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	1
	J
	J
	d
	0
	1
	1
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	i
	i
	i
	i
	i
	i
	1
	0
	0
	0
	d
	0
	1
	1

	EXTRACT Extract Bit Field EXTRACT
	Source accumulator [A,B]
	See Table�12-13 on page 12-22
	Destination accumulator [A,B]
	Control register [X0,X1,Y0,Y1,A1,B1]
	Control word extension.
	Description�Extract a bit-field from source accumulator S2. The bit-field width is specified by b...
	Note:

	1. In Sixteen-bit Arithmetic mode, the offset field is located in bits 13-8 of the control regist...
	2. In Sixteen-bit Arithmetic mode, when the width value is zero, then the result will be undefined.
	3. If offset + width exceeds the value of 56, the result is undefined.

	EXTRACT Extract Bit Field EXTRACT
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	÷
	÷
	÷
	÷
	*
	*
	CCR
	Always cleared.
	Always cleared.
	Unchanged by the instruction.
	Changed according to the standard definition.

	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	0
	s
	S
	S
	S
	D
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	0
	s
	0
	0
	0
	D
	Control Word Extension

	EXTRACTU EXTRACTU Extract Unsigned Bit Field
	Source accumulator [A,B]
	See Table�12-13 on page 12-22
	Destination accumulator [A,B]
	Control register [X0,X1,Y0,Y1,A1,B1]
	Control word extension
	Description�Extract an unsigned bit-field from source accumulator S2. The bit-field width is spec...
	Note:

	1. In Sixteen-bit Arithmetic mode, the offset field is located in bits 13-8 of the control regist...
	2. If offset + width exceeds the value of 56, the result is undefined.

	EXTRACTU EXTRACTU Extract Unsigned Bit Field
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	÷
	÷
	÷
	÷
	*
	*
	CCR
	Always cleared.
	Always cleared.
	Unchanged by the instruction.
	Changed according to the standard definition.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	1
	0
	0
	s
	S
	S
	S
	D
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	1
	0
	0
	s
	0
	0
	0
	D
	Control Word Extension

	IFcc Execute Conditionally Without CCR Update IFcc
	Condition code (see Table�12-18 on page 12-28)
	Description�If the specified condition is true, execute and store result of the specified Data AL...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	1
	0
	C
	C
	C
	C
	Instruction opcode

	IFcc.U Execute Conditionally With CCR Update IFcc.U
	Condition code (see Table�12-18 on page 12-28)
	If the specified condition is true, execute and store result of the specified Data ALU operation ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	*
	*
	*
	*
	*
	*
	*
	*
	CCR
	*
	If the specified condition is true, changes are made according to the instruction. Otherwise, it ...
	Instruction Formats and opcodes

	23
	16
	15
	8
	7
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	1
	1
	C
	C
	C
	C
	Instruction opcode

	ILLEGAL Illegal Instruction Interrupt ILLEGAL
	None
	Description�The ILLEGAL instruction executes as if it were a NOP instruction. Normal instruction ...
	If the ILLEGAL instruction is in a DO loop at LA and the instruction at LA – 1 is being interrupt...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1

	INC Increment by One INC
	Destination accumulator [A,B] (see Table�12-13 on page 12-22)
	Description�Increment by one the specified operand and store the result in the destination accumu...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	CCR
	Changed according to the standard definition.
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	d

	INSERT Insert Bit Field INSERT
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Control register [X0,X1,Y0,Y1,A1,B1] (see Table 12-16 on�page�12�24)
	Source register [X0,X1,Y0,Y1,A0,B0] (see Table 12-16 on�page�12�24)
	Control word extension
	Description�Insert a bit-field into the destination accumulator D. The bit-field whose width is s...
	Note:

	1. In Sixteen-bit Arithmetic mode, the offset field is located in bits 13-8 of the control regist...
	2. In Sixteen-Bit Arithmetic mode, the offset value, located in the offset field, should be the n...
	3. If offset + width > 56, the result is undefined.

	INSERT Insert Bit Field INSERT
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	÷
	÷
	÷
	÷
	*
	*
	CCR
	Always cleared.
	Always cleared.
	Unchanged by the instruction.
	Changed according to the standard definition.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	0
	q
	q
	q
	S
	S
	S
	D
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	0
	q
	q
	q
	0
	0
	0
	D
	Control Word Extension

	Jcc Jump Conditionally Jcc
	Condition code (see Table 12-18 on�page�12�28)
	Short Jump Address
	Effective Address (see Table 12-13 on�page�12�22)
	Description�Jump to the location in program memory given by the instruction’s effective address i...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	1
	0
	C
	C
	C
	C
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	1
	M
	M
	M
	R
	R
	R
	1
	0
	1
	0
	C
	C
	C
	C
	Optional Effective Address Extension

	JCLR Jump if Bit Clear JCLR
	Bit number [0–23]
	Effective Address (see Table 12-13 on�page�12�22)
	Memory Space [X,Y] (see Table 12-13 on�page�12�22)
	24-bit absolute Address extension word
	Absolute Address [0–63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Source register [all on-chip registers] (see Table 12-13 on�page�12�22)
	Description�Jump to the 24-bit absolute address in program memory specified in the instruction’s ...

	JCLR Jump if Bit Clear JCLR
	Changed according to the standard definition.
	Unchanged by the instruction.
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	1
	M
	M
	M
	R
	R
	R
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	a
	a
	a
	a
	a
	a
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	0
	p
	p
	p
	p
	p
	p
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	q
	q
	q
	q
	q
	q
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	1
	D
	D
	D
	D
	D
	D
	0
	0
	0
	0
	b
	b
	b
	b
	Absolute Address Extension

	JMP Jump JMP
	Short Jump Address
	Effective Address (see Table 12-13 on�page�12�22)
	Description�Jump to the location in program memory given by the instruction’s effective address. ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	1
	M
	M
	M
	R
	R
	R
	1
	0
	0
	0
	0
	0
	0
	0
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	0
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a

	JScc Jump to Subroutine Conditionally JScc
	Condition code (see Table 12-18 on�page�12�28)
	Short Jump Address
	Effective Address (see Table 12-13 on�page�12�22)
	Description�Jump to the subroutine whose location in program memory is given by the instruction’s...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	1
	1
	C
	C
	C
	C
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	1
	M
	M
	M
	R
	R
	R
	1
	0
	1
	0
	C
	C
	C
	C

	JSCLR Jump to Subroutine if Bit Clear JSCLR
	Bit number [0–23]
	See Table 12-13 on�page�12�22
	Effective Address
	Memory Space [X,Y]
	24-bit absolute Address extension word
	Absolute Address [0–63]
	I/O Short Address [64 addresses: $FFFFC0–$FFFFFF]
	I/O Short Address [64 addresses: $FFFF80–$FFFFBF]
	Source register [all on-chip registers]
	Description�Jump to the subroutine at the 24-bit absolute address in program memory specified in ...

	JSCLR Jump to Subroutine if Bit Clear JSCLR
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	1
	M
	M
	M
	R
	R
	R
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	0
	a
	a
	a
	a
	a
	a
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	0
	p
	p
	p
	p
	p
	p
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	q
	q
	q
	q
	q
	q
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	1
	D
	D
	D
	D
	D
	D
	0
	0
	0
	0
	b
	b
	b
	b
	Absolute Address Extension

	JSET Jump if Bit Set JSET
	Bit number [0–23]
	Effective Address (see Table 12-13 on�page�12�22)
	Memory Space [X,Y] (see Table 12-13 on�page�12�22)
	24-bit Absolute Address in extension word
	Absolute Address [0 – 63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Source register [all on-chip registers] (see Table 12-13 on�page�12�22)
	Description�Jump to the 24-bit absolute address in program memory specified in the instruction’s ...

	JSET Jump if Bit Set JSET
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	1
	M
	M
	M
	R
	R
	R
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	a
	a
	a
	a
	a
	a
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	0
	p
	p
	p
	p
	p
	p
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	q
	q
	q
	q
	q
	q
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	1
	D
	D
	D
	D
	D
	D
	0
	0
	1
	0
	b
	b
	b
	b
	Absolute Address Extension

	JSR Jump to Subroutine JSR
	Short Jump Address
	Effective Address (see Table 12-13 on�page�12�22)
	Description�Jump to the subroutine whose location in program memory is given by the instruction’s...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	1
	M
	M
	M
	R
	R
	R
	1
	0
	0
	0
	0
	0
	0
	0
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	0
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a

	JSSET Jump to Subroutine if Bit Set JSSET
	Bit number [0–23]
	Effective Address (see Table 12-13 on�page�12�22)
	Memory Space [X,Y] (see Table 12-13 on�page�12�22)
	24-bit PC absolute Address extension word
	Absolute Address [0–63]
	I/O Short Address [64 addresses: $FFFFC0–$FFFFFF]
	I/O Short Address [64 addresses: $FFFF80–$FFFFBF]
	Source register [all on-chip registers] (see Table 12-13 on�page�12�22)
	Description�Jump to the subroutine at the 24-bit absolute address in program memory specified in ...

	JSSET Jump to Subroutine if Bit Set JSSET
	state of the nth bit. All address register indirect addressing modes can be used to reference the...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	1
	M
	M
	M
	R
	R
	R
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	0
	a
	a
	a
	a
	a
	a
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	0
	p
	p
	p
	p
	p
	p
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	q
	q
	q
	q
	q
	q
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	1
	D
	D
	D
	D
	D
	D
	0
	0
	1
	0
	b
	b
	b
	b
	Absolute Address Extension

	LRA Load PC-Relative Address LRA
	Address register [R0–R7]
	Destination address register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (see Table 12-16 on�...
	24-bit PC Long Displacement
	Description�The PC is added to the specified displacement and the result is stored in destination...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	1
	0
	0
	0
	R
	R
	R
	0
	0
	0
	d
	d
	d
	d
	d
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	1
	0
	d
	d
	d
	d
	d
	Long Displacement

	LSL Logical Shift Left LSL
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Control register [X0,X1,Y0,Y1,A1,B1] (see Table 12-13 on�page�12�22)
	5-bit unsigned integer [0–16] denoting the shift amount
	Single-bit shift: Logically shift Bits 47–24 of the destination operand D one bit to the left and...
	Multi-bit shift: The contents of bits 47–24 of the destination accumulator D are shifted left #ii...

	This is a 24-bit operation. The remaining bits of the destination accumulator are not affected. T...

	LSL Logical Shift Left LSL
	Set if Bit 47 of the result is set.
	Set if bits 47–24 of the result are 0.
	Always cleared.
	Set if the last bit shifted out of the operand is set, cleared for a shift count of 0, and cleare...
	Changed according to the standard definition.
	Unchanged by the instruction.
	23
	8
	7
	0
	Data Bus Move Field
	0
	0
	1
	1
	D
	0
	1
	1
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	1
	0
	i
	i
	i
	i
	i
	D
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	0
	0
	0
	1
	s
	s
	s
	D

	LSR Logical Shift Right LSR
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Control register [X0,X1,Y0,Y1,A1,B1] (see Table 12-13 on�page�12�22)
	5-bit unsigned integer [0–23] denoting the shift amount
	Description�
	Single-bit shift: Logically shift bits 47–24 of the destination operand D one bit to the right an...
	Multi-bit shift: The contents of bits 47–24 of the destination accumulator D are shifted right #i...

	This is a 24-bit operation. The remaining bits of the destination register are not affected. The ...

	LSR Logical Shift Right LSR
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	*
	*
	*
	*
	CCR
	Set if Bit 47 of the result is set.
	Set if Bits 47–24 of the result are 0.
	Always cleared.
	Set if the last bit shifted out of the operand is set, cleared for a shift count of zero, and cle...
	Changed according to the standard definition.
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	0
	0
	1
	1
	s
	s
	s
	D

	LUA Load Updated Address LUA
	Effective address (see Table 12-13 on�page�12�22)
	Destination address register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (see Table 12-16 on�...
	Destination address register [R0–R7,N0–N7] (see Table 12-16 on�page�12�24)
	7-bit sign extended short displacement address
	Source address register [R0–R7]
	Note: RRR refers to a source address register (R0–R7), while dddd/ddddd refer to a destination ad...

	Description�Load the updated address into the destination address register D. The source address ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	LUA Load Updated Address LUA
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	1
	0
	M
	M
	R
	R
	R
	0
	0
	0
	d
	d
	d
	d
	d
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	a
	a
	a
	R
	R
	R
	a
	a
	a
	a
	d
	d
	d
	d
	Note: LEA is a synonym for LUA. The simulator on-line disassembly translates the opcodes into LUA.

	MAC Signed Multiply Accumulate MAC
	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	1
	Q
	Q
	Q
	d
	k
	1
	0
	Optional Effective Address Extension
	Source registers S1,S2 [X0*X0,Y0*Y0,X1*X0,Y1*Y0,X0*Y1,Y0*X0,X1*Y0,Y1*X1] (see Table 12-16 on�page...
	Destination accumulator [A,B] (see Table 12-16 on�page�12�24)
	Sign [+,–] (see Table 12-16 on�page�12�24)

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	s
	s
	s
	s
	1
	1
	Q
	Q
	d
	k
	1
	0
	Source register [Y1,X0,Y0,X1]] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	Immediate operand (see Table 12-16 on�page�12�24)
	Description�Multiply the two signed 24-bit source operands S1 and S2 (or the signed 24-bit source...

	MAC Signed Multiply Accumulate MAC
	Note that when the processor is in the Double Precision Multiply mode, the following instructions...
	MAC X1, Y0, A MAC X1, Y0, B
	MAC X0, Y1, A MAC X0, Y1, B
	MAC Y1, X1, A MAC Y1, X1, B
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	MACI MACI Signed Multiply Accumulate With Immediate Operand
	Source register [X0,Y0,X1,Y1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	24-bit Immediate Long Data extension word
	Description�Multiply the two signed 24-bit source operands #xxxx and S and add/subtract the produ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	0
	0
	1
	1
	1
	q
	q
	d
	k
	1
	0
	Immediate Data Extension

	MAC(su,uu) MAC(su,uu) Mixed Multiply Accumulate
	Source registers S1,S2 [all combinations of X0,X1,Y0 and Y1]
	(see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	[ss,us] (see Table 12-16 on�page�12�24)
	Description�Multiply the two 24-bit source operands S1 and S2 and add/subtract the product to/fro...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	0
	1
	1
	0
	1
	s
	d
	k
	Q
	Q
	Q
	Q

	MACR Signed Multiply Accumulate and Round MACR
	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	1
	Q
	Q
	Q
	d
	k
	1
	1
	Optional Effective Address Extension
	Source registers S1,S2 [X0*X0,Y0*Y0,X1*X0,Y1*Y0,X0*Y1,Y0*X0,X1*Y0,Y1*X1]
	(see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	3
	s
	s
	s
	1
	1
	Q
	Q
	d
	k
	1
	1
	Source register [Y1,X0,Y0,X1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	Immediate operand (see Table 12-16 on�page�12�24)
	Description�Multiply the two signed 24-bit source operands S1 and S2 (or the signed 24-bit source...

	MACR Signed Multiply Accumulate and Round MACR
	destination accumulator D are loaded with 0s to maintain an unbiased accumulator value that the n...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	Changed according to the standard definition.
	Unchanged by the instruction.

	MACRI MACRI Signed MAC and Round With Immediate Operand
	Source register [X0,Y0,X1,Y1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,-] (see Table 12-16 on�page�12�24)
	24-bit Immediate Long Data extension word
	Description�Multiply the two signed 24-bit source operands #xxxx and S, add/subtract the product ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	0
	0
	1
	1
	1
	q
	q
	d
	k
	1
	1
	Immediate Data Extension

	MAX Transfer by Signed Value MAX
	Description�Subtract the signed value of the source accumulator from the signed value of the dest...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	*
	CCR
	*
	C
	This bit is cleared if the conditional transfer is performed, and set otherwise.

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	1
	1
	1
	0
	1
	Optional Effective Address Extension

	MAXM Transfer by Magnitude MAXM
	Description�Subtract the absolute value (magnitude) of the source accumulator from the absolute v...
	This bit is cleared if the conditional transfer was performed, and set otherwise.
	Changed according to the standard definition.
	Unchanged by the instruction.
	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	1
	0
	1
	0
	1
	Optional Effective Address Extension

	MERGE Merge Two Half Words MERGE
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Source register [X0,X1,Y0,Y1,A1,B1] (see Table 12-16 on�page�12�24)
	Description�The contents of bits 11–0 of the source register are concatenated to the contents of ...
	Note:

	1. MERGE can be used in conjunction with EXTRACT or INSERT instructions to concatenate width and ...
	2. In Sixteen-bit Arithmetic mode, the contents of bits 15-8 of the source register are concatena...

	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	*
	*
	*
	—
	CCR
	Set if bit 47 of the result is set.
	Set if bits 47–24 of the result are 0.
	Always cleared.
	Unchanged by the instruction.

	MERGE Merge Two Half Words MERGE
	MOVE Move Data MOVE
	The DSP56300 (family) core provides a set of MOVE instructions. Table 12-14 lists these instructi...
	Table 12-14. Move Instructions

	MOVE
	Move Data
	page�12-110
	NO Parallel Data Move
	page�12-112
	I
	Immediate Short Data Move
	page�12-113
	R
	Register-to-Register Data Move
	page�12-116
	U
	Address Register Update
	page�12-117
	X:
	X Memory Data Move
	page�12-118
	X: R
	X Memory and Register Data Move
	page�12-120
	Y
	Y Memory Data Move
	page�12-122
	R: Y
	Register and Y Memory Data Move
	page�12-124
	L:
	Long Memory Data Move
	page�12-126
	X: Y
	X Memory Data Move
	page�12-128

	MOVE Move Data MOVE
	Description�Move the contents of the specified data source S to the specified destination D. This...
	Changed according to the standard definition.
	Unchanged by the instruction.
	Instruction Fields/ Parallel Move Description�Thirty of the sixty-two instructions allow an optio...

	NO Parallel Data Move
	where (. . .) refers to any arithmetic or logical instruction that allows parallel moves
	Description�Many instructions in the instruction set allow parallel moves. The parallel moves hav...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	(. . .)
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	Instruction opcode
	Instruction Format � (defined by instruction)

	I Immediate Short Data Move I
	where (. . .) refers to any arithmetic or logical instruction that allows parallel moves
	8-bit Immediate Short Data
	Destination register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (see Table 12-13 on�page�12�22)
	Description�Move the 8-bit immediate data value (#xx) into the destination operand D. If the dest...
	If the arithmetic or logical opcode-operand portion of the instruction specifies a given destinat...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	I Immediate Short Data Move I
	23
	16
	15
	8
	7
	0
	0
	0
	1
	d
	d
	d
	d
	d
	i
	i
	i
	i
	i
	i
	i
	i
	Instruction opcode

	R Register-to-Register Data Move R
	where (. . .) refers to any arithmetic or logical instruction that allows parallel moves.
	Source register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A, B,R0–R7,N0–N7]
	See Table 12-13 on�page�12�22
	Destination register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A, B,R0–R7,N0–N7]
	Description�Move the source register S to the destination register D. If the arithmetic or logica...
	If the opcode-operand portion of the instruction specifies a given source or destination register...

	R Register-to-Register Data Move R
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	Changed according to the standard definition.
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	1
	0
	0
	0
	e
	e
	e
	e
	e
	d
	d
	d
	d
	d
	Instruction opcode

	U Address Register Update U
	where (. . .) refers to any arithmetic or logical instruction that allows parallel moves
	Effective Address (see Table 12-13 on�page�12�22)
	Description�Update the specified address register according to the specified effective addressing...
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	1
	0
	M
	M
	R
	R
	R
	Instruction opcode

	X: X Memory Data Move X:
	where (. . .) refers to any arithmetic or logical instruction that allows parallel moves.
	23
	16
	15
	8
	7
	0
	0
	1
	d
	d
	0
	d
	d
	d
	W
	1
	M
	M
	M
	R
	R
	R
	Instruction opcode
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	1
	d
	d
	0
	d
	d
	d
	W
	0
	a
	a
	a
	a
	a
	a
	Instruction opcode
	Effective Address (see Table 12-13 on�page�12�22)
	Read S / Write D bit (see Table 12-16 on�page�12�24)
	Source/Destination registers [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (see Table 12-13 on�...
	6-bit Absolute Short Address

	0
	0
	0
	0
	1
	0
	1
	0
	0
	1
	1
	1
	0
	R
	R
	R
	1
	W
	D
	D
	D
	D
	D
	D
	Rn Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	1
	a
	a
	a
	a
	a
	a
	R
	R
	R
	1
	a
	0
	W
	D
	D
	D
	D

	X: X Memory Data Move X:
	Read S / Write D bit (see Table 12-16 on�page�12�24)
	7-bit sign extended Short Displacement Address
	Address register (R0–R7)
	Source/Destination registers [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B] (see Table 12-16 on�page�12�24)
	Source/Destination registers [all on-chip registers] (see Table 12-13 on�page�12�22)
	Description�Move the specified word operand from/to X memory. All memory addressing modes can be ...
	If the opcode-operand portion of the instruction specifies a given source or destination register...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	X:R X Memory and Register Data Move X:R
	where (. . .) refers to any arithmetic or logical instruction that allows parallel moves
	23
	16
	15
	8
	7
	0
	0
	0
	0
	1
	f
	f
	d
	F
	W
	0
	M
	M
	M
	R
	R
	R
	Instruction opcode
	Optional Effective Address Extension
	Effective Address (see Table 12-13 on�page�12�22)
	Read S1/Write D1 bit (see Table 12-16 on�page�12�24)
	S1/D1 register [X0,X1,A,B] (see Table 12-16 on�page�12�24)
	S2 accumulator [A,B] (see Table 12-13 on�page�12�22)
	D2 input register [Y0,Y1] (see Table 12-16 on�page�12�24)

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	0
	d
	0
	0
	M
	M
	M
	R
	R
	R
	Instruction opcode
	Optional Effective Address Extension
	Effective Address (see Table 12-13 on�page�12�22)
	Move opcode (see Table 12-16 on�page�12�24)

	X:R X Memory and Register Data Move X:R
	Class I: Move a one-word operand from/to X memory and move another word operand from an accumulat...
	Class II: Move one-word operand from a Data ALU accumulator to X memory and one-word operand from...
	For both Class I and Class II X:R parallel data moves, if the arithmetic or logical opcode-operan...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	Y Y Memory Data Move Y
	where (. . .) refers to any arithmetic or logical instruction that allows parallel moves
	23
	16
	15
	8
	7
	0
	0
	1
	d
	d
	1
	d
	d
	d
	W
	1
	M
	M
	M
	R
	R
	R
	Instruction opcode
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	1
	d
	d
	1
	d
	d
	d
	W
	0
	a
	a
	a
	a
	a
	a
	Instruction opcode
	Effective Address (see Table 12-13 on�page�12�22)
	Read S/Write D bit (see Table 12-16 on�page�12�24)
	Source/Destination registers [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (see Table 12-13 on�...
	Absolute Short Address

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	1
	1
	1
	0
	R
	R
	R
	1
	W
	D
	D
	D
	D
	D
	D
	Rn Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	1
	a
	a
	a
	a
	a
	a
	R
	R
	R
	1
	a
	1
	W
	D
	D
	D
	D

	Y Y Memory Data Move Y
	Read S/Write D bit (see Table 12-16 on�page�12�24)
	7-bit sign extended Short Displacement Address
	Address register (R0–R7)
	Source/Destination registers [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B] (see Table 12-16 on�page�12�24)
	Source/Destination registers [all on-chip registers] (see Table 12-13 on�page�12�22)
	Description�Move the specified word operand from/to Y memory. All memory addressing modes can be ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	Changed according to the standard definition.
	Unchanged by the instruction.

	R:Y Register and Y Memory Data Move R:Y
	where (. . .) refers to any arithmetic or logical instruction that allows parallel moves
	23
	16
	15
	8
	7
	0
	0
	0
	0
	1
	d
	e
	f
	f
	W
	1
	M
	M
	M
	R
	R
	R
	Instruction opcode
	Optional Effective Address Extension
	Effective Address
	See Table 12-13 on�page�12�22
	Read S2/Write D2 bit
	Table 12-16 on�page�12�24
	S1 accumulator [A,B]
	D1 input register [X0,X1]
	S2/D2 register [Y0,Y1,A,B]

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	0
	d
	1
	0
	M
	M
	M
	R
	R
	R
	Instruction opcode
	Optional Effective Address Extension
	ea = 6-bit Effective Address (see Table 12-13 on�page�12�22)
	Move opcode (see Table 12-16 on�page�12�24)

	R:Y Register and Y Memory Data Move R:Y
	Description�
	Class I: Move a one-word operand from an accumulator (S1) to an input register (D1) and move anot...
	Class II: Move a one-word operand from a Data ALU accumulator to Y memory and a one-word operand ...

	For both Class I and Class II R:Y parallel data moves, if the arithmetic or logical opcode-operan...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	Changed according to the standard definition.
	Unchanged by the instruction.

	L: Long Memory Data Move L:
	where (. . .) refers to any arithmetic or logical instruction that allows parallel moves
	Effective Address
	Table 12-13 on�page�12�22
	Read S/Write D bit
	See Table 12-16 on�page�12�24
	Two Data ALU registers
	Absolute Short Address
	Description�Move one 48-bit long-word operand from/to X and Y memory. Two Data ALU registers are ...
	If the arithmetic or logical opcode-operand portion of the instruction specifies a given destinat...

	L: Long Memory Data Move L:
	instruction. Note that the operands A10, B10, X, Y, AB, and BA can be used only for a 32-bit long...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.
	As a result of the MOVE A,L:ea operation, a 48-bit positive or negative saturation constant is st...

	23
	16
	15
	8
	7
	0
	0
	1
	0
	0
	L
	0
	L
	L
	W
	1
	M
	M
	M
	R
	R
	R
	Instruction opcode
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	1
	0
	0
	L
	0
	L
	L
	W
	0
	a
	a
	a
	a
	a
	a
	Instruction opcode

	X: Y: XY Memory Data Move X: Y:
	where (. . .) refers to any arithmetic or logical instruction that allows parallel moves
	5-bit X Effective Address (R0–R3 or R4–R7)
	4-bit Y Effective Address (R4–R7 or R0–R3)
	S1/D1 register [X0,X1,A,B]
	S2/D2 register [Y0,Y1,A,B]
	See Table 12-13 on�page�12�22
	X move Operation Control (See Table 12-16 on�page�12�24)
	Y move Operation Control (See Table 12-16 on�page�12�24)
	Description�Move a one-word operand from/to X memory and move another word operand from/to Y memo...
	If the arithmetic or logical opcode-operand portion of the instruction specifies a given destinat...

	X: Y: XY Memory Data Move X: Y:
	If the instruction specifies an access to an internal X I/O and internal Y I/O modules (reflected...
	If the opcode-operand portion of the instruction specifies a given source or destination register...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	1
	w
	m
	m
	e
	e
	f
	f
	W
	r
	r
	M
	M
	R
	R
	R
	Instruction opcode

	MOVEC Move Control Register MOVEC
	Effective Address
	See Table 12-13 on�page�12�22
	Read S/Write D bit
	See Table 12-16 on�page�12�24
	Memory Space [X,Y]
	Program Controller register [M0–M7, VBA, SR, OMR, SP, SSH,SSL,LA,LC]
	aa = 6-bit Absolute Short Address
	S2/D2 register [all on-chip registers]
	#xx = 8-bit Immediate Short Data
	Description�Move the contents of the specified source control register S1 or S2 to the specified ...
	If the System Stack register SSH is specified as a source operand, the Stack Pointer (SP) is post...

	MOVEC Move Control Register MOVEC
	For D1 or D2 = SR operand:
	*
	S
	Set according to bit 7 of the source operand.

	*
	L
	Set according to bit 6 of the source operand.

	*
	E
	Set according to bit 5 of the source operand.

	*
	U
	Set according to bit 4 of the source operand.

	*
	N
	Set according to bit 3 of the source operand.

	*
	Z
	Set according to bit 2 of the source operand.

	*
	V
	Set according to bit 1 of the source operand.

	*
	C
	Set according to bit 0 of the source operand.
	For D1 and D2 ¹ SR operand:

	*
	S
	Set if data growth has been detected.

	*
	L
	Set if data limiting has occurred during the move.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	1
	W
	1
	M
	M
	M
	R
	R
	R
	O
	S
	1
	d
	d
	d
	d
	d
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	1
	W
	0
	a
	a
	a
	a
	a
	a
	0
	S
	1
	d
	d
	d
	d
	d
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	W
	1
	e
	e
	e
	e
	e
	e
	1
	0
	1
	d
	d
	d
	d
	d
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	1
	i
	i
	i
	i
	i
	i
	i
	i
	1
	0
	1
	d
	d
	d
	d
	d

	MOVEM Move Program Memory MOVEM
	Effective Address (see Table 12-13 on�page�12�22)
	Read S/Write D bit (see Table 12-16 on�page�12�24)
	Source/Destination register [all on-chip registers] (see Table 12-13 on�page�12�22)
	Absolute Short Address
	Description�Move the specified operand from/to the specified Program (P) memory location. This is...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	*
	*
	*
	*
	*
	*
	*
	*
	CCR

	MOVEM Move Program Memory MOVEM
	For D1 or D2 = SR operand:
	*
	S
	Set according to bit 7 of the source operand.

	*
	L
	Set according to bit 6 of the source operand.

	*
	E
	Set according to bit 5 of the source operand.

	*
	U
	Set according to bit 4 of the source operand.

	*
	N
	Set according to bit 3 of the source operand.

	*
	Z
	Set according to bit 2 of the source operand.

	*
	V
	Set according to bit 1 of the source operand.

	*
	C
	Set according to bit 0 of the source operand.
	For D1 and D2 ¹ SR operand:

	*
	S
	Set if data growth has been detected.

	*
	L
	Set if data limiting has occurred during the move.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	1
	W
	1
	M
	M
	M
	R
	R
	R
	1
	0
	d
	d
	d
	d
	d
	d
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	1
	W
	0
	a
	a
	a
	a
	a
	a
	0
	0
	d
	d
	d
	d
	d
	d

	MOVEP Move Peripheral Data MOVEP
	Effective Address (see Table 12-13 on�page�12�22)
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Memory space [X,Y] (see Table 12-13 on�page�12�22)
	Peripheral space [X,Y] (see Table 12-13 on�page�12�22)
	Read/write-peripheral (see Table 12-13 on�page�12�22)
	Source/Destination register [all on-chip registers] (see Table 12-13 on�page�12�22)
	Description�Move the specified operand to or from the specified X or Y I/O peripheral. The I/O Sh...

	MOVEP Move Peripheral Data MOVEP
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	*
	*
	*
	*
	*
	*
	*
	*
	CCR
	For D1 or D2 = SR operand:

	*
	S
	Set according to bit 7 of the source operand.

	*
	L
	Set according to bit 6 of the source operand.

	*
	E
	Set according to bit 5 of the source operand.

	*
	U
	Set according to bit 4 of the source operand.

	*
	N
	Set according to bit 3 of the source operand.

	*
	Z
	Set according to bit 2 of the source operand.

	*
	V
	Set according to bit 1 of the source operand.

	*
	C
	Set according to bit 0 of the source operand.
	For D1 and D2 ¹ SR operand:

	*
	S
	Set if data growth is detected.

	*
	L
	Set if data limiting occurred during the move.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	0
	s
	W
	1
	M
	M
	M
	R
	R
	R
	1
	S
	p
	p
	p
	p
	p
	p
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	1
	W
	1
	M
	M
	M
	R
	R
	R
	0
	S
	q
	q
	q
	q
	q
	q
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	1
	W
	0
	M
	M
	M
	R
	R
	R
	1
	S
	q
	q
	q
	q
	q
	q
	Optional Effective Address Extension

	MOVEP Move Peripheral Data MOVEP
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	0
	s
	W
	1
	M
	M
	M
	R
	R
	R
	0
	1
	p
	p
	p
	p
	p
	p
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	W
	M
	M
	M
	R
	R
	R
	0
	S
	q
	q
	q
	q
	q
	q
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	0
	s
	W
	1
	d
	d
	d
	d
	d
	d
	0
	0
	p
	p
	p
	p
	p
	p
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	W
	1
	d
	d
	d
	d
	d
	d
	1
	q
	0
	q
	q
	q
	q
	q
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	W
	1
	d
	d
	d
	d
	d
	d
	0
	q
	1
	q
	q
	q
	q
	q

	MPY Signed Multiply MPY
	Source registers S1,S2 [X0*X0, Y0*Y0, X1*X0, Y1*Y0, X0*Y1, Y0*X0, X1*Y0, Y1*X1] (see Table 12-16 ...
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	Source register [Y1,X0,Y0,X1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	Immediate operand (see Table 12-16 on�page�12�24)
	Description�Multiply the two signed 24-bit source operands S1 and S2 and store the resulting prod...
	MPY Y0,X0,A MPY Y0, X0,B

	MPY Signed Multiply MPY
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	MPY(su,uu) Mixed Multiply MPY(su,uu)
	Source registers S1,S2 [all combinations of X0,X1,Y0, and Y1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	[ss,us] (see Table 12-16 on�page�12�24)
	Description�Multiply the two 24-bit source operands S1 and S2 and store the resulting product in ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	0
	1
	1
	1
	1
	s
	d
	k
	Q
	Q
	Q
	Q

	MPYI Signed Multiply With Immediate Operand MPYI
	Source register [X0,Y0,X1,Y1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	16-bit Immediate Long Data extension word
	Description�Multiply the immediate 24-bit source operand #xxxx with the 24-bit register source op...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	0
	0
	1
	1
	1
	q
	q
	d
	k
	0
	0
	Immediate Data Extension

	MPYR Signed Multiply and Round MPYR
	Source registers S1,S2 [X0*X0, Y0*Y0, X1*X0, Y1*Y0, X0*Y1, Y0*X0, X1*Y0, Y1*X1] (see Table 12-16 ...
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	Source register [Y1,X0,Y0,X1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	Immediate operand (see Table 12-16 on�page�12�24)
	Description�Multiply the two signed 24-bit source operands S1 and S2 (or the signed 16-bit source...

	MPYR Signed Multiply and Round MPYR
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	1
	Q
	Q
	Q
	d
	k
	0
	1
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	s
	s
	s
	s
	s
	1
	1
	Q
	Q
	d
	k
	0
	1

	MPYRI MPYRI Signed Multiply and Round With Immediate Operand
	Source register [X0,Y0,X1,Y1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	24-bit Immediate Long Data extension word
	Description�Multiply the two signed 24-bit source operands #xxxx and S, round the result using ei...
	÷
	This bit is changed according to the standard definition.

	—
	This bit is unchanged by the instruction.

	NEG Negate Accumulator NEG
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Negate the destination operand D and store the result in the destination accumulator....
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	NEG
	D
	Data Bus Move Field
	0
	0
	1
	1
	d
	1
	1
	0
	Optional Effective Address Extension

	NOP No Operation NOP
	None
	Description�Increment the Program Counter (PC). Pending pipeline actions, if any, are completed. ...
	This bit is unchanged by the instruction.
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	NORM Norm Accumulator Iterations NORM
	where E denotes the logical complement of E and · denotes the logical AND operator
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Address register [R0-R7]
	Description�Perform one normalization iteration on the specified destination operand D, update th...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	*
	—
	CCR
	*
	Set if bit 55 is changed as a result of a left shift

	÷
	This bit is changed according to the standard definition

	—
	This bit is unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	0
	1
	1
	R
	R
	R
	0
	0
	0
	1
	d
	1
	0
	1

	NORMF Fast Accumulator Normalization NORMF
	Source register [X0,X1,Y0,Y1,A1,B1] (see Table 12-13 on�page�12�22)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Arithmetically shift the destination accumulator either left or right as specified by...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	*
	—
	CCR
	*
	V
	Set if bit 39 is changed any time during the shift operation, and cleared otherwise.

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.
	If the base exponent is stored in R1 it can be updated by the following commands:

	NORMF Fast Accumulator Normalization NORMF
	Prior to execution, the 56-bit A accumulator contains the value $20:0000:0000. The CLB instructio...
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	0
	0
	1
	0
	s
	s
	s
	D

	NOT Logical Complement NOT
	where “—” denotes the logical NOT operator.
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Take the one’s complement of bits 47–24 of the destination operand D and store the re...
	*
	N
	Set if bit 47 of the result is set.

	*
	Z
	Set if bits 47–24 of the result are 0.

	*
	V
	Always cleared.

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	1
	d
	1
	1
	1
	Optional Effective Address Extension

	OR Logical Inclusive OR OR
	where Å denotes the logical inclusive OR operator.
	Source input register [X0,X1,Y0,Y1] (see Table 12-13 on�page�12�22)
	Destination accumulator [A/B] (see Table 12-13 on�page�12�22)
	6-bit Immediate Short Data
	24-bit Immediate Long Data extension word
	Description�Logically inclusive OR the source operand S with bits 47–24 of the destination operan...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	*
	*
	*
	—
	CCR
	*
	N
	Set if bit 47 of the result is set.

	*
	Z
	Set if bits 47–24 of the result are 0.

	*
	V
	Always cleared.

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	OR Logical Inclusive OR OR
	ORI OR Immediate With Control Register ORI
	where + denotes the logical inclusive OR operator.
	Program Controller register [MR,CCR,COM,EOM] (see Table 12-13 on�page�12�22)
	Immediate Short Data
	Description�Logically OR the 8-bit immediate operand (#xx) with the contents of the destination c...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	*
	*
	*
	*
	*
	*
	*
	*
	CCR
	For CCR Operand:
	Set if bit 7 of the immediate operand is set.
	Set if bit 6 of the immediate operand is set.
	Set if bit 5 of the immediate operand is set.
	Set if bit 4 of the immediate operand is set.
	Set if bit 3 of the immediate operand is set.
	Set if bit 2 of the immediate operand is set.
	Set if bit 1 of the immediate operand is set.
	Set if bit 0 of the immediate operand is set.
	For MR and OMR Operands: The condition codes are not affected using these operands.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	i
	i
	i
	i
	i
	i
	i
	i
	1
	1
	1
	1
	1
	0
	E
	E

	PFLUSH Program Cache Flush PFLUSH
	None
	Description�Flush the whole instruction cache, unlock all cache sectors, set the LRU stack and ta...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	This bit is unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1

	PFLUSHUN PFLUSHUN Program Cache Flush Unlocked Sections
	None
	Description�Flush the instruction cache sectors that are unlocked, set the LRU stack to its defau...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	This bit is unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1

	PFREE Program Cache Global Unlock PFREE
	None
	Description�Unlock all the locked cache sectors in the instruction cache. The PFREE instruction i...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0

	PLOCK PLOCK Lock Instruction Cache Sector
	Effective Address (see Table 12-13 on�page�12�22)
	Description�Lock the cache sector to which the specified effective address belongs. If the specif...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	1
	M
	M
	M
	R
	R
	R
	1
	0
	0
	0
	0
	0
	0
	1
	Address Extension Word

	PLOCKR PLOCKR Lock Instruction Cache Relative Sector
	None
	Description�Lock the cache sector to which the sum PC + specified displacement belongs. If the su...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	1
	ADDRESS EXTENSION WORD

	PUNLOCK PUNLOCK Unlock Instruction Cache Sector
	Effective Address (see Table 12-13 on�page�12�22)
	Description�Unlock the cache sector to which the specified effective address belongs. If the spec...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	1
	M
	M
	M
	R
	R
	R
	1
	0
	0
	0
	0
	0
	0
	1
	Address Extension Word

	PUNLOCKR PUNLOCKR Unlock Instruction Cache Relative Sector
	None
	Description�Unlock the cache sector to which the sum PC + specified displacement belongs. If the ...
	Condition Codes
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction
	Instruction Formats and Opcodes

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	0
	Address Extension Word

	REP Repeat Next Instruction REP
	Effective Address
	See Table 12-13 on�page�12�22
	Memory Space [X,Y]
	Absolute Short Address
	Immediate Short Data
	Source register [all on-chip registers]
	Description�Repeat the single-word instruction immediately following the REP instruction the spec...
	If the System Stack register SSH is specified as a source operand, the system Stack Pointer (SP) ...

	REP Repeat Next Instruction REP
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	M
	M
	M
	R
	R
	R
	0
	S
	1
	0
	0
	0
	0
	0
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	a
	a
	a
	a
	a
	a
	0
	S
	1
	0
	0
	0
	0
	0
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	i
	i
	i
	i
	i
	i
	i
	i
	1
	0
	1
	0
	h
	h
	h
	h
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	d
	d
	d
	d
	d
	d
	0
	0
	1
	0
	0
	0
	0
	0

	RESET Reset On-Chip Peripheral Devices RESET
	None.
	Description�Reset the interrupt priority register and all on-chip peripherals. This is a software...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	1
	0
	0

	RND Round Accumulator RND
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Round the 56-bit value in the specified destination operand D and store the result in...
	Two types of rounding can be used: convergent rounding (also called round to nearest (even)) or t...
	0
	0
	No Scaling
	23
	0. . . .0
	0
	1
	0
	0. . . .0
	0
	1
	Scale Down
	24
	0. . . .0
	1
	0
	0
	0. . . .0
	1
	0
	Scale Up
	22
	0. . . .0
	0
	0
	1
	0. . . .0
	If convergent rounding is used, the result of this addition is tested and if all the bits of the ...
	In Sixteen-bit Arithmetic mode the 40-bit value (in the 56-bit destination operand D) is rounded ...

	RND Round Accumulator RND
	boundary between the lower portion and upper portion is in a different position then in 24 bit mo...
	0
	0
	No Scaling
	31
	0. . . .0
	0
	1
	0
	0. . . .0
	0
	1
	Scale Down
	32
	0. . . .0
	1
	0
	0
	0. . . .0
	1
	0
	Scale Up
	30
	0. . . .0
	0
	0
	1
	0. . . .0
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	1
	d
	0
	0
	1
	Optional Effective Address Extension

	ROL Rotate Left ROL
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Rotate bits 47–24 of the destination operand D one bit to the left and store the resu...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	*
	*
	*
	*
	CCR
	*
	N
	Set if bit 47 of the result is set.

	*
	Z
	Set if bits 47–24 of the result are 0.

	*
	V
	This bit is always cleared.

	*
	C
	Set if bit 47 of the destination operand is set, and cleared otherwise.

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	1
	1
	d
	1
	1
	1
	Optional Effective Address Extension

	ROR Rotate Right ROR
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Rotate bits 47–24 of the destination operand D one bit to the right and store the res...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	*
	*
	*
	*
	CCR
	*
	N
	Set if bit 47 of the result is set.

	*
	Z
	Set if bits 47–24 of the result are 0.

	*
	V
	Always cleared.

	*
	C
	Set if bit 47 of the destination operand is set, and cleared otherwise.

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	1
	0
	d
	1
	1
	1
	Optional Effective Address Extension

	RTI Return From Interrupt RTI
	None.
	Description�Pull the Program Counter (PC) and the Status Register (SR) from the system stack. The...
	Set according to the value pulled from the stack.
	Set according to the value pulled from the stack.
	Set according to the value pulled from the stack.
	Set according to the value pulled from the stack.
	Set according to the value pulled from the stack.
	Set according to the value pulled from the stack.
	Set according to the value pulled from the stack.
	Set according to the value pulled from the stack.
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0

	RTS Return From Subroutine RTS
	None.
	Description�Pull the Program Counter (PC) from the system stack. The previous PC value is lost. T...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0

	SBC Subtract Long With Carry SBC
	Source register [X,Y] (see Table 12-13 on�page�12�22)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Subtract the source operand S and the Carry bit(C) from the destination operand D and...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	CCR
	÷
	Changed according to the standard definition.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	1
	J
	d
	1
	0
	1
	Optional Effective Address Extension

	STOP Stop Instruction Processing STOP
	None
	Description�Enter the Stop processing state. All activity in the processor is suspended until the...
	If the Stop Delay (SD, OMR[6]) bit is cleared—131,070 clock cycles
	If the Stop Delay (SD, OMR[6]) bit is set—24 clock cycles
	If the Stop Processing State (PSTP, PCTL1[5]) is set—8.5 clock cycles

	During the clock stabilization count delay, all peripherals and external interrupts are cleared a...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	STOP Stop Instruction Processing STOP
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	1
	1
	1

	SUB Subtract SUB
	Source register [B/A,X,Y,X0,Y0,X1,Y1] (see Table 12-13 on�page�12�22)
	Destination accumulator [A/B] (see Table 12-13 on�page�12�22)
	6-bit Immediate Short Data
	24-bit Immediate Long Data extension word
	Description�Subtract the source operand from the destination operand D and store the result in th...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	CCR
	÷
	Changed according to the standard definition.

	SUB Subtract SUB
	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	J
	J
	J
	d
	1
	0
	0
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	i
	i
	i
	i
	i
	i
	1
	0
	0
	0
	d
	1
	0
	0
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	d
	1
	0
	0
	Immediate Data Extension

	SUBL Shift Left and Subtract Accumulators SUBL
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	The source accumulator is B if the destination accumulator (selected by the d bit in the opcode) ...
	Description�Subtract the source operand S from two times the destination operand D and store the ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	*
	÷
	CCR
	*
	V
	Set if overflow has occurred in the result or if the MS bit of the destination operand is changed...

	÷
	Changed according to the standard definition

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	1
	d
	1
	1
	0
	Optional Effective Address Extension

	SUBR Shift Right and Subtract Accumulators SUBR
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	The source accumulator is B if the destination accumulator (selected by the d bit in the opcode) ...
	Description�Subtract the source operand S from one-half the destination operand D and store the r...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	CCR
	÷
	Changed according to the standard definition.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	0
	d
	1
	1
	0
	Optional Effective Address Extension

	Tcc Transfer Conditionally Tcc
	Condition code (see Table 12-16 on�page�12�24)
	Source register [B/A,X0,Y0,X1,Y1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A/B] (see Table 12-13 on�page�12�22)
	Source address register [R0–R7]
	Destination Address register [R0–R7]
	Description�Transfer data from the specified source register S1 to the specified destination accu...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	Tcc Transfer Conditionally Tcc
	TFR Transfer Data ALU Register TFR
	Source register [B/A,X0,Y0,X1,Y1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A/B] (see Table 12-13 on�page�12�22)
	Description�Transfer data from the specified source Data ALU register S to the specified destinat...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	J
	J
	J
	d
	0
	0
	1
	Optional Effective Address Extension

	TRAP Software Interrupt TRAP
	None
	Description�Suspend normal instruction execution and begin TRAP exception processing. The Interru...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0

	TRAPcc Conditional Software Interrupt TRAPcc
	Condition code (see Table 12-18 on�page�12�28)
	Description�If the specified condition is true, normal instruction execution is suspended and sof...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	C
	C
	C
	C

	TST Test Accumulator TST
	Source accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Compare the specified source accumulator S with 0 and set the condition codes accordi...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	*
	—
	CCR
	*
	V
	Always cleared.

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	0
	d
	0
	1
	1
	Optional Effective Address Extension

	VSL Viterbi Shift Left VSL
	Source register A,B (see Table 12-13 on�page�12�22)
	Bit value, 0 or 1 to be placed in the least significant bit of Y:<ea>
	Effective address (see Table 12-13 on�page�12�22)
	Description� Store the most significant part (24 bits) of the source accumulator at X memory (at ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	S
	1
	1
	M
	M
	M
	R
	R
	R
	1
	1
	0
	i
	0
	0
	0
	0
	Optional Effective Address Extension

	WAIT Wait for Interrupt or DMA Request WAIT
	None
	Description�Enter the low-power standby Wait processing state. The internal clocks to the process...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	1
	1
	0

	Appendix A Instruction Timing and Restrictions
	This appendix describes the various aspects of execution timing analysis for each instruction mne...
	Tables showing how to calculate DSP56300 core instruction timing for each instruction mnemonic (i...
	Tables showing the number of instruction program words for each instruction mnemonic (instruction...
	Description of various sequences that cause timing delays and stalls in the execution (instructio...
	Description of various instruction sequences that are forbidden and cause undefined operation (in...

	A.1 Overview
	The number of oscillator clock cycles per instruction depends on many factors, including the numb...
	Table A-1 lists instruction timing and is based on the assumption that all instruction cycles are...
	T: clock cycles for the normal case:

	— All instructions fetched from the internal program memory
	— No interlocks with previous instructions
	— Addressing mode is the Post-Update mode (post-increment, post-decrement and post offset by N) o...
	+ pru: Pre-update specifies clock cycles added for using the pre-update addressing modes (pre-dec...
	+ lab: Long absolute specifies clock cycles added for using the Long Absolute Address mode.
	+ lim: Long immediate specifies clock cycles added for using the long immediate data addressing m...
	Note: A dash under one or more of the columns pru, lab, or lim indicates that this column is not ...
	Table A-1. Instruction Timing, Word Count, and Encoding (Continued)

	ADD
	2
	—
	—
	—
	1
	—
	—
	—
	AND
	2
	—
	—
	—
	1
	—
	—
	—
	ANDI
	3
	—
	—
	—
	ASL
	1
	—
	—
	—
	1
	—
	—
	—
	ASR
	1
	—
	—
	—
	1
	—
	—
	—
	Bcc
	4
	—
	—
	—
	5
	—
	—
	—
	4
	—
	—
	—
	BCHG
	2
	—
	—
	—
	2
	1
	1
	—
	2
	—
	—
	—
	2
	—
	—
	—
	2
	—
	—
	—
	BCLR
	2
	—
	—
	—
	2
	1
	1
	—
	2
	—
	—
	—
	2
	—
	—
	—
	2
	—
	—
	—
	BRA
	4
	—
	—
	—
	4
	—
	—
	—
	4
	—
	—
	—
	BRKcc
	5
	—
	—
	—
	BRSET
	5
	—
	—
	—
	5
	1
	—
	—
	5
	—
	—
	—
	5
	—
	—
	—
	5
	—
	—
	—
	BScc
	4
	—
	—
	—
	4
	—
	—
	—
	BSCLR
	5
	1
	—
	—
	5
	—
	—
	—
	5
	—
	—
	—
	5
	—
	—
	—
	5
	—
	—
	—
	BSET
	2
	—
	—
	—
	2
	1
	1
	—
	2
	—
	—
	—
	2
	—
	—
	—
	2
	—
	—
	—
	BSR
	4
	—
	—
	—
	5
	—
	—
	—
	4
	—
	—
	—
	BSSET
	5
	—
	—
	—
	5
	1
	—
	—
	5
	—
	—
	—
	5
	—
	—
	—
	5
	—
	—
	—
	BTST
	2
	—
	—
	—
	2
	1
	1
	—
	2
	—
	—
	—
	2
	—
	—
	—
	2
	—
	—
	—
	CLB
	1
	—
	—
	—
	CMP
	2
	—
	—
	—
	1
	—
	—
	—
	CMPU
	1
	—
	—
	—
	DEBUG/ DEBUGcc
	1
	—
	—
	—
	5
	—
	—
	—
	DEC
	1
	—
	—
	—
	DIV
	1
	—
	—
	—
	DMAC
	1
	—
	—
	—
	DO
	5
	—
	—
	—
	5
	—
	—
	—
	5
	1
	—
	—
	5
	—
	—
	—
	DO FOREVER
	4
	—
	—
	—
	DOR
	5
	—
	—
	—
	5
	—
	—
	—
	5
	1
	—
	—
	5
	—
	—
	—
	DOR FOREVER
	ENDDO
	1
	—
	—
	—
	EOR
	2
	—
	—
	—
	1
	—
	—
	—
	EXTRACT
	1
	—
	—
	—
	2
	—
	—
	—
	EXTRACTU
	1
	—
	—
	—
	2
	—
	—
	—
	IFcc
	1
	—
	—
	—
	ILLEGAL
	5
	—
	—
	—
	INC
	1
	—
	—
	—
	INSERT
	1
	—
	—
	—
	2
	—
	—
	—
	Jcc
	4
	—
	—
	—
	4
	0
	0
	—
	JCLR
	4
	1
	—
	—
	4
	—
	—
	—
	4
	—
	—
	—
	4
	—
	—
	—
	4
	—
	—
	—
	JMP
	3
	—
	—
	—
	3
	1
	1
	—
	JScc
	4
	—
	—
	—
	4
	0
	0
	—
	JSCLR
	4
	—
	—
	—
	4
	1
	—
	—
	4
	—
	—
	—
	4
	—
	—
	—
	4
	—
	—
	—
	JSET
	4
	—
	—
	—
	4
	1
	—
	—
	4
	—
	—
	—
	4
	—
	—
	—
	4
	—
	—
	—
	JSR
	3
	—
	—
	—
	3
	1
	1
	—
	JSSET
	4
	—
	—
	—
	4
	1
	—
	—
	4
	—
	—
	—
	4
	—
	—
	—
	4
	—
	—
	—
	LSL
	1
	—
	—
	—
	1
	—
	—
	—
	LSR
	1
	—
	—
	—
	1
	—
	—
	—
	LRA
	3
	—
	—
	—
	3
	—
	—
	—
	LUA, LEA
	3
	—
	—
	—
	3
	—
	—
	—
	MACI
	2
	—
	—
	—
	MAC
	1
	—
	—
	—
	1
	—
	—
	—
	MACRI
	2
	—
	—
	—
	MACR
	1
	—
	—
	—
	MAX
	1
	—
	—
	—
	MAXM
	1
	—
	—
	—
	MERGE
	1
	—
	—
	—
	MOVE
	1
	—
	—
	—
	1
	—
	—
	—
	1
	—
	—
	—
	1
	—
	—
	—
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	—
	—
	—
	2
	—
	—
	—
	2
	—
	—
	—
	2
	—
	—
	—
	3
	—
	—
	—
	3
	—
	—
	—
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	—
	—
	1
	1
	—
	—
	1
	1
	—
	—
	MOVE cont.
	1
	1
	—
	—
	1
	1
	1
	—
	1
	—
	—
	—
	1
	—
	—
	—
	1
	—
	—
	—
	1
	—
	—
	—
	MOVEC
	1
	—
	—
	—
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	—
	—
	—
	1
	—
	—
	—
	1
	—
	—
	—
	1
	—
	—
	—
	MOVEM
	6
	1
	1
	—
	6
	1
	1
	—
	6
	—
	—
	—
	6
	—
	—
	—
	MOVEP
	2
	1
	1
	0
	2
	1
	1
	0
	2
	1
	1
	0
	2
	1
	1
	0
	6
	1
	1
	—
	6
	1
	1
	—
	6
	1
	1
	—
	6
	1
	1
	—
	1
	—
	—
	—
	1
	—
	—
	—
	1
	—
	—
	—
	1
	—
	—
	—
	MPY
	1
	—
	—
	—
	1
	—
	—
	—
	MPYI
	2
	—
	—
	—
	MPYR
	1
	—
	—
	—
	MPYRI
	2
	—
	—
	—
	NOP
	1
	—
	—
	—
	NORM
	5
	—
	—
	—
	NORMF
	1
	—
	—
	—
	OR
	2
	—
	—
	—
	1
	—
	—
	—
	ORI
	3
	—
	—
	—
	PFLUSH
	1
	—
	—
	—
	PFLUSHUN
	1
	—
	—
	—
	PFREE
	1
	—
	—
	—
	PLOCK
	2
	1
	1
	—
	PLOCKR
	4
	—
	—
	—
	PUNLOCK
	2
	1
	1
	—
	PUNLOCKR
	4
	—
	—
	—
	REP
	5
	—
	—
	—
	5
	—
	—
	—
	5
	1
	—
	—
	5
	—
	—
	—
	RESET
	7
	—
	—
	—
	RTI/RTS
	3
	—
	—
	—
	3
	—
	—
	—
	STOP
	10
	—
	—
	—
	SUB
	2
	—
	—
	—
	1
	—
	—
	—
	Tcc
	1
	—
	—
	—
	1
	—
	—
	—
	1
	—
	—
	—
	TRAP/ TRAPcc
	9
	—
	—
	—
	9
	—
	—
	—
	VSL
	1
	1
	1
	—
	WAIT
	10
	—
	—
	—
	A.2 Instruction Sequence Delays
	Because of pipelining in the DSP56300 core, certain instruction sequences can cause a delay in th...
	External bus wait states
	Instruction fetch delays
	Data ALU interlocks
	Address register interlocks
	Stack extension delays
	Pipeline interlocks

	A.2.1 External Bus Wait States
	An external bus wait state is caused by an instruction accessing the external bus for data read o...

	A.2.2 Instruction Fetch Delays
	At an external instruction fetch, the effective number of stall states in the pipeline is the num...

	A.2.3 Data ALU Interlock
	A Data ALU interlock is caused by one of the following sequences:
	Arithmetic stall: Occurs when an instruction uses one of the Data ALU registers (A0, A1, A2, B0, ...
	Transfer stall: Occurs when an instruction uses one of the Data ALU registers (A0, A1, A2, B0, B1...
	Status stall: Occurs when an instruction reads the contents of the Status Register (SR) for eithe...

	A.2.4 Address Register Interlocks
	An address register interlock is caused by one of the following sequences:
	Conditional Transfer Interlock: Occurs when a Transfer On-Condition (Tcc) instruction is followed...
	Address Generation Interlock: Occurs when the move portion of an instruction uses one of the AGU ...

	Example�A-1. Address Generation Interlock
	In this example, instruction I6 causes an address generation interlock because it uses R0 as the ...
	Three types of address generation interlock exist: Type0, Type1, and Type2. These types depend on...
	Figure A-1. Types of Address Generation Interlock

	When a Type0 address generation interlock is detected (during the decoding of I2 in the example),...
	Note: Only clock cycles are counted to determine when interlock cycles should be inserted.

	When an instruction using one of the AGU registers as an address generation enters the decoding s...

	Example�A-2. Detection of Address Generation Interlock
	In this example, a Type1 interlock is detected during the decoding phase of I 3 and two NOP cycle...

	A.2.5 Stack Extension Delays
	Some instructions access the System Stack (SS) as part of their normal activity. When the SS is e...
	Table A-2. Instructions That Access the System Stack �

	JSR, Jcc
	RET
	END-OF-DO
	LOOP
	ENDDO
	SSHWR
	SSHRD
	Table A-3 shows how many clock cycles are added in the various instructions/cases described.
	Table A-3. Stack Extension Delays �

	JSR, Jcc
	2
	—
	RET
	—
	3
	END-OF-DO
	—
	5
	DO
	4
	—
	ENDDO
	—
	5
	SSHWR
	2
	—
	SSHRD
	—
	3
	A.2.6 Program Flow Control Delays
	When flow-control instructions execute, some boundary cases exist and introduce interlocks into t...
	I1: An address of an instruction, where I2, I3, and I4 indicate the next instructions in the prog...
	MOVE: any type of MOVE, MOVEM, MOVEP, MOVEC, BSET, BCHG, BCLR, and BTST
	LA: the last address of a DO LOOP
	(LA – 1): the address of an instruction word located at LA – 1
	CR: Control Register, every one of the registers LA, LC, SR, SP, SSH, SSL, and OMR

	A.2.6.1 JMP to LA or to LA – 1
	When I1 is any type of JMP with its target address equal to LA, the decoding phase of the instruc...

	A.2.6.2 RTI to LA or to LA – 1
	When I1 is an RTI instruction whose return address is LA, the decoding phase of the instruction f...

	A.2.6.3 Conditional Instructions
	When I1 is a conditional change of flow instruction (such as Jcc) and the condition is false, the...

	A.2.6.4 Interrupt Abort
	When I1 is an instruction with a decoding phase that is longer than one cycle, it may be aborted ...

	A.2.6.5 Degenerated DO loop
	When I1 is a DO loop but the loop contains only one instruction, the decoding phase of I1 is leng...

	A.2.6.6 Annulled REP and DO
	If the repeat count of a REP instruction is zero, the decoding phase of the REP instruction is le...

	A.3 Instruction Sequence Restrictions
	Because of the pipelining in the DSP56300 core central processor, certain instruction sequences a...
	MOVE: any type of MOVE, MOVEM, MOVEP, MOVEC
	MOVEM: any type of MOVE to/from the Program space
	LA: the last address of a DO LOOP
	Two-words <inst>: a double-word instruction in which the second word is used as an immediate data...
	Single-word <inst>: an instruction with an addressing mode that does not need a second word exten...

	A.3.1 Restrictions Near the End of DO Loops
	Proper DO loop operation is not guaranteed for an instruction sequence similar to one of the foll...
	At LA – 5: The following instructions should not start at address LA – 5:

	— Single-word or two-word MOVE to {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}
	— BCHG, BSET, BCLR on {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}
	At LA – 4: The following instructions should not start at address LA – 4:

	— Single-word or two-word MOVE to {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}
	— BCHG, BSET, BCLR on {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}
	At LA – 3: The following instructions should not start at address LA – 3:

	— BCHG, BSET, BCLR on {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}
	— MOVE to {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}
	— MOVE from SSH, SSL
	— Two-word JMP, Jcc, JSR, JScc
	— JSET, JCLR, JSSET, JSCLR
	— Two-word MOVEM
	At LA – 2: The following instructions should not start at address LA – 2:

	— DO, DOR, DO FOREVER
	— MOVE to/from {LA, LC, SP,SC, SSH, SSL,SZ, VBA, OMR}
	— BCHG, BSET, BCLR, BTST on {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}
	— JMP, Jcc, JSR, JScc, JSET, JCLR, JSSET, JSCLR, BRA, Bcc, BSR, BScc
	— MOVEM
	— ANDI, ORI on MR
	— BRKcc, ENDDO, REP
	— STOP, WAIT, DEBUG, DEBUGcc, TRAP, TRAPcc, ILLEGAL
	At LA – 1: The following instructions should not start at address LA – 1:

	— DO, DOR, DO FOREVER
	— MOVE to/from {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}
	— BCHG, BSET, BCLR, BTST on {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}
	— JMP, Jcc, JSR, JScc, JSET, JCLR, JSSET, JSCLR, BRA, Bcc, BSR, BScc
	— MOVEM
	— ANDI, ORI on MR
	— BRKcc, ENDDO, REP
	— STOP, WAIT, DEBUG, DEBUGcc, TRAP, TRAPcc, ILLEGAL
	Note: A one-word conditional branch instruction at LA-1 is not allowed.

	When two consecutive LAs have a conditional branch instruction at LA-1 of the internal loop, the ...
	Workaround: Put an additional NOP between LABEL2 and LABEL1.
	At LA: The following instructions should not start at address LA:
	— Any two-word instruction
	— MOVE to {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}
	— MOVE from SSH, SSL
	— BCHG, BSET, BCLR on {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}
	— BTST on SSH
	— JMP, JSR, BRA, BSR, Jcc, JScc, Bcc, BScc
	— MOVE to/from Program space {MOVEM, MOVEP (only the P space options).
	— RESET
	— RTI, RTS
	— ANDI, ORI on MR
	— BRKcc, ENDDO, REP
	— STOP, WAIT, DEBUG, DEBUGcc, TRAP, TRAPcc, ILLEGAL

	A.3.2 General DO Restrictions
	The general restrictions on DO instructions are as follows:
	A DO loop should be initialized and aborted using only the following instructions: DO, DOR, DO FO...
	The LF and the FV bits in the Status Register (SR) should not be explicitly changed using the MOV...
	Proper DO loop operation is not guaranteed if an instruction sequence similar to one of the follo...

	— SSH cannot be used as the source for the Loop-Count for a DO, DOR, or a DO FOREVER instruction.
	— The following instructions should not appear within four words before a DO, DOR, or DO FOREVER:
	• BCHG, BCLR, BSET, MOVE on/to SSH,SSL
	• BCHG, BCLR, BSET, MOVE on/to SP, SC

	— The following instructions should not appear immediately before a DO, DOR, or DO FOREVER:
	• MOVE from SSH
	• BTST on SSH
	• BCHG, BCLR, BSET, MOVE to/on {LA, LC, SP, SC, SSH, SSL}
	• JSR, JScc, JSSET, JSCLR to LA whenever LF is set
	• BSR, BScc, to LA whenever LF is set

	— The following instructions should not appear in a DO, DOR, or DO FOREVER loop:
	• {JMP, Jcc, JSR, JScc, JSET, JCLR, JSSET, JSCLR, BRA, Bcc, BSR, BScc}
	When Stack Extension mode is enabled, use of the BRKcc or ENDDO instructions inside DO loops may ...
	Example�A-3. Finite DO Loops
	Example�A-4. DO FOREVER Loops
	do #M,label1

	A.3.3 ENDDO Restrictions
	The instructions in the following list should not appear within four words before an ENDDO instru...
	BCHG, BCLR, BSET, MOVE on/to SSH,SSL
	BCHG, BCLR, BSET, MOVE on/to SP, SC

	The instructions in the following list should not appear immediately before an ENDDO instruction:
	ANDI, ORI on MR
	MOVE from SSH
	BTST on SSH
	BCHG, BCLR, BSET, MOVE on/to {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}

	A.3.4 BRKcc Restrictions
	The instructions in the following list should not appear immediately before a BRKcc instruction:
	Every arithmetic instruction
	IFcc, Tcc
	BCHG, BCLR, BSET, MOVE on/to {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}

	A.3.5 RTI and RTS Restrictions
	The instructions in the following list should not appear within four words before an RTI or RTS i...
	BCHG, BCLR, BSET, MOVE on/to SSH,SSL
	BCHG, BCLR, BSET, MOVE on/to SP, SC

	The instructions in the following list should not appear immediately before an RTI instruction:
	MOVE, BCHG, BCLR, BSET on {SSH, SSL, SP, SC}
	MOVE, BTST from/on SSH
	ANDI, ORI on {MR, CCR}
	ENDDO

	The instructions in the following list should not appear immediately before an RTS instruction:
	MOVE, BCHG, BCLR, BSET on {SSH, SSL, SP, SC}
	MOVE, BTST from/on SSH
	ENDDO

	A.3.6 SR Manipulation Restrictions
	Changing values of bits in the Status Register (SR) should not be done explicitly using one of th...

	A.3.7 SP/SC and SSH/SSL Manipulation Restrictions
	The instructions in List A should not be executed within four instructions before executing any o...
	List A
	MOVE to (SP, SC)
	BCHG, BSET, BCLR on (SP, SC)

	List B
	MOVE to/from {SSH,SSL}
	BTST, BCHG, BSET, BCLR on {SSH,SSL}
	JSET, JCLR, JSSET, JSCLR on {SSH,SSL}

	A.3.8 Fast Interrupt Routines
	The following instructions cannot be used in a fast interrupt routine:
	DO, DO FOREVER, REP
	ENDDO, BRKcc
	RTI, RTS
	STOP, WAIT
	TRAP, TRAPcc
	ANDI, ORI on {MR, CCR}
	MOVE from SSH
	BTST on SSH
	MOVE to {LA, LC, SP, SC, SSH, SSL}
	BCHG, BSET, BCLR on {LA, LC, SP, SC, SSH, SSL}

	A.3.9 REP Restrictions
	The REP instruction can repeat any single-word instruction except the REP instruction itself and ...
	REP, DO, DO FOREVER
	ENDDO, BRKcc
	JMP, Jcc, JCLR, JSET
	JSR, JScc, JSCLR, JSSET
	BRA, Bcc
	BSR, BScc
	RTS, RTI
	TRAP, TRAPcc
	WAIT, STOP

	A.3.10 Stack Extension Restrictions
	The following instructions, related to the operation of the on-chip hardware stack extension, can...
	MOVE to EP
	BCHG, BSET, BCLR on EP
	MOVE to SC with a value greater than 15

	The following instructions, related to the operation of the on-chip hardware stack extension, can...
	JSR, JScc, JSCLR, JSSET
	BSR, BScc

	A.3.11 Stack Extension Enable Restrictions
	When stack extansion is enabled, the read result from stack may be improper if two previous execu...
	Case 1:

	— For the first executed instruction: move from SSH or bit manipulation on SSH (i.e., JCLR, BRCLR...
	— For the second executed instruction: move to SSH or bit manipulation on SSH (i.e., JSR, BSR, JS...
	— For the third executed instruction: an SSL or SSH read from the stack result may be improper. M...
	Workaround: Add two NOP instructions before the third executed instruction.
	Case 2:
	— For the first executed instruction: bit manipulation on SSH (i.e., BSET, BCLR, BCJG).
	— For the second executed instruction: an SSL or SSH read from the stack result may be improper. ...

	Workaround: Add two NOP instructions before the second executed instruction.

	A.4 Peripheral Pipeline Restrictions
	The DSP56300 core is based on a highly optimized pipeline engine. Despite the relatively deep pip...
	A.4.1 Polling a Peripheral Device for Write
	When data is written to a peripheral device, there is a two-cycle pipeline delay until any status...
	Example�A-5. Providing a Wait for Proper Data Writes �

	A.4.2 Writing to a Read-Only Register
	Writing to a read-only register is an operation that normally has no effect, but if a read operat...

	A.4.3 XY Memory Data Move
	An XY memory data move does not work properly in either of the following situations:
	The X-memory move destination is internal I/O and the Y-memory move source is a register used as ...
	The Y-memory move destination is a register used as source in the next adjacent move to non Y-mem...

	Example 1:
	Example 2:
	To address this problem, use one of the following alternatives:
	Separate these two consecutive moves by any other instruction.
	Split the XY Data Move to two moves.

	A.5 Sixteen-Bit Compatibility Mode Restrictions
	When there is a return from a long interrupt (by the RTI instruction), and the first instruction ...

	Appendix B Benchmark Programs
	The following benchmarks illustrate the source code syntax and programming techniques for the DSP...
	Table B-1. List of Benchmark Programs (Continued)

	3
	4
	67 ns
	7
	2N + 8
	33.3 N + 133.6 ns
	4
	5
	83 ns
	9
	2N + 8
	33.3N + 133.6 ns
	6
	N + 14
	60/(N + 14) MHz
	9
	2N + 10
	30/(N + 5) MHz
	6
	7
	117 ns
	9
	5N + 9
	66.7N + 150.3 ns
	7
	8
	133 ns
	9
	4N + 9
	66.7N + 150.3 ns
	16
	4N + 13
	30/(2N + 5.5) MHz
	10
	2N + 11
	33.3N + 183.7ns
	7
	9
	150.3 ns
	10
	5N + 10
	12/(N + 2) MHz
	12
	8N + 9
	133.6N + 150.3 ns
	15
	3N + 16
	60/(3N + 17) MHz
	13
	3N + 12
	60/(3N + 12) MHz
	10
	3N + 10
	60/(3N + 10) MHz
	12
	4N + 8
	30/(2N + 4) MHz
	14
	5N + 19
	60/(5N + 19) MHz
	15
	5N + 19
	60/(5N + 19) MHz
	13
	14
	233.8 ns
	19
	11N2 + 8N + 7
	60/(11N2 + 8N + 7) MHz
	7
	2N + 8
	33.3N + 133 ns
	B.1 Benchmarks
	The following benchmarks illustrate the source code syntax and programming techniques for the DSP...
	Table B-2. Example of Assembly Language Source

	The columns of Table B-2 are defined as follows:

	Label
	Opcode
	Operands
	X Bus Data
	Y Bus Data
	Comment
	P
	T
	B.1.1 Real Multiply
	Equation B-1:
	Table B-3. Real Multiply

	B.1.2 N Real Multiplies
	Equation B-2:
	Table B-4. N Real Multiplies Memory Map

	r0
	a(i)
	r4
	b(i)
	r1
	c(i)
	Example�B-1. N Real Multiplies �
	B.1.3 Real Update
	Equation B-3:
	Example�B-2. Real Update �

	B.1.4 N Real Updates
	Equation B-4:
	Table B-5. N Real Updates Memory Map

	r0
	a(i)
	r4
	b(i)
	r1
	c(i)
	r5
	d(i)
	Example�B-3. N Real Updates �
	B.1.5 Real Correlation or Convolution (FIR Filter)
	Equation B-5:
	Table B-6. Real Correlation or Convolution (FIR Filter) Memory Map

	r0
	a(i)
	r4
	b(i)
	Example�B-4. Real Correlation or Convolution (FIR Filter) �
	B.1.6 Real * Complex Correlation or Convolution (FIR Filter)
	Equation B-6:
	Table B-7. Real * Complex Correlation or Convolution (FIR Filter) Memory Map

	r0
	ar(i)
	ai(i)
	r4
	b(i)
	r1
	cr(n)
	ci(n)
	Example�B-5. Real * Complex Correlation or Convolution (FIR Filter) (Continued)

	1
	2
	1
	1
	1
	1
	2
	5
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	11
	2N + 11
	B.1.7 Complex Multiply
	Equation B-7:
	Table B-8. Complex Multiply Memory Map

	r0
	ar
	ai
	r4
	br
	bi
	r1
	cr
	ci
	Example�B-6. Complex Multiply �

	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	2 i'lock
	6
	7
	B.1.8 N Complex Multiplies
	Equation B-8:
	Table B-9. N Complex Multiplies Memory Map

	r0
	ar(i)
	ai(i)
	r4
	br(i)
	bi(i)
	r5
	cr(i)
	ci(i)
	Example�B-7. N Complex Multiplies �

	1
	1
	1
	1
	2
	5
	1
	1
	1
	1
	1
	1
	1
	1
	1
	2 i'lock
	9
	4N + 9
	B.1.9 Complex Update
	Equation B-9:
	Table B-10. Complex Update Memory Map

	r0
	ar
	ai
	r4
	br
	bi
	r1
	cr
	ci
	r2
	dr
	di
	Example�B-8. Complex Update�

	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	2 i'lock
	7
	8
	B.1.10 N Complex Updates
	Equation B-10:
	Table B-11. N Complex Updates Memory Map

	r0
	ar(i) ; ai(i)
	r4
	br(i) ; bi(i)
	r1
	cr(i) ; ci(i)
	r5
	dr(i) ; di(i)
	Example�B-9. N Complex Updates �

	1
	1
	1
	1
	2
	5
	1
	1
	1
	1
	1
	2 i'lock
	1
	1
	1
	2 i'lock
	9
	5N + 9
	Table B-12. N Complex Updates Memory Map

	r0
	ar(i)
	ai(i)
	r4
	br(i)
	bi(i)
	r1
	cr(i)
	ci(i)
	r5
	dr(i)
	di(i)
	Example�B-10. N Complex Updates

	1
	1
	1
	1
	1
	1
	2
	5
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	11
	5N + 9
	B.1.11 Complex Correlation or Convolution (FIR Filter)
	Equation B-11:
	Table B-13. Complex Correlation or Convolution (FIR Filter) Memory Map

	r0
	ar(i)
	ai(i)
	r4
	br(i)
	bi(i)
	r1
	cr(i)
	ci(i)
	Example�B-11. Complex Correlation or Convolution (FIR Filter) (Continued)

	1
	2
	1
	2
	1
	1
	1
	1
	2
	5
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	16
	4N + 13
	B.1.12 Nth Order Power Series (Real)
	Equation B-12:

	r0
	a(i)
	r4
	b
	r1
	c
	Example�B-12. Nth Order Power Series (Real) �

	1
	1
	1
	1
	1
	1
	1
	2 i'lock
	2
	5
	1
	1
	1
	1
	1
	1
	1
	2 i'lock
	10
	2N + 11
	B.1.13 Second Order Real Biquad IIR Filter
	Equation B-13:
	Table B-1. Second Order Real Biquad IIR Filter Memory Map

	r0
	w(n-2), w(n-1)
	r4
	a2/2, a1/2, b2/2, b1/2
	Example�B-13. Second Order Real Biquad IIR Filter �

	1
	1
	1
	1
	1
	1
	1
	1
	1
	2 i'lock
	1
	1
	1
	2 i'lock
	7
	9
	B.1.14 N Cascaded Real Biquad IIR Filter
	Equation B-14:
	Table B-2. N Cascaded Real Biquad IIR Filter Memory Map

	r0
	w(n-2)1, w(n-1)1, w(n-2)2, ...
	r4
	(a2/2)1, (a1/2)1, (b2/2)1, (b1/2)1, (a2/2)2, ...
	Table B-3. N Cascaded Real Biquad IIR Filter �

	1
	1
	1
	1
	2
	5
	1
	1
	1
	1
	1
	2 i’lock
	1
	1
	1
	1
	1
	2 i'lock
	10
	5N + 10
	B.1.15 N Radix-2 FFT Butterflies (DIT, In-Place Algorithm)
	Equation B-15:
	Table B-4. N Radix-2 FFT Butterflies (DIT, In-Place Algorithm) Memory Map

	r0
	ar(i)
	ai(i)
	r1
	br(i)
	bi(i)
	r6
	cr(i)
	ci(i)
	r4
	ar’(i)
	ai’(i)
	r5
	br’(i)
	bi’(i)
	Example�B-14. N Radix-2 FFT Butterflies (DIT, In-Place Algorithm) �

	1
	1
	1
	1
	2
	5
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	2 i'lock
	1
	2 i'lock
	12
	8N + 9
	B.1.16 True (Exact) LMS Adaptive Filter
	Figure B-1. True (Exact) LMS Adaptive Filter
	Table B-5. System Equations

	e(n) = d(n) – H(n) ¥ (n)
	e(n) = d(n) – H(n) ¥ (n)
	H(n + 1) = H(n) + uX(n)e(n)
	H(n + 1) = H(n) + uX(n – 1)e(n – 1)
	Table B-6. LMS Algorithms �

	Get input sample
	Get input sample
	Save input sample
	Save input sample
	Do FIR
	Do FIR
	Get d(n), find e(n)
	Update coefficients
	Update coefficients
	Get d(n), find e(n)
	Output f(n)
	Output f(n)
	Table B-7. True (Exact) LMS Adaptive Filter Memory Map

	r0
	x(n), x(n – 1), x(n – 2), x(n – 3)
	r4, r5
	h(0), h(1), h(2), h(3)
	Example�B-15. True (Exact) LMS Adaptive Filter (Continued)

	1
	1
	1
	1
	1
	5
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	2
	5
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	15
	3N + 16
	B.1.17 Delayed LMS Adaptive Filter
	Error signal is in y1
	FIR sum in a = a + h(k)old * x(n – k)
	h(k)new in b = h(k)old + error * x(n – k – 1)
	Table B-8. Delayed LMS Adaptive Filter Memory Map

	r0
	x(n), x(n – 1), x(n – 2), x(n – 3), x(n – 4)
	r5, r4
	dummy, h(0), h(1), h(2), h(3)
	Example�B-16. Delayed LMS Adaptive Filter (Continued)

	1
	1
	1
	1
	1
	1
	1
	1
	2
	5
	1
	2 i’lock
	1
	1
	1
	2 i’lock
	1
	1
	1
	1
	1
	1
	1
	1
	13
	3N + 12
	B.1.18 FIR Lattice Filter
	Figure B-2. FIR Lattice Filter
	Table B-9. FIR Lattice Filter Memory Map

	r0
	s1, s2, s3, sx
	r4
	k1, k2, k3
	Example�B-17. FIR Lattice Filter (Continued)

	1
	1
	1
	1
	1
	1
	2
	5
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	10
	3N + 10
	B.1.19 All Pole IIR Lattice Filter
	Figure B-3. All Pole IIR Lattice Filter
	Table B-10. All Pole IIR Lattice Filter Memory Map

	r0
	k3, k2, k1
	r4
	s3, s2, s1
	Example�B-18. All Pole IIR Lattice Filter (Continued)

	1
	1
	1
	1
	1
	1
	2
	5
	1
	1
	1
	2 i'lock
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	12
	4N + 8
	B.1.20 General Lattice Filter
	Figure B-4. General Lattice Filter
	Table B-11. General Lattice Filter Memory Map

	r0
	k3, k2, k1, w3, w2, w1, w0
	r4
	s4, s3, s2, s1
	Example�B-19. General Lattice Filter (Continued)

	1
	1
	1
	1
	2
	5
	1
	1
	1
	2 i'lock
	1
	1
	1
	2 i'lock
	1
	1
	1
	1
	1
	5
	1
	1
	1
	1
	1
	2 i’lock
	14
	5N + 19
	B.1.21 Normalized Lattice Filter
	Figure B-5. Normalized Lattice Filter
	Table B-12. Normalized Lattice Filter Memory Map

	r0
	q2, k2, q1, k1, q0, k0, w3, w2, w1, w0
	r4
	sx, s2, s1, s0
	Example�B-20. Normalized Lattice Filter �

	1
	1
	1
	1
	2
	5
	1
	1
	1
	1
	1
	1
	1
	1
	1
	2 i'lock
	1
	1
	1
	1
	1
	5
	1
	1
	1
	1
	1
	2 i'lock
	15
	5N + 19
	B.1.22 [1 ¥ 3][3 ¥ 3] Matrix Multiplication
	Example�B-21. [1 ¥ 3][3 ¥ 3] Matrix Multiplication �

	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	2 i’lock
	13
	14
	B.1.23 N Point 3 ¥ 3 2-D FIR Convolution
	The two-dimensional FIR uses a [3 ¥ 3] coefficient mask:
	The coefficient mask is stored in Y memory in the following order:
	The image is an array of 512 ¥ 512 pixels. To provide boundary conditions for the FIR filtering, ...
	Figure B-6. FIR Filtering

	The image (with boundary) is stored in row major storage. The first element of the array image(,)...
	Image(1,1) maps to index 0, image(1,514) maps to index 513;
	Image(2,1) maps to index 514 (row major storage).

	Although many other implementations are possible, this is a realistic type of image environment i...
	Table B-13. N Point 3 ¥ 3 2-D FIR Convolution Memory Map

	r0
	r1
	r2
	r4
	r5
	Example�B-22. N Point 3 ¥ 3 2-D FIR Convolution (Continued)

	1
	1
	2
	5
	2
	5
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	2 i'lock
	1
	1
	1
	1
	1
	1
	1
	1
	T = 11N2 + 8N + 7
	B.1.24 Viterbi Add-Compare-Select (ACS)
	This routine implements the Viterbi algorithm kernel. The algorithm is parametric and fits any va...
	Figure B-7. Viterbi Butterfly

	Given Branch Metric value (BrM), ACS should perform as follows:
	Fetch path metric of state(i) – Si.
	Fetch path metric of state(j) – Sj.
	Add BrM to Si.
	Subtract BrM from Sj.
	Compare and select the greater of the two: Next Sk = Max (Si + BrM, S – BrM).
	Store the result in next-state path-metric memory location.
	Update the state’s Trellis history with the selection bit.
	Perform the similar task for: Next Sk+1 = Max (Si – BrM, Sj + BrM).
	Figure B-8. ACS Butterfly—First Half
	Figure B-9. ACS Butterfly—Second Half

	Example�B-23. Viterbi Add-Compare-Select (ACS) �

	1
	1
	2
	1
	1
	1
	1
	1
	1
	1
	1
	2
	14
	B.1.25 Parsing a Data Stream
	This routine implements parsing of a data stream for MPEG audio. The data stream, composed by con...
	r0—pointer to the buffer in X memory containing the variable length stream
	r5—pointer to buffer in Y memory where the length of each field is stored

	Example�B-24. Parsing Data Stream (Continued)

	1
	1
	1
	1
	1
	1
	1
	1
	1
	2
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	12
	13
	B.1.26 Creating a Data Stream
	The routine discussed in this section creates a data stream for MPEG audio. Words of variable len...
	r0—pointer to a buffer in X memory, containing the variable length codes—the code is right-aligne...
	r2—pointer to a buffer in X memory containing the stream generated
	r4—pointer to a buffer in Y memory where the actual length of each field is stored
	r3—pointer to a location that stores the “bits offset,” the number of bits left to be consumed, 4...
	r5—pointer to a location storing the constant 24
	r1—used as temporary storage (no need to initialize)
	x0—stores the current word to be inserted
	y1—stores the length of the code brought in x0
	y0—stores 24
	Table B-14. Creating Data Stream Memory Map

	r0
	data buffer
	r2
	stream buffer
	r4
	length buffer
	r3
	“bits offset”
	r5
	24
	Example�B-25. Creating Data Stream (Continued)

	1
	1
	1
	1
	1
	1
	1
	2
	1
	1
	1
	1
	1
	1
	1
	1
	1
	2
	1
	1
	1
	1
	1
	1
	12
	14
	B.1.27 Parsing a Hoffman Code Data Stream
	The routine discussed in this section parses a Hoffman code data stream. It extracts a bit field ...
	Figure B-10. Parsing Process

	Following are the pointers and registers used by the routine:
	r0—pointer to the buffer in X memory containing the stream
	r1—used as temporary storage (no need to initialize)
	r3—pointer to buffer in Y memory where the extracted fields are stored
	r5—pointer to a location that stores the “bits offset”, number of bits left to be consumed, 48 in...
	r2—pointer to the right table
	r6—pointer to the first lookup table
	r7—pointer to the second lookup table
	r4—pointer to constants
	Table B-15. Parsing Hoffman Code Data Stream Memory Map

	r0
	stream buffer
	r3
	extracted data buffer
	r5
	“bits offset”
	r4
	#no.1 address bus length
	#no.2 mask word for length field
	#no.3 merged width and offset
	‘24‘
	r6
	first lookup table
	r7
	second lookup table
	Example�B-26. Parsing Hoffman Code Data Stream (Continued)

	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	22
	22

	Appendix C From CDR Process to HiP Process
	Competitive designs for wireless infrastructure applications require faster digital signal proces...
	Table C-1. CDR-to-HiP Process Differences Summary�

	C.1 Voltage
	DSP56300 family members are dual-voltage devices. The core and internal PLL of derivatives migrat...

	C.2 Operating Frequency
	DSP56300 family derivatives that use the CDR process technology operate at a maximum frequency of...

	C.3 Port A Timings
	Speed increases resulting from the application of new process technologies affect all Port A timi...
	DRAM Access Support

	DRAM accesses are supported with DSP56300 family derivatives that use the CDR process technology ...
	SRAM Timings

	SRAM accesses are supported with DSP56300 family derivatives that use the CDR process technology ...
	Synchronous Timings and Arbitration Timings

	DSP56300 family members that use the CDR process technology rely on CLKOUT as a reference signal ...
	Alternatives to using CLKOUT exist. One example is the use of the Asynchronous Bus Arbitration En...
	Address Trace Mode

	Address Trace mode, when available and enabled by setting the ATE bit in the Operating Mode regis...

	C.4 Memory Block Size
	The internal memory block size of DSP56300 derivatives using the HiP4 process technology is 1024 ...
	In CDR derivatives, the internal RAM is divided into 256-word blocks. A situation of contention e...
	This same situation applies to HiP4 derivatives, except that contention exists if the core and DM...
	Figure C-1. CDR/HIP DMA and Core Access Comparisons

	The same change in block size applies to EFCOP/core contention in derivatives that contain an EFC...
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

